版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第八節(jié)定積分的計(jì)算定積分的換元法設(shè)單值函數(shù)滿足:φ(t
)
φ
(t
)則φ(α)
=
a
,
φ(
β)
=
b;在[α
,β]或[β
,α]上j(t
)?
C1[a
,b],換元公式定理1注11)
換元要換限,變量不代回.3)換元公式雙向使用:a=
b
f
(
x)d
x或配元φ(t
) d
φ(t
)φ(t
)
φ
(t
)2)x
=
j(t
),x
:
a
fi
b,
t
:
α
fi配元不換限φ(t
)
φ
(t
)φ(t
)
φ
(t
)β,
下限對(duì)應(yīng)下限.令x
=φ(t
)定積分的分部積分法定理2
設(shè)u(
x),
v(
x)在[a,
b]上導(dǎo)數(shù)連續(xù),則ba分部積分公式注2a-af
(
x)dx0,偶倍奇零=0af
(
x)d
x
,2注3設(shè)f
(x)在實(shí)軸上連續(xù),且是以T為周期的周期函數(shù),則對(duì)任意實(shí)數(shù)a成立Ta+Taf
(
x)dxf
(
x)dx
=
0一、絕對(duì)值積分例1122-2min{ ,
x
}dx.x求解112,
x
>
1
x
x2
,
x
£
1,
x
}
=x
min{是偶函數(shù),x,
x
}dx1min{220原式=221102=
2dx1xx dx
+
223+
2ln
2.=解0p21
-
sin
2xdx.求p20sin
x
-
cos
x
dx原式=ppp40=
4
(cos
x
-
sin
x)dx
+
2(sin
x
-
cos
x)dx=
2 2
-
2.例210(2x2
+1)
x2
+1二、定積分換元
1
dt02sec2
t(2
tan
t
+1)sectp6令x
=tant=====cost02sin2
t
+cos2t=p6102d
(sint)1+
sin
tdt
=p60p=
arctan(sint)
|
62=
arctan
1例3
3
dx2x
,
x<
01
+
e1,
x
?
0
1
+
x1計(jì)算0
f
(
x
-1)dx.例4
設(shè)f
(
x)
=
1令u=x-1解:原式=====-1
f
(u)duu
=100-1du
+
1
du1+
e
1+
u1=
-ln(e-u
+1)
|0
+ln(1+
u)
|1-1
0=
-ln
2
+ln(e
+1)
+ln
2
=
ln(e
+1)
1ln
x
d
1-
x
e2三、定積分分部積分ln
xe2(1-
x)2
dx
=
ee11e2e2dxx(1-
x)ln
x
|
-e=2|11-
x2eex1-
e
1-
x-
-
ln1-
e2=1-
ln=e1+
e
e
+1例5
e2110x2e-t
dt
.計(jì)算
xf
(
x)
dx
,
其中f
(
x)
=
例61010f
(
x)
dx2xf
(
x)
dx
=解:212121002
11-
x2
f
¢(x)
dx=
x f
(x)
|01x22=
0
-
10|144
1
42xe-x
dx
=
e-x4=
1
(e-1
-1).40π4π2nn2n
-12n
-
2+I
n=
2n
-1In-1,
I0
=2n-1sec
x
dx
,證明降階遞推公式設(shè)I
=例70nsec2n-2p4證:
I
=0-(2n
-
2)
4
sec2n-2
x
tan2
x
dx=
sec2n-2
x
tan
x
|4px
d
(tan
x)psec
x
dx0402n2n-2n-1sec
x
dx
+(2n
-
2)=
2
-(2n
-
2)p40pn=
2n-1
-(2n
-
2)I
+(2n
-
2)I+2n-1In-11 2n
-12n
-
2n-1=
2n
-4000pp4sec
x
dx
=I
=四、含參量的變限積分例80設(shè)f
(
x)連續(xù),
F
(
x)
=
x
f
(
x
+
t
)
dt,
計(jì)算F
¢(
x).xxf
(u)
du2
x0令u
=x+tf
(x
+
t)
dt
====解:F
(x)=F
(x)
=
2
f
(2x)
-
f
(x)當(dāng)被積函數(shù)中出現(xiàn)求導(dǎo)變量時(shí),或利用代數(shù)方法將求導(dǎo)變量提出積分號(hào);或利用換元積分法將求導(dǎo)變量放到積分的上,下限.例9)2022sin4
xxxfi
0+x
-
t
dt,arctan ln
1+(
x
-
t
)
(其中x
>
0,
計(jì)算極限lim
f
(x)
.設(shè)f
(x)=解:令x2
-t
=u,0arctan
u
ln(1+
u)
2uduf
(x)
=
-xx0u
arctan
u
ln(1+
u)du=
2402xlim
f
(x)sin4
xxu
arctan
u
ln(1+
u)du=
limxfi0+xfi
0+型
004x3=
lim
2x
arctan
x
ln(1+
x)xfi
0+=
1210202f
(
x)dx.(
x
-
1)x-
y
+2
ye
dy,求設(shè)f
(x)=解3
0原式=1
1
f
(x)d
(x
-1)311030
313=
1dx(
x
-
1)
ee dy]0
-[
(
x
-
1)3
-
x2
+2
xx-
y2
+2
y=
-102162d[(
x
-
1)
](
x
-
1)
e2
-(
x-1)
+1令(x
-1)2
=u-01ue
due6-u1=
6
(e
-
2).例0-
2(x5
+
4cos5
x)cos3
x
dx
.p2p計(jì)算cos8
x
dx-
2-
2p2pp2p解:原式=cos
x
dx208=
0
+
8x5
cos3
x
dx
+
4p8
6
4
2
2=
8
7
5
3
1
p32=
35
p五、利用被積函數(shù)的奇偶性證明或計(jì)算例11-2計(jì)算定積分2
x
ln(1
+
ex
)
dx例122x)(-dt
)-2-t令x=-t解法一:
-2
x
ln(1
+
e
)
dx
====2
-
t
ln(1
+
e22
t-2[t
-
t
ln(e
+1)]
dt=t222-2-2t
ln(e
+1)
dtt dt
-=t
dt2-2212原式=83=22
x-2-2x
ln(1+
ex
)
dx-
x
x
2
+
e
2
dx=
x
ln
e
2
+
ln
e解法二:222x-2-2-
x
x
x
ln
e
2
+
e
2
dx
=
xdx
+
202=x
dx
+
0=
83xx
lnt1111+
t證法一:
f
( )
=uudt
====12
du11+
1x
-
ln
u
-1令u
=tx=1duu(u
+1)ln
u11+
t
t(t
+1)
1
x
lnt
lnt+f
(x)
+
f
( )
=xt
dt
=12x
ln
tdt
=
1
ln2
x六、積分等式的證明例13
設(shè)f
(
x)
=
x
ln
t
dt
,
證明f
(
x)
+
f
(
1
)
=
1
ln2
x.1
1
+
t
x
22x
21
1f
(
)
-
ln
x證法二:令g(x)=f
(x)+xxxln
1x21+
11+
x則g¢(x)
=
ln
x
+-1
-
ln
x
1
=
0于是g(x)為一常數(shù),又g(1)
=
0,
故g(x)
”
0.解p0
sin
x
+
cos
xsin
x求
2
dx.psin
x由I
=
2pdx,0
sin
x
+
cos
xcos
xdx,
設(shè)J
=
2,20p20
sin
x
+
cos
xpdx
=則I
+J
=0
sin
x
+
cos
xp
sin
x
-
cos
xI
-
J
=
2dx
=
-20sin
x
+
cos
xp
d
(cos
x
+
sin
x)=
0.2故得2I
=p,4即I
=p.例144
000dx
.a
a1+sin
2xf
(a
-
x)
dx
,f
(x)
dx
=p
1
-
sin
2x并利用此式計(jì)算證明設(shè)f
(x)在[0,a](a
>0)上連續(xù),例15a0證:0af
(t)(-dt)令t
=a-xf
(a
-
x)
dx
====a0=af
(x)
dx0f
(t)
dt
=dx4
01+sin
2xp
1
-
sin
2x解:dx0
2
2
=p41+sin
p
-
2x
1-
sin
p
-
2x
4
0=p
1-
cos
2xdx1+cos
2x
2cos
x402dx
=p
2sin2
x0=p0p4
(sec2
x
-1)
dx
=
(tan
x
-
x)
|
44=1-
pdt
=
0.1 ln
tt
tf
(t
+
)x1x例16
f
(x)在(0,+¥
)上連續(xù),試證明x
>0,有dt,1
lntt
tx1xf
(t
+)證法一:令g(x)=111=
0,-1x2xlnx則
g¢(
x)
=
f
(x
+
1
)
ln
x
-
f
(
+
x)x
x
xg(x)為一常數(shù),g(x)
=
g(1)=
0.duu1ln
111xxu2-1f
(
+
u)uu====令t
=1dtt
t1
lntx1xf
(t
+
)證法二:
g(
x)
=u
u1
lnuf
(x1xu+
u)
du
=
-g(x)=
-\
g
(x)
=
0.七、積分不等式的證明試證明02psin(x2
)
dx
>
0證明:原式tsin
t2
0====令t
=x2
12p
dtdttt=
2
01
2p
sin
tdt
+
2
p1
p
sin
tdudt
+=ppu
+p00dtsinttsintt00dt
-=ppsin
u
+p2
sint
t
+p)
dtsint
(120=pt
(t
+p
)
t
+p
-
t
sin
t
?
0t
+p
-
t
>
002p\
sin(x2
)
dx
>
0(令u
=t
-p
)例17f
(
x)dxf
(
x)dxab
ba?
(b
-
a)2
.證明設(shè)f
(x)在區(qū)間[a,b]上連續(xù),且f
(x)>0.證
作輔助函數(shù)f
(t
)dtf
(t
)dtxaxa-
(
x
-
a)2
,F
(
x)
=11f
(
x)f
(t
)dtf
(t
)xaxa-
2(
x
-
a)dt
+
F
¢(
x)
=
f
(
x)=xaxaxa2dt,dt
-f
(
x)f
(t
)dt+f
(t
)f
(
x)例18(+
-
2)dt
?
0f
(t
)
f
(
x)f
(
x)
f
(t
)xa即F
¢(x)=\f
(
x)
+
f
(t
)
?
2f
(t
)
f
(
x)
f
(
x)
>
0,F
(x)單調(diào)增加.又
F
(a)=0,\
F
(b)
?
F
(a)
=
0,f
(
x)dxf
(
x)dxbaba?
(b
-
a)2
.即e
sin
tdt
>
0xsin
tx+2p證明F
(x)=例192p0sin
te
sin
tdt證:F
(x)==pp2psin
t0sin
te
sin
tdte
sin
tdt
+(在第二個(gè)積分中,令u
=t
-p
)00sin
te
(-sinu)
due
sintdt
+=-sin
up
p0-1)dt=e-sin
t
sint(e2sin
tp當(dāng)0
<
t
<
p時(shí),
sin
t
>
0,
e2sin
t
-1
>
0,
\
F
(x)
>
0.10310f
(
x)
dx
.f
(x)
dx
?2¢0
<f
(x)£1,證明設(shè)f
(x)在[0,1]上連續(xù),在(0,1)內(nèi)可導(dǎo),且f
(0)=0,例20030xxf
(t)
dt
-
2證:令F
(x)=f
(t)dt,則F
(0)=0,30f
(t)
dt2
f
(x)x-
f
(
x)F
(x)
=¢20-
f
(
x)f
(t)
dt=
f
(x)
2x20(
x),xf
(t)
dt
-
f令G(x)=2則G(0)=0,G
(x)
=
2
f
(x)
-
2
f
(x)
f
(x)
=
2
f
(x)[1-
f
(x)]由f
(0)
=
0及0
<
f
(x)
£1,
得f
(x)
>
f
(0)
=
0,有G
(x)
?
0,
G(x)
?,F
(x)
?
0,F
(x)
?,G(x)
?
G(0)
=
0,F
(x)
?
F
(0)
=
0,故當(dāng)0
£
x
£1時(shí),有F
(x)?0.特別有F
(1)?0,10312
0f
(
x)
dx
?
0
.f
(
x)
dx
-此即2
[11-2+
ln2
(1
-
x)]dx.sin
x解2x8
+
11-21ln(1
-
x)dx原式=0
+=1200-21x)dxln(1
-ln(1
-
x)dx
-=
3
ln
3
+
ln
1
.2
2
2備例1
求102f
(x)
dx.¢-(
x-1),f
(0)=0,計(jì)算備例設(shè)2
f
(x)
=
ex0f
¢(x)
dx-
f
(0)
=解:
f
(
x)
=
f
(x)dxex=0-(
x-1)2無(wú)法積出¢101010xf
(x)
dxf
(x)
dx
=
xf
(
x)
|
-dxxe10-(
x-1)2=
f
(1)
-仍無(wú)法解出1010f
(
x)
d
(
x
-1)f
(x)
dx
=(x)
dx1010¢-
(x
-1)
f=
(x
-1)
f
(x)
|dx10-(
x-1)2(x
-1)e=
0
-02=
1
e-(
x-1)2
|12=
1
(1-
e-1
)baba12¢-
b)
f
(
x)dx(
x
-
a)(
x[
f
(a)
+
f
(b)]+b
-
a2f
(
x)dx
=證明:ba(
x
-
a)(
x(
)ba-
b)
f
"(
x)dx
=-
b)df'
x(
x
-
a)(
x-
baba(
)(
-
a
-
b)dxf'
x
2
x(
)
-
a)(
x
-
b)=
f' x
(
x=
-ba(2
x
-
a
-
b
df
x)
(
)
(
)(+baba-
a
-
b)f
(x)
2dx=
-
f
x
2
x(
)(
)
(
)(
)ba-
b
-
f
b
b
-
a
+=
f
a
af
(x)
2dx備例3
f
¢(
x)
在
[a,
b]連續(xù),證明baba122(
x
-
a)(
x
-
b)
f
¢(
x)dxf
(b)]
+[
f
(a)
+b
-
af
(
x)dx
=\021/
2
20x
f
(
)dx.2¢
xf
(2x)dx=1/32,計(jì)算備例4
設(shè)f
(x)連續(xù),
且已知f
(1)
=1/
8,
f
(1)
=1/
4,202202¢
xx
f
(
)dx
=
2
x
df
(
)2
2¢
x解:¢
x¢
x202
2xf
(
)dx2-42=
2x
f
(
)
|020xxdf
(
)2¢=
8
f
(1)
-8xxf
(
)dx2202=
2
-8xf
(
)
|0
+8(令x
=2u)120f
(2u)
4du2=
2
-16
f
(1)
+82=110
p4
2<dx
<p
1
6
4
-
x2
-
x3備例5
證明證:當(dāng)0
<x
<1時(shí),111<<4
-
x2
4
-
x2
-
x3
4
-
2x2關(guān)于x從0
到1
積分dxdx
<101014
-
x2
-
x3
1
4
-
x2|0
=x
1
2arcsin6p
=2
4
22111010p<xdx
=
arcsin
|
=4
-
2x231-1f
(x)
dx
£
1
.f
¢(x)£1,證明備例6
設(shè)f
(-1)
=
f
(1)
=
0,
f
(-1)
=
f
(1)
=
0,¢1-1-11-1f
(x)dx
=
xf
(x)
|1
-
xf
(x)dx證:112-1f
¢(x)dx2=
0
-¢=
--11-122
+
1x
f
(x)
|12-12
1
1
1x2
f
¢(x)dx
=
0
+
x2
f
¢(x)dxx
f
(x)
dx12121-1-1f
(x)
dx
=121-1x2
f
¢(x)
dx¢
£x
dx£1-121213=備例7+¢2000
0
02!(
x
-
x
)f
(
x
)f
(
x)
=
f
(
x
)
+
f
(
x
)(
x
-
x
)
+[稱(chēng)此式為帶積分形式余項(xiàng)的泰勒公式]設(shè)函數(shù)f
(x)在x0
點(diǎn)的某個(gè)鄰域內(nèi)有n
+1階連續(xù)導(dǎo)數(shù)試證明x1n!
n!x0f
(
n)
(
x
)+
0
(
x
-
x )n
+0f
(
n+1)
(t
)(
x
-
t
)ndt證明:n
(n)x
xx0x0(
x
-
t
)
df
(t
)f
(t
)(
x
-
t
)
dt
=(
n+1)
nxx0x0(-1)dtf
(n)(t
)]x
-=
[(
x
-
t
)nf
(n)(t
)
n(
x
-
t
)n-1xx0df
(t
)(
x
-
t
)f
(n)(
x
)
+
n=
-(
x
-
x
)n(n-1
)n-100[]x(n)x000n-1
(n-1
)-
t
)
f
(t
)(
x
)
+
n(
x=
-(
x
-
x
)n
fxx0(-1)dt-
nf
(n-1
)
(t
)(n
-
1)(
x
-
t
)n-2f
(
n)
(
x
)
-
n(
x
-
x
)n-1
f
(
n-1)
(
x
)0
0
0n=
-(
x
-
x0
)xx0f
(
n-1)
(t
)(
x
-
t
)n-2
dt+
n(n
-
1)n
(
n)
n-1
(
n-1)=
-(
x
-
x0
)
f
(
x0
)
-
n(
x
-
x0
)
f
(
x0
)n-2
(
n-2)-
n(n
-
1)(
x
-
x0
)
f
(
x0
)
-xx0f
'
(t
)dt+¢20000
02!(
x
-
x
)f
(
x
)-
x
)
+\
f
(
x)
=
f
(
x
)
+
f
(
x
)(
xxn!1n!x0f
(
n)
(
x
)+
0
(
x
-
x )n
+0f
(
n+1)
(t
)(
x
-
t
)ndt-
n(n
-
1)(n
-
2)
2(
x
-
x
)
f
'
(
x
)
+
n(n
-
1)
20
0=
-(x
-
x
)n
f
(n)
(x
)
-
n(x
-
x
)n-1
f(n-1)
(x
)0
0
0
0-
n(n
-1)(x
-
x
)n-2
f
(n-2)
(x
)
-0
0-
n!(x
-
x
)
f
'
(x
)
+
n!
f
(x)
-
n!
f
(x
)0
0
0¢2000002!(
x
-
x
)
+f
(
x
)-
x
)
+(
x
)(x\
f
(
x)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025櫥柜采購(gòu)安裝合同范本
- 2025借款擔(dān)保合同書(shū)寫(xiě)
- 2024年生物制藥技術(shù)秘密轉(zhuǎn)讓合同
- 2024外派勞務(wù)服務(wù)合同-美洲外派勞務(wù)人員派遣及福利協(xié)議6篇
- -八年級(jí)上冊(cè)地理教學(xué)工作總結(jié)
- DB45T 2642-2023 建設(shè)項(xiàng)目占用征收林地檢查技術(shù)規(guī)范
- DB45T 2597-2022 坭興陶原料規(guī)范
- 為同學(xué)捐款倡議書(shū)十則
- DB45T 2477-2022 養(yǎng)老機(jī)構(gòu)傳染病預(yù)防控制規(guī)范
- DB45T 2468-2022 預(yù)包裝柳州螺螄粉生產(chǎn)操作規(guī)范
- 家裝設(shè)計(jì)畢業(yè)答辯
- 新能源汽車(chē)充電站競(jìng)爭(zhēng)格局分析PPT
- GB/T 7036.1-2023充氣輪胎內(nèi)胎第1部分:汽車(chē)輪胎內(nèi)胎
- 足療培訓(xùn)課件
- 毛絨玩具行業(yè)創(chuàng)業(yè)計(jì)劃書(shū)
- 電力檢測(cè)項(xiàng)目計(jì)劃書(shū)
- 《簡(jiǎn)易風(fēng)箏的制作》課件
- 體驗(yàn)式家長(zhǎng)會(huì)的實(shí)施與開(kāi)展
- 《標(biāo)準(zhǔn)工時(shí)培訓(xùn)》課件
- 射擊館建設(shè)方案
- 應(yīng)用寫(xiě)作-消息和通訊
評(píng)論
0/150
提交評(píng)論