2023年河北省廊坊市六校聯(lián)考數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2023年河北省廊坊市六校聯(lián)考數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2023年河北省廊坊市六校聯(lián)考數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2023年河北省廊坊市六校聯(lián)考數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2023年河北省廊坊市六校聯(lián)考數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,長方體中,,,,分別過,的兩個平行截面將長方體分成三個部分,其體積分別記為,,,.若,則截面的面積為()A. B. C. D.2.《五曹算經(jīng)》是我國南北朝時期數(shù)學(xué)家甄鸞為各級政府的行政人員編撰的一部實用算術(shù)書.其第四卷第九題如下:“今有平地聚粟,下周三丈高四尺,問粟幾何?”其意思為“場院內(nèi)有圓錐形稻谷堆,底面周長3丈,高4尺,那么這堆稻谷有多少斛?”已知1丈等于10尺,1斜稻谷的體積約為1.62立方尺,圓周率約為3,估算出堆放的稻谷約有()A.57.08斜 B.171.24斛 C.61.73斛 D.185.19斛3.函數(shù)(其中,)的部分圖象如圖所示、將函數(shù)的圖象向左平移個單位長度,得到的圖象,則下列說法正確的是()A.函數(shù)為奇函數(shù)B.函數(shù)的單調(diào)遞增區(qū)間為C.函數(shù)為偶函數(shù)D.函數(shù)的圖象的對稱軸為直線4.已知數(shù)列{an}的前n項和為Sn,Sn=2aA.145 B.114 C.85.已知數(shù)列滿足若,則數(shù)列的第2018項為()A. B. C. D.6.已知平面向量,,若與同向,則實數(shù)的值是()A. B. C. D.7.若長方體三個面的面積分別為2,3,6,則此長方體的外接球的表面積等于()A. B. C. D.8.已知等差數(shù)列中,若,則()A.1 B.2 C.3 D.49.若集合,則集合()A. B. C. D.10.某幾何體的三視圖如下圖所示(單位:cm)則該幾何體的表面積(單位:)是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列的通項公式,,前項和達(dá)到最大值時,的值為______.12.一個圓錐的側(cè)面積為,底面積為,則該圓錐的體積為________.13.已知,則的值為______14.圓x2+y2-4=0與圓x2+y2-4x+4y-12=0的公共弦的長為___.15.已知函數(shù),對于下列說法:①要得到的圖象,只需將的圖象向左平移個單位長度即可;②的圖象關(guān)于直線對稱:③在內(nèi)的單調(diào)遞減區(qū)間為;④為奇函數(shù).則上述說法正確的是________(填入所有正確說法的序號).16.若當(dāng)時,不等式恒成立,則實數(shù)a的取值范圍是_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐P-ABCD中,平面PAD⊥底面ABCD,側(cè)棱PA=PD=,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點.(Ⅰ)求證:PO⊥平面ABCD;(Ⅱ)線段AD上是否存在點,使得它到平面PCD的距離為?若存在,求出值;若不存在,請說明理由.18.如圖所示,在直三棱柱中,,平面,D為AC的中點.(1)求證:平面;(2)求證:平面;(3)設(shè)E是上一點,試確定E的位置使平面平面BDE,并說明理由.19.已知,是實常數(shù).(1)當(dāng)時,判斷函數(shù)的奇偶性,并給出證明;(2)若是奇函數(shù),不等式有解,求的取值范圍.20.已知數(shù)列的前項和為,且,求數(shù)列的通項公式.21.的內(nèi)角的對邊分別為,且.(1)求;(2)若,點在邊上,,,求的面積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

解:由題意知,截面是一個矩形,并且長方體的體積V=6×4×3=72,∵V1:V2:V3=1:4:1,∴V1=VAEA1-DFD1=×72=12,則12=×AE×A1A×AD,解得AE=2,在直角△AEA1中,EA1=故截面的面積是EF×EA1=42、C【解析】

根據(jù)圓錐的周長求出底面半徑,再計算圓錐的體積,從而估算堆放的稻谷數(shù).【詳解】設(shè)圓錐形稻谷堆的底面半徑為尺,則底面周長為尺,解得尺,又高為尺,所以圓錐的體積為(立方尺);又(斛,所以估算堆放的稻谷約有61.73(斛.故選:.【點睛】本題考查了椎體的體積計算問題,也考查了實際應(yīng)用問題,是基礎(chǔ)題.3、B【解析】

本題首先可以根據(jù)題目所給出的圖像得出函數(shù)的解析式,然后根據(jù)三角函數(shù)平移的相關(guān)性質(zhì)以及函數(shù)的解析式得出函數(shù)的解析式,最后通過函數(shù)的解析式求出函數(shù)的單調(diào)遞增區(qū)間,即可得出結(jié)果.【詳解】由函數(shù)的圖像可知函數(shù)的周期為、過點、最大值為3,所以,,,,,所以取時,函數(shù)的解析式為,將函數(shù)的圖像向左平移個單位長度得,當(dāng)時,即時,函數(shù)單調(diào)遞增,故選B.【點睛】本題考查三角函數(shù)的相關(guān)性質(zhì),主要考查三角函數(shù)圖像的相關(guān)性質(zhì)以及三角函數(shù)圖像的變換,函數(shù)向左平移個單位所得到的函數(shù),考查推理論證能力,是中檔題.4、B【解析】

由Sn=2an-2,可得Sn-1=2an-1-2兩式相減可得公比的值,由S1=2a1-2=【詳解】因為Sn=2a兩式相減化簡可得an公比q=a由S1=2a∵a則4×2m+n-2=64∴1當(dāng)且僅當(dāng)nm=9mn時取等號,此時∵m,n取整數(shù),∴均值不等式等號條件取不到,則1m驗證可得,當(dāng)m=2,n=4時,1m+9【點睛】本題主要考查等比數(shù)列的定義與通項公式的應(yīng)用以及利用基本不等式求最值,屬于難題.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最?。蝗嗟仁牵詈笠欢ㄒ炞C等號能否成立(主要注意兩點,一是相等時參數(shù)是否在定義域內(nèi),二是多次用≥或≤時等號能否同時成立).5、A【解析】

利用數(shù)列遞推式求出前幾項,可得數(shù)列是以4為周期的周期數(shù)列,即可得出答案.【詳解】,,,數(shù)列是以4為周期的周期數(shù)列,則.故選A.【點睛】本題考查數(shù)列的遞推公式和周期數(shù)列的應(yīng)用,考查學(xué)生分析解決問題的能力,屬于中檔題.6、D【解析】

通過同向向量的性質(zhì)即可得到答案.【詳解】與同向,,解得或(舍去),故選D.【點睛】本題主要考查平行向量的坐標(biāo)運(yùn)算,但注意同向,難度較小.7、C【解析】

設(shè)長方體過一個頂點的三條棱長分別為,,,由已知面積求得,,的值,得到長方體對角線長,進(jìn)一步得到外接球的半徑,則答案可求.【詳解】設(shè)長方體過一個頂點的三條棱長分別為,,,則,解得,,.長方體的對角線長為.則長方體的外接球的半徑為,此長方體的外接球的表面積等于.故選:C.【點睛】本題考查長方體外接球表面積的求法,考查空間想象能力和運(yùn)算求解能力,求解時注意長方體的對角線長為長方體外接球的直徑.8、A【解析】

根據(jù)已知先求出數(shù)列的首項,公差d已知,可得?!驹斀狻坑深}得,,解得,則.故選:A【點睛】本題考查用數(shù)列的通項公式求某一項,是基礎(chǔ)題。9、D【解析】試題分析:作數(shù)軸觀察易得.考點:集合的基本運(yùn)算.10、C【解析】

通過三視圖的觀察可得到該幾何體是由一個圓錐加一個圓柱得到的,表面積由一個圓錐的表面積和一個圓柱的側(cè)面積組成【詳解】圓柱的側(cè)面積為,圓錐的表面積為,其中,,。選C【點睛】幾何體的表面積一定要看清楚哪些面存在,哪些面不存在二、填空題:本大題共6小題,每小題5分,共30分。11、或【解析】

令,求出的取值范圍,即可得出達(dá)到最大值時對應(yīng)的值.【詳解】令,解得,因此,當(dāng)或時,前項和達(dá)到最大值.故答案為:或.【點睛】本題考查等差數(shù)列前項和最值的求解,可以利用關(guān)于的二次函數(shù),由二次函數(shù)的基本性質(zhì)求得,也可以利用等差數(shù)列所有非正項或非負(fù)項相加即得,考查計算能力,屬于基礎(chǔ)題.12、【解析】

設(shè)圓錐的底面半徑為,母線長為,由圓錐的側(cè)面積、圓面積公式列出方程組求解,代入圓錐的體積公式求解.【詳解】設(shè)圓錐的底面半徑為,母線長為,其側(cè)面積為,底面積為,則,解得,,∴高===,∴==.故答案為:.【點睛】本題考查圓錐的體積的求法,考查圓錐的側(cè)面積、底面積、體積公式等基礎(chǔ)知識,考查運(yùn)算求解能力,屬于基礎(chǔ)題.13、【解析】

根據(jù)兩角差的正弦公式,化簡,解出的值,再平方,即可求解.【詳解】由題意,可知,,平方可得則故答案為:【點睛】本題考查三角函數(shù)常用公式關(guān)系轉(zhuǎn)換,屬于基礎(chǔ)題.14、【解析】

兩圓方程相減求出公共弦所在直線的解析式,求出第一個圓心到直線的距離,再由第一個圓的半徑,利用勾股定理及垂徑定理即可求出公共弦長.【詳解】圓與圓的方程相減得:,由圓的圓心,半徑r為2,且圓心到直線的距離,則公共弦長為.故答案為.【點睛】此題考查了直線與圓相交的性質(zhì),求出公共弦所在的直線方程是解本題的關(guān)鍵.15、②④【解析】

結(jié)合三角函數(shù)的圖象與性質(zhì)對四個結(jié)論逐個分析即可得出答案.【詳解】①要得到的圖象,應(yīng)將的圖象向左平移個單位長度,所以①錯誤;②令,,解得,,所以直線是的一條對稱軸,故②正確;③令,,解得,,因為,所以在定義域內(nèi)的單調(diào)遞減區(qū)間為和,所以③錯誤;④是奇函數(shù),所以該說法正確.【點睛】本題考查了正弦型函數(shù)的對稱軸、單調(diào)性、奇偶性與平移變換,考查了學(xué)生對的圖象與性質(zhì)的掌握,屬于中檔題.16、【解析】

用換元法把不等式轉(zhuǎn)化為二次不等式.然后用分離參數(shù)法轉(zhuǎn)化為求函數(shù)最值.【詳解】設(shè),是增函數(shù),當(dāng)時,,不等式化為,即,不等式在上恒成立,時,顯然成立,,對上恒成立,由對勾函數(shù)性質(zhì)知在是減函數(shù),時,,∴,即.綜上,.故答案為:.【點睛】本題考查不等式恒成立問題,解題方法是轉(zhuǎn)化與化歸,首先用換元法化指數(shù)型不等式為一元二次不等式,再用分離參數(shù)法轉(zhuǎn)化為求函數(shù)最值.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)證明見解析;(Ⅱ).【解析】試題分析:(Ⅰ)只需證明,又由面面垂直的性質(zhì)定理知平面;(Ⅱ)連接、,假設(shè)存在點,使得它到平面的距離為,設(shè),由,求得的值即可.試題解析:(Ⅰ)證明:在中,為中點,所以.又側(cè)面底面,平面平面,平面,所以平面.(Ⅱ)連接、假設(shè)存在點,使得它到平面的距離為.設(shè),則因為,為的中點,所以,且所以因為,且所以在中,所以所以由,即解得所以存在點滿足題意,此時.考點:1.平面與平面垂直的性質(zhì);2.幾何體的體積.18、(1)證明見詳解,(2)證明見詳解,(3)當(dāng)為的中點時,平面平面BDE,證明見詳解【解析】

(1)連接與相交于,可得,結(jié)合線面平行的判定定理即可證明平面(2)先證明和即可得出平面,然后可得,又,即可證明平面(3)當(dāng)為的中點時,平面平面BDE,由已知易得,結(jié)合平面可得平面,進(jìn)而根據(jù)面面垂直的判定定理得到結(jié)論.【詳解】(1)如圖,連接與相交于,則為的中點連接,又為的中點所以,又平面,平面所以平面(2)因為,所以四邊形為正方形所以又因為平面,平面所以所以平面,所以又在直三棱柱中,所以平面(3)當(dāng)為的中點時,平面平面BDE因為分別是的中點所以,因為平面所以平面,又平面所以平面平面BDE【點睛】本題考查的是立體幾何中線面平行和垂直的證明,要求我們要熟悉并掌握平行與垂直有關(guān)的判定定理和性質(zhì)定理,在證明的過程中要注意步驟的完整.19、(1)為非奇非偶函數(shù),證明見解析;(2).【解析】

(1)當(dāng)時,,計算不相等,也不互為相反數(shù),可得出結(jié)論;(2)由奇函數(shù)的定義,求出的值,證明在上單調(diào)遞減,有解,化為有解,求出的值域,即可求解.【詳解】(1)為非奇非偶函數(shù).當(dāng)時,,,,因為,所以不是偶函數(shù);又因為,所以不是奇函數(shù),即為非奇非偶函數(shù).(2)因為是奇函數(shù),所以恒成立,即對恒成立,化簡整理得,即.下用定義法研究的單調(diào)性;設(shè)任意,且,,所以函數(shù)在上單調(diào)遞減,因為有解,且函數(shù)為奇函數(shù),所以有解,又因為函數(shù)在上單調(diào)遞減,所以有解,,的值域為,所以,即.【點睛】本題考查函數(shù)性質(zhì)的綜合應(yīng)用,涉及到函數(shù)的奇偶性求參數(shù),單調(diào)性證明及應(yīng)用,以及求函數(shù)的值域,屬于較難題.20、【解析】

當(dāng)時,,當(dāng)時,,即可得出.【詳解】∵已知數(shù)列的前項和為,且,當(dāng)時,,當(dāng)時,,檢驗:當(dāng)時,不符合上式,【點睛】本題考查了數(shù)列遞推關(guān)系、數(shù)列的通項公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論