版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,,,點C在AB上,且,設(shè),則的值為()A. B. C. D.2.如圖是正方體的平面展開圖,則在這個正方體中:①與平行②與是異面直線③與成角
④與是異面直線以上四個命題中,正確命題的個數(shù)是()A.1 B.2 C.3 D.43.在中,,,為的外接圓的圓心,則()A. B.C. D.4.下列表達式正確的是()①,②若,則③若,則④若,則A.①② B.②③ C.①③ D.③④5.將函數(shù)y=2sinx+π3sinA.π6 B.π12 C.π6.若數(shù)列對任意滿足,下面給出關(guān)于數(shù)列的四個命題:①可以是等差數(shù)列,②可以是等比數(shù)列;③可以既是等差又是等比數(shù)列;④可以既不是等差又不是等比數(shù)列;則上述命題中,正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個7.在面積為S的平行四邊形ABCD內(nèi)任取一點P,則三角形PBD的面積大于的概率為()A. B. C. D.8.設(shè),為兩條不同的直線,,為兩個不同的平面,給出下列命題:①若,,則;②若,,則;③若,,,則;④若,,則與所成的角和與所成的角相等.其中正確命題的序號是()A.①② B.①④ C.②③ D.②④9.在數(shù)列an中,an+1=an+a(n∈N*,a為常數(shù)),若平面上的三個不共線的非零向量OA、OB、OC滿足OC=a1A.1005 B.1006 C.2010 D.201210.若在是減函數(shù),則的最大值是A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.三菱柱ABC-A1B1C1中,底面邊長和側(cè)棱長都相等,BAA1=CAA1=60°則異面直線AB1與BC1所成角的余弦值為____________.12.函數(shù)的定義域為A,若時總有為單函數(shù).例如,函數(shù)=2x+1()是單函數(shù).下列命題:①函數(shù)=(xR)是單函數(shù);②若為單函數(shù),且則;③若f:AB為單函數(shù),則對于任意bB,它至多有一個原象;④函數(shù)f(x)在某區(qū)間上具有單調(diào)性,則f(x)一定是單函數(shù).其中的真命題是.(寫出所有真命題的編號)13.?dāng)?shù)列滿足,則________.14.已知正實數(shù)x,y滿足2x+y=2,則xy的最大值為______.15.已知點,,若向量,則向量______.16.對任意的θ∈0,π2,不等式1三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.記Sn為等差數(shù)列an的前n項和,已知(1)求an(2)求Sn,并求S18.已知圓,過點作直線交圓于、兩點.(1)當(dāng)經(jīng)過圓心時,求直線的方程;(2)當(dāng)直線的傾斜角為時,求弦的長;(3)求直線被圓截得的弦長時,求以線段為直徑的圓的方程.19.如圖四邊形ABCD為菱形,G為AC與BD交點,BE⊥平面(I)證明:平面AEC⊥平面BED;(II)若∠ABC=120°,AE⊥EC,三棱錐E-ACD的體積為20.已知是夾角為的單位向量,且,.(1)求;(2)求與的夾角.21.設(shè)為正項數(shù)列的前項和,且滿足.(1)求證:為等差數(shù)列;(2)令,,若恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
利用向量的數(shù)量積運算即可算出.【詳解】解:,,又在上,故選:【點睛】本題主要考查了向量的基本運算的應(yīng)用,向量的基本定理的應(yīng)用及向量共線定理等知識的綜合應(yīng)用.2、B【解析】
把平面展開圖還原原幾何體,再由棱柱的結(jié)構(gòu)特征及異面直線定義、異面直線所成角逐一核對四個命題得答案.【詳解】把平面展開圖還原原幾何體如圖:由正方體的性質(zhì)可知,與異面且垂直,故①錯誤;與平行,故②錯誤;連接,則,為與所成角,連接,可知為正三角形,則,故③正確;由異面直線的定義可知,與是異面直線,故④正確.∴正確命題的個數(shù)是2個.故選:B.【點睛】本題考查棱柱的結(jié)構(gòu)特征,考查異面直線定義及異面直線所成角,是中檔題.3、A【解析】
利用正弦定理可求出的外接圓半徑.【詳解】由正弦定理可得,因此,,故選A.【點睛】本題考查利用正弦定理求三角形外接圓的半徑,考查計算能力,屬于基礎(chǔ)題.4、D【解析】
根據(jù)基本不等式、不等式的性質(zhì)即可【詳解】對于①,.當(dāng),即時取,而,.即①不成立。對于②若,則,若,顯然不成立。對于③若,則,則正確。對于④若,則,則,正確。所以選擇D【點睛】本題主要考查了基本不等式以及不等式的性質(zhì),基本不等式一定要滿足一正二定三相等。屬于中等題。5、B【解析】
由誘導(dǎo)公式將函數(shù)化簡成y=sin(2x+2π3)【詳解】∵(x+π∴sin∴y=2sinx+πy=sin∵平移后的函數(shù)恰為偶函數(shù),∴x=0為其對稱軸,∴x=0時,y=±1,∴-2φ+2π3=kπ+∵φ>0,∴k=0時,φmin【點睛】通過恒等變換把函數(shù)變成y=Asin(ωx+φ)(ω>0)的形式,再研究三角函數(shù)的性質(zhì)是三角函數(shù)題常見解題思路;三角函數(shù)若為偶函數(shù),則該條件可轉(zhuǎn)化為直線x=0為其中一條對稱軸,從而在6、C【解析】
由已知可得an﹣an﹣1=2,或an=2an﹣1,結(jié)合等差數(shù)列和等比數(shù)列的定義,可得答案.【詳解】∵數(shù)列{an}對任意n≥2(n∈N)滿足(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,∴an﹣an﹣1=2,或an=2an﹣1,∴①{an}可以是公差為2的等差數(shù)列,正確;②{an}可以是公比為2的等比數(shù)列,正確;③若{an}既是等差又是等比數(shù)列,即此時公差為0,公比為1,由①②得,③錯誤;④由(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,an﹣an﹣1=2或an=2an﹣1,當(dāng)數(shù)列為:1,3,6,8,16……得{an}既不是等差也不是等比數(shù)列,故④正確;故選C.【點睛】本題以命題的真假判斷與應(yīng)用為載體,考查了等差,等比數(shù)列的相關(guān)內(nèi)容,屬于中檔題.7、A【解析】
轉(zhuǎn)化條件求出滿足要求的P點的范圍,求出面積比即可得解.【詳解】如圖,設(shè)P到BD距離為h,A到BD距離為H,則,,滿足條件的點在和中,所求概率.故選:A.【點睛】本題考查了幾何概型的概率計算,屬于基礎(chǔ)題.8、D【解析】
根據(jù)線面平行的性質(zhì)和面面垂直的判定可知②④正確.【詳解】對于①,若,,或,故①錯;對于②,過作一個平面,它與平面交于,則,因為,故,因為,故,故②成立;對于③,由面面垂直的性質(zhì)定理可知前提條件缺少,故③錯;對于④,如圖所示,如果分別于平面斜交,且斜足分別為,在直線上分別截取斜線段、,使得,過分別作平面的垂線,垂足分別為,連接,則分別為與平面所成的角、與平面所成的角,因為,故,所以,故.當(dāng)分別垂直于時,;當(dāng)分別平行于時,;故與所成的角和與所成的角相等,故④正確.故選D.【點睛】本題考查空間中的點、線、面的位置關(guān)系,正確判斷這些命題的真假的前提是熟悉公理、定理的前提條件,同時需要動態(tài)考慮它們的位置關(guān)系,觀察是否有不同的情況出現(xiàn).9、A【解析】
利用等差數(shù)列的定義可知數(shù)列an為等差數(shù)列,由向量中三點共線的結(jié)論得出a1+【詳解】∵an+1=an∵三點A、B、C共線且該直線不過O點,OC=a1因此,S2010故選:A.【點睛】本題考查等差數(shù)列求和,涉及等差數(shù)列的定義以及向量中三點共線結(jié)論的應(yīng)用,考查計算能力,屬于中等題.10、A【解析】
分析:先確定三角函數(shù)單調(diào)減區(qū)間,再根據(jù)集合包含關(guān)系確定的最大值.詳解:因為,所以由得因此,從而的最大值為,選A.點睛:函數(shù)的性質(zhì):(1).(2)周期(3)由求對稱軸,(4)由求增區(qū)間;由求減區(qū)間.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
如圖設(shè)設(shè)棱長為1,則,因為底面邊長和側(cè)棱長都相等,且所以,所以,,,設(shè)異面直線的夾角為,所以.12、②③【解析】
命題①:對于函數(shù),設(shè),故和可能相等,也可能互為相反數(shù),即命題①錯誤;命題②:假設(shè),因為函為單函數(shù),所以,與已知矛盾,故,即命題②正確;命題③:若為單函數(shù),則對于任意,,假設(shè)不只有一個原象與其對應(yīng),設(shè)為,則,根據(jù)單函數(shù)定義,,又因為原象中元素不重復(fù),故函數(shù)至多有一個原象,即命題③正確;命題④:函數(shù)在某區(qū)間上具有單調(diào)性,并不意味著在整個定義域上具有單調(diào)性,即命題④錯誤,綜上可知,真命題為②③.故答案為②③.13、【解析】
根據(jù)題意可求得和的等式相加,求得,進而推出,判斷出數(shù)列是以6為周期的數(shù)列,進而根據(jù)求出答案?!驹斀狻繉⒁陨蟽墒较嗉拥脭?shù)列是以6為周期的數(shù)列,故【點睛】對于遞推式的使用,我們可以嘗試讓取或,又得一個遞推式,將兩個遞推式相加或者相減來找規(guī)律,本題是一道中等難度題目。14、【解析】
由基本不等式可得,可求出xy的最大值.【詳解】因為,所以,故,當(dāng)且僅當(dāng)時,取等號.故答案為.【點睛】利用基本不等式求最值必須具備三個條件:①各項都是正數(shù);②和(或積)為定值;③等號取得的條件.15、【解析】
通過向量的加減運算即可得到答案.【詳解】,.【點睛】本題主要考查向量的基本運算,難度很小.16、-4,5【解析】1sin2θ+4cos2點睛:在利用基本不等式求最值時,要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號取得的條件)的條件才能應(yīng)用,否則會出現(xiàn)錯誤.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)an=2n-12;(2)Sn【解析】
(1)設(shè)等差數(shù)列an的公差為d,根據(jù)題意求出d(2)根據(jù)等差數(shù)列的前n項和公式先求出Sn,再由an=2n-12≥0【詳解】(1)因為數(shù)列an為等差數(shù)列,設(shè)公差為d由a3=-6,a6=0所以an(2)因為Sn為等差數(shù)列an的前所以Sn由an=2n-12≥0得所以當(dāng)n=5或n=6時,【點睛】本題主要考查等差數(shù)列,熟記通項公式以及前n項和公式即可,屬于常考題型.18、(1);(2);(3).【解析】
(1)求出圓的圓心,代入直線方程,求出直線的斜率,即可求直線l的方程;(2)當(dāng)直線l的傾斜角為45°時,求出直線的斜率,然后求出直線的方程,利用點到直線的距離,半徑,半弦長的關(guān)系求弦AB的長;(3)利用垂徑公式,明確是的中點,進而得到以線段為直徑的圓的方程.【詳解】()圓的方程可化為,圓心為,半徑為.當(dāng)直線過圓心,時,,∴直線的方程為,即.()因為直線的傾斜角為且過,所以直線的方程為,即.圓心到直線的距離,∴弦.()由于,而弦心距,∴,∴是的中點.故以線段為直徑的圓圓心是,半徑為.故以線段為直徑的圓的方程為.19、(1)見解析(2)3+25【解析】試題分析:(Ⅰ)由四邊形ABCD為菱形知AC⊥BD,由BE⊥平面ABCD知AC⊥BE,由線面垂直判定定理知AC⊥平面BED,由面面垂直的判定定理知平面AEC⊥平面BED;(Ⅱ)設(shè)AB=x,通過解直角三角形將AG、GC、GB、GD用x表示出來,在RtΔAEC中,用x表示EG,在RtΔEBG中,用x表示EB,根據(jù)條件三棱錐E-ACD的體積為63求出x,即可求出三棱錐E-ACD試題解析:(Ⅰ)因為四邊形ABCD為菱形,所以AC⊥BD,因為BE⊥平面ABCD,所以AC⊥BE,故AC⊥平面BED.又AC?平面AEC,所以平面AEC⊥平面BED(Ⅱ)設(shè)AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x因為AE⊥EC,所以在RtΔAEC中,可得EG=32x由BE⊥平面ABCD,知ΔEBG為直角三角形,可得BE=22由已知得,三棱錐E-ACD的體積VE-ACD=1從而可得AE=EC=ED=6.所以ΔEAC的面積為3,ΔEAD的面積與ΔECD的面積均為5.故三棱錐E-ACD的側(cè)面積為3+考點:線面垂直的判定與性質(zhì);面面垂直的判定;三棱錐的體積與表面積的計算;邏輯推理能力;運算求解能力20、(1)(2)【解析】試題分析:(1)根據(jù)題知,由向量的數(shù)量積公式進行運算即可,注意,在去括號的向量運算過程中可采用多項式的運算方法;(2)根據(jù)向量數(shù)量積公式,可先求出的值,又,從而可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025中交二航局市政建設(shè)限公司招聘250人高頻重點提升(共500題)附帶答案詳解
- 2025下半年江蘇蘇州市吳中區(qū)人民檢察院速錄員招聘3人高頻重點提升(共500題)附帶答案詳解
- 2025下半年安徽黃山市祁門縣事業(yè)單位招聘45人歷年高頻重點提升(共500題)附帶答案詳解
- 2025下半年四川遂寧經(jīng)開區(qū)部分事業(yè)單位考試招聘工作人員73人高頻重點提升(共500題)附帶答案詳解
- 2025下半年四川省遂寧市安居區(qū)事業(yè)單位招聘17人歷年高頻重點提升(共500題)附帶答案詳解
- 2025上半年浙江溫州職業(yè)技術(shù)學(xué)院選聘152人歷年高頻重點提升(共500題)附帶答案詳解
- 2025上半年四川省自貢沿灘區(qū)事業(yè)單位招聘79人歷年高頻重點提升(共500題)附帶答案詳解
- 2025“才聚齊魯成就未來”山東未來集團限公司招聘96人高頻重點提升(共500題)附帶答案詳解
- 帽子及附件相關(guān)行業(yè)投資方案范本
- 鐵路電氣化玻璃鋼施工協(xié)議
- 2023-2024學(xué)年成都市武侯區(qū)數(shù)學(xué)六上期末質(zhì)量跟蹤監(jiān)視試題含答案
- 瀝青混凝土面層工序樣板表格
- 畢業(yè)設(shè)計(論文)-鐵路貨物運輸裝載加固方案設(shè)計
- 知?!坌!s校華東師大教職工校史知識競賽
- 煤礦新技術(shù)新工藝新設(shè)備和新材料演示文稿
- 漁光互補光伏發(fā)電項目選址方案
- 選詞填空(試題)外研版英語五年級上冊
- 物業(yè)公司危險源清單課件
- 造價咨詢公司組織機構(gòu)及人員崗位職責(zé)
- 道路施工維修養(yǎng)護的安全管理
- 2023-2024學(xué)年四川省瀘州市小學(xué)數(shù)學(xué)五年級上冊期末??荚嚲?/a>
評論
0/150
提交評論