2023年湖北省部分重點高中數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題含解析_第1頁
2023年湖北省部分重點高中數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題含解析_第2頁
2023年湖北省部分重點高中數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題含解析_第3頁
2023年湖北省部分重點高中數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題含解析_第4頁
2023年湖北省部分重點高中數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若實數(shù),滿足約束條件,則的最大值為()A.-3 B.1 C.9 D.102.?dāng)?shù)列為等比數(shù)列,若,,數(shù)列的前項和為,則A. B. C.7 D.313.已知平面平面,,點,,直線,直線,直線,,則下列四種位置關(guān)系中,不一定成立的是()A. B. C. D.4.已知是的邊上的中點,若向量,,則向量等于()A. B. C. D.5.某小組有3名男生和2名女生,從中任選2名學(xué)生參加演講比賽,那么下列互斥但不對立的兩個事件是()A.“至少1名男生”與“全是女生”B.“至少1名男生”與“至少有1名是女生”C.“至少1名男生”與“全是男生”D.“恰好有1名男生”與“恰好2名女生”6.下面四個命題:①“直線a∥直線b”的充要條件是“a平行于b所在的平面”;②“直線l⊥平面α內(nèi)所有直線”的充要條件是“l(fā)⊥平面α”;③“直線a、b為異面直線”的必要不充分條件是“直線a、b不相交”;④“平面α∥平面β”的充分不必要條件是“α內(nèi)存在不共線的三點到β的距離相等”;其中正確命題的序號是()A.①② B.②③ C.③④ D.②④7.下列說法中正確的是(

)A.棱柱的側(cè)面可以是三角形B.正方體和長方體都是特殊的四棱柱C.所有的幾何體的表面都能展成平面圖形D.棱柱的各條棱都相等8.已知a>0,b>0,a,b的等比中項為2,則a+1A.3 B.4 C.5 D.429.在平行四邊形中,,,則點的坐標(biāo)為()A. B. C. D.10.設(shè)集合,,若存在實數(shù)t,使得,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知實數(shù)滿足則的最小值為__________.12.設(shè)數(shù)列滿足,且,則數(shù)列的前n項和_______________.13.已知一扇形的半徑為,弧長為,則該扇形的圓心角大小為______.14.設(shè)公差不為零的等差數(shù)列的前項和為,若,則__________.15.若數(shù)據(jù)的平均數(shù)為,則____________.16.已知,且,.則的值是________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.若是公差不為0的等差數(shù)列的前n項和,且成等比數(shù)列.(1)求數(shù)列的公比.(2)若,求的通項公式.18.已知集合,其中,由中的元素構(gòu)成兩個相應(yīng)的集合:,.其中是有序數(shù)對,集合和中的元素個數(shù)分別為和.若對于任意的,總有,則稱集合具有性質(zhì).(Ⅰ)檢驗集合與是否具有性質(zhì)并對其中具有性質(zhì)的集合,寫出相應(yīng)的集合和.(Ⅱ)對任何具有性質(zhì)的集合,證明.(Ⅲ)判斷和的大小關(guān)系,并證明你的結(jié)論.19.已知函數(shù),(,,)的部分圖象如圖所示,其中點是圖象的一個最高點.(Ⅰ)求函數(shù)的解析式;(Ⅱ)已知且,求.20.函數(shù)在同一個周期內(nèi),當(dāng)時,取最大值1,當(dāng)時,取最小值-1.(1)求函數(shù)的單調(diào)遞減區(qū)間.(2)若函數(shù)滿足方程,求在內(nèi)的所有實數(shù)根之和.21.已知函數(shù)。(1)若,求不等式的解集;(2)若,且,求的最小值。

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

畫出可行域,向上平移基準(zhǔn)直線到可行域邊界的位置,由此求得目標(biāo)函數(shù)的最大值.【詳解】畫出可行域如下圖所示,由圖可知,向上平移基準(zhǔn)直線到的位置,此時目標(biāo)函數(shù)取得最大值為.故選C.【點睛】本小題主要考查利用線性規(guī)劃的知識求目標(biāo)函數(shù)的最大值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.2、A【解析】

先求等比數(shù)列通項公式,再根據(jù)等比數(shù)列求和公式求結(jié)果.【詳解】數(shù)列為等比數(shù)列,,,,解得,,數(shù)列的前項和為,.故選.【點睛】本題考查等比數(shù)列通項公式與求和公式,考查基本分析求解能力,屬基礎(chǔ)題.3、D【解析】

平面外的一條直線平行平面內(nèi)的一條直線則這條直線平行平面,若兩平面垂直則一個平面內(nèi)垂直于交線的直線垂直另一個平面,主要依據(jù)這兩個定理進(jìn)行判斷即可得到答案.【詳解】如圖所示:由于,,,所以,又因為,所以,故A正確,由于,,所以,故B正確,由于,,在外,所以,故C正確;對于D,雖然,當(dāng)不一定在平面內(nèi),故它可以與平面相交、平行,不一定垂直,所以D不正確;故答案選D【點睛】本題考查線面平行、線面垂直、面面垂直的判斷以及性質(zhì)應(yīng)用,要求熟練掌握定理是解題的關(guān)鍵.4、C【解析】

根據(jù)向量加法的平行四邊形法則,以及平行四邊形的性質(zhì)可得,,解出向量.【詳解】根據(jù)平行四邊形法則以及平行四邊形的性質(zhì),有.故選.【點睛】本題考查向量加法的平行四邊形法則以及平行四邊形的性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.5、D【解析】

從3名男生和2名女生中任選2名學(xué)生的所有結(jié)果有“2名男生”、“2名女生”、“1名男生和1名女生”.選項A中的兩個事件為對立事件,故不正確;選項B中的兩個事件不是互斥事件,故不正確;選項C中的兩個事件不是互斥事件,故不正確;選項D中的兩個事件為互斥但不對立事件,故正確.選D.6、B【解析】

逐項分析見詳解.【詳解】①“a平行于b所在的平面”不能推出“直線a∥直線b”,如:正方體上底面一條對角線平行于下底面,但上底面的一條對角線卻不平行于下底面非對應(yīng)位置的另一條對角線,故錯誤;②“直線l⊥平面α內(nèi)所有直線”是“l(fā)⊥平面α”的定義,故正確;③“直線a、b不相交”不能推出“直線a、b為異面直線”,這里可能平行;“直線a、b為異面直線”可以推出“直線a、b不相交”,所以是必要不充分條件,故正確;④“α內(nèi)存在不共線的三點到β的距離相等”不能推出“平面α∥平面β”,這里包含了平面相交的情況,“平面α∥平面β”能推出“α內(nèi)存在不共線的三點到β的距離相等”,所以是必要不充分條件,故錯誤.故選B.【點睛】本題考查空間中平行與垂直關(guān)系的判斷,難度一般.對可以利用判定定理和性質(zhì)定理直接分析的問題,可直接判斷;若無法直接判斷的問題可采用作圖法或者排除法判斷.7、B【解析】試題分析:棱柱的側(cè)面是平行四邊形,不可能是三角形,所以A不正確;球的表面就不能展成平面圖形,所以C不正確;棱柱的側(cè)棱與底面邊長不一定相等,所以D不正確.考點:本小題主要考查空間幾何體的性質(zhì).點評:解決此類問題的主要依據(jù)是空間幾何體的性質(zhì),需要學(xué)生有較強的空間想象能力.8、C【解析】

由等比中項得:ab=4,目標(biāo)式子變形為54【詳解】∵a+1等號成立當(dāng)且僅當(dāng)a=b=2,∴原式的最小值為5.【點睛】利用基本不等式求最小值時,注意驗證等號成立的條件.9、A【解析】

先求,再求,即可求D坐標(biāo)【詳解】,∴,則D(6,1)故選A【點睛】本題考查向量的坐標(biāo)運算,熟記運算法則,準(zhǔn)確計算是關(guān)鍵,是基礎(chǔ)題10、C【解析】

得到圓心距與半徑和差關(guān)系得到答案.【詳解】圓心距存在實數(shù)t,使得故答案選C【點睛】本題考查了兩圓的位置關(guān)系,意在考查學(xué)生的計算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

本題首先可以根據(jù)題意繪出不等式組表示的平面區(qū)域,然后結(jié)合目標(biāo)函數(shù)的幾何性質(zhì),找出目標(biāo)函數(shù)取最小值所過的點,即可得出結(jié)果。【詳解】繪制不等式組表示的平面區(qū)域如圖陰影部分所示,結(jié)合目標(biāo)函數(shù)的幾何意義可知,目標(biāo)函數(shù)在點處取得最小值,即?!军c睛】本題考查根據(jù)不等式組表示的平面區(qū)域來求目標(biāo)函數(shù)的最值,能否繪出不等式組表示的平面區(qū)域是解決本題的關(guān)鍵,考查數(shù)形結(jié)合思想,是簡單題。12、【解析】令13、【解析】

利用扇形的弧長除以半徑可得出該扇形圓心角的弧度數(shù).【詳解】由扇形的弧長、半徑以及圓心角之間的關(guān)系可知,該扇形的圓心角大小為.故答案為:.【點睛】本題考查扇形圓心角的計算,解題時要熟悉扇形的弧長、半徑以及圓心角之間的關(guān)系,考查計算能力,屬于基礎(chǔ)題.14、【解析】

設(shè)出數(shù)列的首項和公差,根據(jù)等差數(shù)列通項公式和前項和公式,代入條件化簡得和的關(guān)系,再代入所求的式子進(jìn)行化簡求值.【詳解】解:設(shè)等差數(shù)列的首項為,公差為,由,得,得,.故答案為:【點睛】本題考查了等差數(shù)列通項公式和前n項和公式的簡單應(yīng)用,屬于基礎(chǔ).15、【解析】

根據(jù)求平均數(shù)的公式,得到關(guān)于的方程,求得.【詳解】由題意得:,解得:,故填:.【點睛】本題考查求一組數(shù)據(jù)的平均數(shù),考查基本數(shù)據(jù)處理能力.16、2【解析】

.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)公比為4;(2)【解析】

(1)設(shè),然后根據(jù)相關(guān)條件去計算公比;(2)由(1)的結(jié)論計算的表達(dá)式,然后再計算的通項公式.【詳解】(1)設(shè).∴,∴,.∴,即的公比為4(2)∵,∴,即,當(dāng)時,,當(dāng)時,符合,∴【點睛】(1)已知等差數(shù)列的三項成等比數(shù)列,可利用首項和公差將等式列出,找到首項和公差的關(guān)系;(2)利用計算通項公式時,要注意驗證的情況.18、(Ⅰ)集合不具有性質(zhì),集合具有性質(zhì),相應(yīng)集合,,集合,(Ⅱ)見解析(Ⅲ)【解析】解:集合不具有性質(zhì).集合具有性質(zhì),其相應(yīng)的集合和是,.(II)證明:首先,由中元素構(gòu)成的有序數(shù)對共有個.因為,所以;又因為當(dāng)時,時,,所以當(dāng)時,.從而,集合中元素的個數(shù)最多為,即.(III)解:,證明如下:(1)對于,根據(jù)定義,,,且,從而.如果與是的不同元素,那么與中至少有一個不成立,從而與中也至少有一個不成立.故與也是的不同元素.可見,中元素的個數(shù)不多于中元素的個數(shù),即,(2)對于,根據(jù)定義,,,且,從而.如果與是的不同元素,那么與中至少有一個不成立,從而與中也不至少有一個不成立,故與也是的不同元素.可見,中元素的個數(shù)不多于中元素的個數(shù),即,由(1)(2)可知,.19、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)由最值和兩個零點計算出和的值,再由最值點以及的的范圍計算的值;(Ⅱ)先根據(jù)(Ⅰ)中解析式將表示出來,然后再利用兩角和的正弦公式計算的值.【詳解】解:(Ⅰ)由函數(shù)最大值為2,得由∴又,,∴,,又,∴∴(Ⅱ)∵,且,∴∴【點睛】根據(jù)三角函數(shù)圖象求解析式的步驟:(1)由最值確定的值;(2)由周期確定的值;(3)由最值點或者圖像上的點確定的取值.這里需要注意確定的值時,盡量不要選取平衡位置上的點,這樣容易造成多解的情況.20、(1),;(2).【解析】

(1)先求出周期得,由最高點坐標(biāo)可求得,然后由正弦函數(shù)的單調(diào)性得結(jié)論;(2)由直線與的圖象交點的對稱性可得.【詳解】(1)由題意,∴,又,,,由得,∴,令得,∴單調(diào)減區(qū)間是,;(2)在含有三個周期,如圖,的圖象與在上有六個交點,前面兩個交點關(guān)于直線對稱,中間兩個關(guān)于直線對稱,最后兩個關(guān)于直線對稱,∴所求六個根的和為.【點睛】本題考查由三角函數(shù)的性質(zhì)求解析式,考查函數(shù)的單調(diào)性,考查函數(shù)零點與方程根的分布問題.函數(shù)零點與方程根的分布問題可用數(shù)形結(jié)合思想,把方程的根轉(zhuǎn)化為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論