山西省晉中市榆社中學2022-2023學年數(shù)學高一下期末監(jiān)測試題含解析_第1頁
山西省晉中市榆社中學2022-2023學年數(shù)學高一下期末監(jiān)測試題含解析_第2頁
山西省晉中市榆社中學2022-2023學年數(shù)學高一下期末監(jiān)測試題含解析_第3頁
山西省晉中市榆社中學2022-2023學年數(shù)學高一下期末監(jiān)測試題含解析_第4頁
山西省晉中市榆社中學2022-2023學年數(shù)學高一下期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知橢圓C:的左右焦點為F1,F2離心率為,過F2的直線l交C與A,B兩點,若△AF1B的周長為,則C的方程為()A. B. C. D.2.函數(shù),的值域是()A. B. C. D.3.觀察下列幾何體各自的三視圖,其中有且僅有兩個視圖完全相同的是()①正方體②圓錐③正三棱柱④正四棱錐A.①② B.②④ C.①③ D.①④4.已知向量、的夾角為,,,則()A. B. C. D.5.如圖,某船在A處看見燈塔P在南偏東方向,后來船沿南偏東的方向航行30km后,到達B處,看見燈塔P在船的西偏北方向,則這時船與燈塔的距離是:A.10kmB.20kmC.D.6.若函數(shù)的圖象可由函數(shù)的圖象向右平移個單位長度變換得到,則的解析式是()A. B.C. D.7.等比數(shù)列的前項和為,若,則公比()A. B. C. D.8.已知為等差數(shù)列,,則的值為()A.3 B.2 C. D.19.若,則下列結論中:(1);(2);(3)若,則;(4)若,則的最小值為.其中正確結論的個數(shù)為()A.1 B.2 C.3 D.410.設等比數(shù)列的前項和為,若,公比,則的值為()A.15 B.16 C.30 D.31二、填空題:本大題共6小題,每小題5分,共30分。11.計算:________.12.已知數(shù)列是公差不為0的等差數(shù)列,,且成等比數(shù)列,則的前9項和_______.13.在中,分別是角的對邊,,且的周長為5,面積,則=______14.已知向量,則的單位向量的坐標為_______.15.已知,若方程的解集為,則__________.16.在中,角,,所對的邊分別為,,,若,則角最大值為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù),其中.解關于x的不等式;求a的取值范圍,使在區(qū)間上是單調減函數(shù).18.如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E,F(xiàn)(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.求證:(1)EF∥平面ABC;(2)AD⊥AC.19.如圖,三棱柱中,,D為AB上一點,且平面.(1)求證:;(2)若四邊形是矩形,且平面平面ABC,直線與平面ABC所成角的正切值等于2,,,求三樓柱的體積.20.已知函數(shù)滿足.(1)若,對任意都有,求的取值范圍;(2)是否存在實數(shù),,使得不等式對一切實數(shù)恒成立?若存在,請求出,,使;若不存在,請說明理由.21.已知數(shù)列的前n項和為,且,.(1)求數(shù)列的通項公式;(2)若等差數(shù)列滿足,且,,成等比數(shù)列,求c.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

若△AF1B的周長為4,由橢圓的定義可知,,,,,所以方程為,故選A.考點:橢圓方程及性質2、A【解析】

由的范圍求出的范圍,結合余弦函數(shù)的性質即可求出函數(shù)的值域.【詳解】∵,∴,∴當,即時,函數(shù)取最大值1,當即時,函數(shù)取最小值,即函數(shù)的值域為,故選A.【點睛】本題主要考查三角函數(shù)在給定區(qū)間內求函數(shù)的值域問題,通過自變量的范圍求出整體的范圍是解題的關鍵,屬基礎題.3、B【解析】

正方體的三個視圖都相同,①不符合;圓錐的正視圖和側視圖相同都是三角形,俯視圖為圓,②符合;正三棱柱的俯視圖是等邊三角形,正視圖和側視圖都是長方形,但是長不同寬相同,③不符合;正四棱錐的俯視圖是正方形,正視圖和側視圖都是相同的等腰三角形,④符合,故選B.4、B【解析】

利用平面向量數(shù)量積和定義計算出,可得出結果.【詳解】向量、的夾角為,,,則.故選:B.【點睛】本題考查利用平面向量的數(shù)量積來計算平面向量的模,在計算時,一般將模進行平方,利用平面向量數(shù)量積的定義和運算律進行計算,考查計算能力,屬于中等題.5、C【解析】

在中,利用正弦定理求出得長,即為這時船與燈塔的距離,即可得到答案.【詳解】由題意,可得,即,在中,利用正弦定理得,即這時船與燈塔的距離是,故選C.【點睛】本題主要考查了正弦定理,等腰三角形的判定與性質,以及特殊角的三角函數(shù)值的應用,其中熟練掌握正弦定理是解答本題的關鍵,著重考查了推理與運算能力,屬于基礎題.6、A【解析】

先化簡函數(shù),然后再根據(jù)圖象平移得.【詳解】由已知,∴.故選A.【點睛】本題考查兩角和的正弦公式,考查三角函數(shù)的圖象平移變換,屬于基礎題.7、A【解析】

將轉化為關于的方程,解方程可得的值.【詳解】∵,∴,又,∴.故選A.【點睛】本題考查等比數(shù)列的基本運算,等比數(shù)列中共有五個量,其中是基本量,這五個量可“知三求二”,求解的實質是解方程或解方程組.8、D【解析】

根據(jù)等差數(shù)列下標和性質,即可求解.【詳解】因為為等差數(shù)列,故解得.故選:D.【點睛】本題考查等差數(shù)列下標和性質,屬基礎題.9、B【解析】

利用函數(shù)知識、換元法、絕對值不等式等知識,對選項進行一一推理證明,即可得答案.【詳解】對(1),,∴或,∵或,∴原不等式成立,故(1)正確;對(2),∵,故(2)正確;對(3),令,則,顯然不成立,故(3)錯誤;對(4),∵,∴,當時,,∴的最小值為顯然不成立,故(4)錯誤.故選:B.【點睛】本題考查函數(shù)與不等式的知識,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意消元法、換元法的使用.10、A【解析】

直接利用等比數(shù)列前n項和公式求.【詳解】由題得.故選A【點睛】本題主要考查等比數(shù)列求和,意在考查學生對該知識的理解掌握水平和分析推理能力.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】

直接利用數(shù)列的極限的運算法則求解即可.【詳解】.故答案為:3【點睛】本題考查數(shù)列的極限的運算法則,考查計算能力,屬于基礎題.12、117【解析】

由成等比數(shù)列求出公差,由前項公式求和.【詳解】設數(shù)列是公差為,則,由成等比數(shù)列得,解得,∴.故答案為:117.【點睛】本題考查等差數(shù)列的前項和公式,考查等比數(shù)列的性質.解題關鍵是求出數(shù)列的公差.13、【解析】

令正弦定理化簡已知等式,得到,代入題設,求得的長,利用三角形的面積公式表示出的面積,代入已知等式,再將,即可求解.【詳解】在中,因為,由正弦定理,可得,因為的周長為5,即,所以,又因為,即,所以.【點睛】本題主要考查了正弦定理和三角形的面積公式的應用,其中在解有關三角形的題目時,要抓住題設條件和利用某個定理的信息,合理應用正弦定理和余弦定理求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.14、.【解析】

由結論“與方向相同的單位向量為”可求出的坐標.【詳解】,所以,,故答案為.【點睛】本題考查單位向量坐標的計算,考查共線向量的坐標運算,充分利用共線單位向量的結論可簡化計算,考查運算求解能力,屬于基礎題.15、【解析】

將利用輔助角公式化簡,可得出的值.【詳解】,其中,,因此,,故答案為.【點睛】本題考查利用輔助角公式化簡計算,化簡時要熟悉輔助角變形的基本步驟,考查運算求解能力,屬于中等題.16、【解析】

根據(jù)余弦定理列式,再根據(jù)基本不等式求最值【詳解】因為所以角最大值為【點睛】本題考查余弦定理以及利用基本不等式求最值,考查基本分析求解能力,屬中檔題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】

由題意可得,對a討論,可得所求解集;求得,由反比例函數(shù)的單調性,可得,解不等式即可得到所求范圍.【詳解】的不等式,即為,即為,當時,解集為;當時,解集為;當時,解集為,;,由在區(qū)間上是單調減函數(shù),可得,解得.即a的范圍是.【點睛】本題考查分式不等式的解法,注意運用分類討論思想方法,考查函數(shù)的單調性的判斷和運用,考查運算能力,屬于基礎題.18、(1)見解析(2)見解析【解析】試題分析:(1)先由平面幾何知識證明,再由線面平行判定定理得結論;(2)先由面面垂直性質定理得平面,則,再由AB⊥AD及線面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.試題解析:證明:(1)在平面內,因為AB⊥AD,,所以.又因為平面ABC,平面ABC,所以EF∥平面ABC.(2)因為平面ABD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因為平面,所以.又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因為AC平面ABC,所以AD⊥AC.點睛:垂直、平行關系證明中應用轉化與化歸思想的常見類型:(1)證明線面、面面平行,需轉化為證明線線平行;(2)證明線面垂直,需轉化為證明線線垂直;(3)證明線線垂直,需轉化為證明線面垂直.19、(1)見詳解;(2)【解析】

(1)連接交于點,連接,利用線面平行的性質定理可得,從而可得為的中點,進而可證出(2)利用面面垂直的性質定理可得平面,從而可得三棱柱為直三棱柱,在中,根據(jù)等腰三角形的性質可得,進而可得棱柱的高為,利用柱體的體積公式即可求解.【詳解】(1)連接交于點,連接,如圖:由平面,且平面平面,所以,由為的中點,所以為的中點,又,(2)由四邊形是矩形,且平面平面ABC,所以平面,即三棱柱為直三棱柱,在中,,,,所以,因為直線與平面ABC所成角的正切值等于2,在中,,所以..【點睛】本題考查了線面平行的性質定理、面面垂直的性質定理,同時考查了線面角以及柱體的體積公式,屬于基礎題.20、(1)(2)存在,使不等式恒成立,詳見解析.【解析】

(1)由知函數(shù)關于對稱,求出后,通過構造函數(shù)求出;(2)利用不等式的兩邊夾定理,令,得,結合已知條件,解出;然后設存在實數(shù),,命題成立,運用根的判別式建立關于實數(shù)的不等式組,解得.【詳解】(1)由得此時,,構造函數(shù),.即的取值范圍是.(2)由對一切實數(shù)恒成立,得由得由得恒成立,也即,此時,.把,.代入,不等式也恒成立,所以,.【點睛】本題第(1)問,常用“反客為主法”,即把參數(shù)當成主元,而把看成參數(shù);第(2)問,不等式對任意實數(shù)恒成立,常用賦值法切入問題.21、(1);(2).【解析】

(1)根據(jù)題意,數(shù)列為1為首項,4為公差的等差數(shù)列,根據(jù)等差數(shù)列通項公式計算即可;(2)由(1)可求數(shù)列的前n項和為,根據(jù),,成等差數(shù)列及,,成等比數(shù)列,利用等差、等比數(shù)列性質可求出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論