撫州市2023年數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測試題含解析_第1頁
撫州市2023年數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測試題含解析_第2頁
撫州市2023年數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測試題含解析_第3頁
撫州市2023年數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測試題含解析_第4頁
撫州市2023年數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.正三角形的邊長為,如圖,為其水平放置的直觀圖,則的周長為()A. B. C. D.2.已知函數(shù)的圖像如圖所示,則和分別是()A. B. C. D.3.設(shè)是異面直線,則以下四個命題:①存在分別經(jīng)過直線和的兩個互相垂直的平面;②存在分別經(jīng)過直線和的兩個平行平面;③經(jīng)過直線有且只有一個平面垂直于直線;④經(jīng)過直線有且只有一個平面平行于直線,其中正確的個數(shù)有()A.1 B.2 C.3 D.44.已知,且,則()A. B. C. D.5.如圖所示,在正方體ABCD—A1B1C1D1中,若E是A1C1的中點(diǎn),則直線CE垂直于()A.AC B.A1D1 C.A1D D.BD6.已知扇形的圓心角,弧長為,則該扇形的面積為()A. B. C.6 D.127.實(shí)數(shù)數(shù)列為等比數(shù)列,則()A.-2 B.2 C. D.8.下列函數(shù)中,在區(qū)間上為增函數(shù)的是A. B.C. D.9.在區(qū)間上隨機(jī)選取一個實(shí)數(shù),則事件“”發(fā)生的概率是()A. B. C. D.10.?dāng)?shù)列中,,,則().A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列中,,,設(shè),若對任意的正整數(shù),當(dāng)時,不等式恒成立,則實(shí)數(shù)的取值范圍是______.12.已知向量,且,則___________.13.等比數(shù)列{an}中,a1<0,{an}是遞增數(shù)列,則滿足條件的q的取值范圍是______________.14.在中,,是線段上的點(diǎn),,若的面積為,當(dāng)取到最大值時,___________.15.方程的解集是____________.16.一個扇形的半徑是,弧長是,則圓心角的弧度數(shù)為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓C過點(diǎn),且圓心C在直線上.(1)求圓C的標(biāo)準(zhǔn)方程;(2)若過點(diǎn)(2,3)的直線被圓C所截得的弦的長是,求直線的方程.18.在數(shù)1和100之間插入個實(shí)數(shù),使得這個數(shù)構(gòu)成遞增的等比數(shù)列,將這個數(shù)的乘積記作,再令.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和.19.已知函數(shù)的最小正周期為,且該函數(shù)圖象上的最低點(diǎn)的縱坐標(biāo)為.(1)求函數(shù)的解析式;(2)求函數(shù)的單調(diào)遞增區(qū)間及對稱軸方程.20.在某市高三教學(xué)質(zhì)量檢測中,全市共有名學(xué)生參加了本次考試,其中示范性高中參加考試學(xué)生人數(shù)為人,非示范性高中參加考試學(xué)生人數(shù)為人.現(xiàn)從所有參加考試的學(xué)生中隨機(jī)抽取人,作檢測成績數(shù)據(jù)分析.(1)設(shè)計(jì)合理的抽樣方案(說明抽樣方法和樣本構(gòu)成即可);(2)依據(jù)人的數(shù)學(xué)成績繪制了如圖所示的頻率分布直方圖,據(jù)此估計(jì)本次檢測全市學(xué)生數(shù)學(xué)成績的平均分;21.已知,,函數(shù).(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;(2)當(dāng)時,求函數(shù)的值域.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

根據(jù)斜二測畫法以及正余弦定理求解各邊長再求周長即可.【詳解】由斜二測畫法可知,,,.所以.故..故.所以的周長為.故選:C【點(diǎn)睛】本題主要考查了斜二測畫法的性質(zhì)以及余弦定理在求解三角形中線段長度的運(yùn)用.屬于基礎(chǔ)題.2、C【解析】

通過識別圖像,先求,再求周期,將代入求即可【詳解】由圖可知:,,將代入得,又,,故故選C【點(diǎn)睛】本題考查通過三角函數(shù)識圖求解解析式,屬于基礎(chǔ)題3、C【解析】對于①:可以在兩個互相垂直的平面中,分別畫一條直線,當(dāng)這兩條直線異面時,可判斷①正確對于②:可在兩個平行平面中,分別畫一條直線,當(dāng)這兩條直線異面時,可判斷②正確對于③:當(dāng)這兩條直線不是異面垂直時,不存在這樣的平面滿足題意,可判斷③錯誤對于④:假設(shè)過直線a有兩個平面α、β與直線b平行,則面α、β相交于直線a,過直線b做一平面γ與面α、β相交于兩條直線m、n,則直線m、n相交于一點(diǎn),且都與直線b平行,這與“過直線外一點(diǎn)有且只有一條直線與已知直線平行”矛盾,所以假設(shè)不成立,所以④正確故選:C.4、A【解析】

根據(jù),,利用平方關(guān)系得到,再利用商數(shù)關(guān)系得到,最后用兩和的正切求解.【詳解】因?yàn)椋?,所以,所以,所以.故選:A【點(diǎn)睛】本題主要考查了同角三角函數(shù)基本關(guān)系式和兩角和的正切公式,還考查了運(yùn)算求解的能力,屬于中檔題.5、D【解析】

在正方體內(nèi)結(jié)合線面關(guān)系證明線面垂直,繼而得到線線垂直【詳解】,平面,平面,則平面又因?yàn)槠矫鎰t故選D【點(diǎn)睛】本題考查了線線垂直,在求解過程中先求得線面垂直,由線面垂直的性質(zhì)可得線線垂直,從而得到結(jié)果6、A【解析】

可先由弧長計(jì)算出半徑,再計(jì)算面積.【詳解】設(shè)扇形半徑為,則,,.故選:A.【點(diǎn)睛】本題考查扇形面積公式,考查扇形弧長公式,掌握扇形的弧長和面積公式是解題基礎(chǔ).7、B【解析】

由等比數(shù)列的性質(zhì)計(jì)算,注意項(xiàng)與項(xiàng)之間的關(guān)系即可.【詳解】由題意,,又與同號,∴.故選B.【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì),解題時要注意等比數(shù)列中奇數(shù)項(xiàng)同號,偶數(shù)項(xiàng)同號.8、A【解析】試題分析:對A,函數(shù)在上為增函數(shù),符合要求;對B,在上為減函數(shù),不符合題意;對C,為上的減函數(shù),不符合題意;對D,在上為減函數(shù),不符合題意.故選A.考點(diǎn):函數(shù)的單調(diào)性,容易題.9、B【解析】

根據(jù)求出的范圍,再由區(qū)間長度比即可得出結(jié)果.【詳解】區(qū)間的長度為;由,解得,即,區(qū)間長度為,事件“”發(fā)生的概率是.故選B.【點(diǎn)睛】本題主要考查與長度有關(guān)的幾何概型,熟記概率計(jì)算公式即可,屬于基礎(chǔ)題型.10、B【解析】

通過取倒數(shù)的方式可知數(shù)列為等差數(shù)列,利用等差數(shù)列通項(xiàng)公式求得,進(jìn)而得到結(jié)果.【詳解】由得:,即數(shù)列是以為首項(xiàng),為公差的等差數(shù)列本題正確選項(xiàng):【點(diǎn)睛】本題考查利用遞推關(guān)系式求解數(shù)列中的項(xiàng)的問題,關(guān)鍵是能夠根據(jù)遞推關(guān)系式的形式,確定采用倒數(shù)法得到等差數(shù)列.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】∵,(,),當(dāng)時,,,…,,并項(xiàng)相加,得:,

∴,又∵當(dāng)時,也滿足上式,

∴數(shù)列的通項(xiàng)公式為,∴

,令(),則,∵當(dāng)時,恒成立,∴在上是增函數(shù),

故當(dāng)時,,即當(dāng)時,,對任意的正整數(shù),當(dāng)時,不等式恒成立,則須使,即對恒成立,即的最小值,可得,∴實(shí)數(shù)的取值范圍為,故答案為.點(diǎn)睛:本題考查數(shù)列的通項(xiàng)及前項(xiàng)和,涉及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查運(yùn)算求解能力,注意解題方法的積累,屬于難題通過并項(xiàng)相加可知當(dāng)時,進(jìn)而可得數(shù)列的通項(xiàng)公式,裂項(xiàng)、并項(xiàng)相加可知,通過求導(dǎo)可知是增函數(shù),進(jìn)而問題轉(zhuǎn)化為,由恒成立思想,即可得結(jié)論.12、【解析】

把平方,將代入,化簡即可得結(jié)果.【詳解】因?yàn)?,所以,,故答案?【點(diǎn)睛】本題主要考查向量的模及平面向量數(shù)量積公式,屬于中檔題.平面向量數(shù)量積公式有兩種形式,一是,二是,主要應(yīng)用以下幾個方面:(1)求向量的夾角,(此時往往用坐標(biāo)形式求解);(2)求投影,在上的投影是;(3)向量垂直則;(4)求向量的模(平方后需求).13、【解析】試題分析:由題意可得,∴,解得0<q<1考點(diǎn):等比數(shù)列的性質(zhì)14、【解析】

由三角形的面積公式得出,設(shè),由可得出,利用基本不等式可求出的值,利用等號成立可得出、的值,再利用余弦利用可得出的值.【詳解】由題意可得,解得,設(shè),則,可得,由基本不等式可得,當(dāng)且僅當(dāng)時,取得最大值,,,由余弦定理得,解得.故答案為.【點(diǎn)睛】本題考查余弦定理解三角形,同時也考查了三角形的面積公式以及利用基本不等式求最值,在利用基本不等式求最值時,需要結(jié)合已知條件得出定值條件,同時要注意等號成立的條件,考查分析問題和解決問題的能力,屬于中等題.15、【解析】

由方程可得或,然后分別解出規(guī)定范圍內(nèi)的解即可.【詳解】因?yàn)樗曰蛴傻没蛞驗(yàn)?,所以由得因?yàn)?,所以綜上:解集是故答案為:【點(diǎn)睛】方程的等價轉(zhuǎn)化為或,不要把遺漏了.16、2【解析】

直接根據(jù)弧長公式,可得.【詳解】因?yàn)?,所以,解得【點(diǎn)睛】本題主要考查弧長公式的應(yīng)用.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】

(1)設(shè)圓心,由兩點(diǎn)間的距離及圓心在直線上,列出方程組,求解即可求出圓心坐標(biāo),進(jìn)而求出半徑,寫出圓的方程(2)由的長是,求出圓心到直線的距離,然后分直線斜率存在與不存在求解.【詳解】(1)設(shè)圓C的標(biāo)準(zhǔn)方程為依題意可得:解得,半徑.∴圓C的標(biāo)準(zhǔn)方程為;(2),∴圓心到直線m的距離①直線斜率不存在時,直線m方程為:;②直線m斜率存在時,設(shè)直線m為.,解得∴直線m的方程為∴直線m的方程為或.【點(diǎn)睛】本題主要考查了圓的標(biāo)準(zhǔn)方程,直線與圓的位置關(guān)系,點(diǎn)到直線的距離,屬于中檔題.18、(Ⅰ)(Ⅱ)【解析】

(1)類比等差數(shù)列求和的倒序相加法,將等比數(shù)列前n項(xiàng)積倒序相乘,可求,代入即可求解.(2)由(1)知,利用兩角差的正切公式,化簡,,得,再根據(jù)裂項(xiàng)相消法,即可求解.【詳解】(Ⅰ)由題意,構(gòu)成遞增的等比數(shù)列,其中,則①②①②,并利用等比數(shù)列性質(zhì),得(Ⅱ)由(Ⅰ)知,又所以數(shù)列的前項(xiàng)和為【點(diǎn)睛】(Ⅰ)類比等差數(shù)列,利用等比數(shù)列的相關(guān)性質(zhì),推導(dǎo)等比數(shù)列前項(xiàng)積公式,創(chuàng)新應(yīng)用型題;(Ⅱ)由兩角差的正切公式,推導(dǎo)連續(xù)兩個自然數(shù)的正切之差,構(gòu)造新型的裂項(xiàng)相消的式子,創(chuàng)新應(yīng)用型題;本題屬于難題.19、(1);(2)增區(qū)間是,對稱軸為【解析】

(1)由周期求得ω,再由函數(shù)圖象上的最低點(diǎn)的縱坐標(biāo)為﹣3求得A,則函數(shù)解析式可求;(2)直接利用復(fù)合函數(shù)的單調(diào)性求函數(shù)f(x)的單調(diào)遞增區(qū)間,再由2x求解x可得函數(shù)f(x)的對稱軸方程.【詳解】(1)因?yàn)榈淖钚≌芷跒橐驗(yàn)?,,,∴.又函?shù)圖象上的最低點(diǎn)縱坐標(biāo)為,且∴∴.(2)由,可得可得單調(diào)遞增區(qū)間.由,得.所以函數(shù)的對稱軸方程為.【點(diǎn)睛】本題考查函數(shù)解析式的求法,考查y=Asin(ωx+φ)型函數(shù)的性質(zhì),是基礎(chǔ)題.20、(1)見解析;(2)92.4【解析】

(1)根據(jù)總體的差異性選擇分層抽樣,再結(jié)合抽樣比計(jì)算出非示范性高中和示范性高中所抽取的人數(shù);(2)將每個矩形底邊的中點(diǎn)值乘以相應(yīng)矩形的面積所得結(jié)果,再全部相加可得出本次測驗(yàn)全市學(xué)生數(shù)學(xué)成績的平均分.【詳解】(1)由于總體有明顯差異的兩部分構(gòu)成,故采用分層抽樣,由題意,從示范性高中抽取人,從非師范性高中抽取人;(2)由頻率分布直方圖估算樣本平均分為推測估計(jì)本次檢測全市學(xué)生數(shù)學(xué)平均分為【點(diǎn)睛】本題考查分層抽樣以及計(jì)算頻率分布直方圖中的平均數(shù),著重考查學(xué)生對幾種抽樣方法的理解,以及頻率分布直方圖中幾個樣本數(shù)字的計(jì)算方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論