版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
PAGE
11
SEMIE30-1000?SEMI1992,2000
SEMIE30-1000?SEMI1992,2000
PAGE
10
SEMIE30-1000
GENERICMODELFORCOMMUNICATIONSANDCONTROLOFMANUFACTURINGEQUIPMENT(GEM)
ThisstandardwastechnicallyapprovedbytheGlobalInformation&ControlCommitteeandisthedirectresponsibilityoftheNorthAmericanInformation&ControlCommittee.CurrenteditionapprovedbytheNorthAmericanRegionalStandardsCommitteeonJuly14andAugust28,2000.Initiallyavailableat
August2000;tobepublishedOctober2000.Originallypublishedin1992;previouslypublishedJune2000.
CONTENTS
Introduction
RevisionHistory
Scope
Intent
Figure1.1,GEMScope
Overview
Figure1.2,GEMComponents
ApplicableDocuments
Definitions
StateModels
StateModelMethodology
CommunicationsStateModel
Figure3.0,ExampleEquipmentComponentOverview
Figure3.2.1,CommunicationsStateDiagram
Table3.2,CommunicationsStateTransitionTable
ControlStateModel
Figure3.3,ControlStateModel
Table3.3,CONTROLStateTransitionTable
EquipmentProcessingStates
Figure3.4,ProcessingStateDiagram
Table3.4,ProcessingStateTransitionTable
EquipmentCapabilitiesandScenarios
EstablishCommunications
DataCollection
Figure4.2.1,LimitCombinationIllustration:ControlApplication
Figure4.2.2,ElementsofOneLimit
Figure4.2.3,LimitStateModel
Table4.2,LimitStateTransitionTable
AlarmManagement
Figure4.3,StateDiagramforAlarmALIDnTable4.3.1,AlarmStateTransitionTableTable4.3.2
RemoteControl
EquipmentConstants
ProcessProgramManagement
MaterialMovement
EquipmentTerminalServices
ErrorMessages
Clock
Spooling
Figure4.11,SpoolingStateDiagram
Table4.11,SpoolingStateTransition
Control
DataItems
DataItemRestrictions
VariableItemList
CollectionEvents
Table6.1,GEMDefinedCollectionEvents
SECS-IIMessageSubset
STREAM1:EquipmentStatus
STREAM2:EquipmentControlandDiagnosticsSTREAM5:Exception(Alarm)ReportingSTREAM6:DataCollection
STREAM7:ProcessProgramLoadSTREAM9:SystemErrorsSTREAM10:TerminalServicesSTREAM14:ObjectServices
STREAM15:RecipeManagement
GEMCompliance
FundamentalGEMRequirements
Figure8.1,GEMRequirementsandCapabilities
Table8.1,FundamentalGEMRequirements
GEMCapabilities
Table8.2,SectionReferencesforGEMCapabilities
DefinitionofGEMCompliance
Documentation
Figure8.2,HostViewofGEM
Table8.3,GEMComplianceStatement
Table8.4,SMLNotation
ApplicationNotes
FactoryOperationalScript
AnytimeCapabilities
SystemInitializationandSynchronization
ProductionSet-Up
Processing
Post-Processing
EquipmentFrontPanel
DisplaysandIndicators
Switches/Buttons
ExamplesofEquipmentAlarms
TableA.3,AlarmExamplesPerEquipmentConfigura-tion
TraceDataCollectionExample
HarelNotation
FigureA.5.1,HarelStatechartSymbolsFigureA.5.2,ExampleofORSubstatesFigureA.5.3,ExampleofANDSubstates
StateDefinitions
TransitionTable
TableA.5,TransitionTableforMotorExample
ExampleControlModelApplication
ExamplesofLimitsMonitoring
Introduction
Examples
FigureA.7.1,ValveMonitoringExampleFigureA.7.2,EnvironmentMonitoringExampleFigureA.7.3,CalibrationCounterExample
RecipeParameterModificationforProcessandEquipmentControl
Introduction
EquipmentConstants
Example
FigureA.8.1,CMPSingleWafer“Polishing”SystemwithHostRecipeParameterModificationCapability
Index
SEMIE30-1000
GENERICMODELFORCOMMUNICATIONSANDCONTROLOFMANUFACTURINGEQUIPMENT(GEM)
ThisstandardwastechnicallyapprovedbytheGlobalInformation&ControlCommitteeandisthedirectresponsibilityoftheNorthAmericanInformation&ControlCommittee.CurrenteditionapprovedbytheNorthAmericanRegionalStandardsCommitteeonJuly14andAugust28,2000.Initiallyavailableat
August2000;tobepublishedOctober2000.Originallypublishedin1992;previouslypublishedJune2000.
Introduction
RevisionHistory—ThisisthefirstreleaseoftheGEMstandard.
Scope—ThescopeoftheGEMstandardislimitedtodefiningthebehaviorofsemiconductorequipmentasviewedthroughacommunicationslink.TheSEMIE5(SECS-II)standardprovidesthedefinitionofmessagesandrelateddataitemsexchangedbetweenhostandequipment.TheGEMstandarddefineswhichSECS-IImessagesshouldbeused,inwhatsituations,andwhattheresultingactivityshouldbe.Figure1.1illustratestherelationshipofGEM,SECS-IIandothercommunicationsalternatives.
TheGEMstandarddoesNOTattempttodefinethebehaviorofthehostcomputerinthecommunicationslink.ThehostcomputermayinitiateanyGEMmessagescenarioatanytimeandtheequipmentshallrespondasdescribedintheGEMstandard.WhenaGEMmessagescenarioisinitiatedbyeitherthehostorequipment,theequipmentshallbehaveinthemannerdescribedintheGEMstandardwhenthehostusestheappropriateGEMmessages.
Figure1.1GEMScope
Thecapabilitiesdescribedinthisstandardarespecificallydesignedtobeindependentoflower-level
communicationsprotocolsandconnectionschemes(e.g.,SECS-I,SMS,point-to-point,connection-orientedorconnectionless).Useofthosetypesofstandardsisnotrequiredorprecludedbythisstandard.
Thisstandarddoesnotpurporttoaddresssafetyissues,ifany,associatedwithitsuse.Itistheresponsibilityoftheusersofthisstandardtoestablishappropriatesafetyandhealthpracticesanddeterminetheapplicabilityofregulatorylimitationspriortouse.
Intent—GEMdefinesastandardimplementationofSECS-IIforallsemiconductormanufacturingequipment.TheGEMstandarddefinesacommonsetofequipmentbehaviorandcommunicationscapabilitiesthatprovidethefunctionalityandflexibilitytosupportthemanufacturingautomationprogramsofsemiconductordevicemanufacturers.EquipmentsuppliersmayprovideadditionalSECS-IIfunctionalitynotincludedinGEMaslongastheadditionalfunctionalitydoesnotconflictwithanyofthebehaviororcapabilitiesdefinedinGEM.SuchadditionsmayincludeSECS-IImessages,collectionevents,alarms,remotecommandcodes,processingstates,variabledataitems(datavalues,statusvaluesorequipmentconstants),orotherfunctionalitythatisuniquetoaclass(etchers,steppers,etc.)orspecificinstanceofequipment.
GEMisintendedtoproduceeconomicbenefitsforbothdevicemanufacturersandequipmentsuppliers.EquipmentsuppliersbenefitfromtheabilitytodevelopandmarketasingleSECS-IIinterfacethatsatisfiesmostcustomers.DevicemanufacturersbenefitfromtheincreasedfunctionalityandstandardizationoftheSECS-IIinterfaceacrossallmanufacturingequipment.Thisstandardizationreducesthecostofsoftwaredevelopmentforbothequipmentsuppliersanddevicemanufacturers.Byreducingcostsandincreasingfunctionality,devicemanufacturerscanautomatesemiconductorfactoriesmorequicklyandeffectively.TheflexibilityprovidedbytheGEMstandardalsoenablesdevicemanufacturerstoimplementuniqueautomationsolutionswithinacommonindustryframework.
TheGEMstandardisintendedtospecifythefollowing:
AmodelofthebehaviortobeexhibitedbysemiconductormanufacturingequipmentinaSECS-IIcommunicationenvironment,
Adescriptionofinformationandcontrolfunctionsneededinasemiconductormanufacturingenvironment,
AdefinitionofthebasicSECS-IIcommunicationscapabilitiesofsemiconductormanufacturingequipment,
AsingleconsistentmeansofaccomplishinganactionwhenSECS-IIprovidesmultiplepossiblemethods,and
Standardmessagedialoguesnecessarytoachieveusefulcommunicationscapabilities.
TheGEMstandardcontainstwotypesofrequirements:
fundamentalGEMrequirementsand
requirementsofadditionalGEMcapabilities.
ThefundamentalGEMrequirementsformthefoundationoftheGEMstandard.TheadditionalGEMcapabilitiesprovidefunctionalityrequiredforsometypesoffactoryautomationorfunctionalityapplicabletospecifictypesofequipment.AdetailedlistofthefundamentalGEMrequirementsandadditionalGEMcapabilitiescanbefoundinChapter8,GEMCompliance.Figure1.2illustratesthecomponentsoftheGEMstandard.
Figure1.2GEMComponents
EquipmentsuppliersshouldworkwiththeircustomerstodeterminewhichadditionalGEMcapabilitiesshouldbeimplementedforaspecifictypeofequipment.BecausethecapabilitiesdefinedintheGEMstandardwerespecificallydevelopedtomeetthefactoryautomationrequirementsofsemiconductormanufacturers,itisanticipatedthatmostdevicemanufacturerswillrequiremostoftheGEMcapabilitiesthatapplytoaparticulartypeofequipment.SomedevicemanufacturersmaynotrequirealltheGEMcapabilitiesduetodifferencesintheirfactoryautomationstrategies.
Overview—TheGEMstandardisdividedintosectionsasdescribedbelow.
Section1—Introduction
Thissectionprovidestherevisionhistory,scopeandintentoftheGEMstandard.Italsoprovidesanoverviewofthestructureofthedocumentandalistofrelateddocuments.
Section2—Definitions
Thissectionprovidesdefinitionsoftermsusedthroughoutthedocument.
Section3—StateModels
Thissectiondescribestheconventionsusedthroughoutthisdocumenttodepictstatemodels.Italsodescribesthebasicstatemodelsthatapplytoallsemiconductormanufacturingequipmentandthatpertaintomorethanasinglecapability.Statemodelsdescribethebehavioroftheequipmentfromahostperspective.
Section4—CapabilitiesandScenarios
Thissectionprovidesadetaileddescriptionofthecommunicationscapabilitiesdefinedforsemiconductormanufacturingequipment.Thedescriptionofeachcapabilityincludesthepurpose,definitions,requirements,andscenariosthatshallbesupported.
Section5—DataDefinitions
ThissectionprovidesareferencetotheDataItemDictionaryandVariableItemDictionaryfoundinSEMIStandardE5.ThefirstsubsectionshowsthosedataitemsfromSECS-IIwhichhavebeenrestrictedintheiruse(i.e.,allowedformats).ThesecondsubsectionlistsvariabledataitemsthatareavailabletothehostfordatacollectionandshowsanyrestrictionsontheirSECS-IIdefinitions.
Section6—CollectionEvents
Thissectionprovidesalistofrequiredcollectioneventsandtheirassociateddata.
Section7—SECSMessageSubset
ThissectionprovidesacompositelistoftheSECS-IImessagesrequiredtoimplementallcapabilitiesdefinedintheGEMstandard.
Section8—GEMCompliance
ThissectiondescribesthefundamentalGEMrequirementsandadditionalGEMcapabilitiesandprovidesreferencestoothersectionsofthestandardwheredetailedrequirementsarelocated.Thissectionalsodefinesstandardterminologyanddocumentationthatcanbeusedbyequipmentsuppliersanddevicemanufacturerstodescribecompliancewiththisstandard.
SectionA—ApplicationNotes
Thesesectionsprovideadditionalexplanatoryinformationandexamples.
SectionA.1—FactoryOperationalScript
ThissectionprovidesanoverviewofhowtherequiredSECScapabilitiesmaybeusedinthecontextofatypicalfactoryoperationsequence.Thissectionisorganizedaccordingtothesequenceinwhichactionsaretypicallyperformed.
SectionA.2—EquipmentFrontPanel
Thissectionprovidesguidanceinimplementingtherequiredfrontpanelbuttons,indicators,andswitchesasdefinedinthisdocument.Asummaryofthefrontpanelrequirementsisprovided.
SectionA.3—ExamplesofEquipmentAlarms
Thissectionprovidesexamplesofalarmsrelatedtovariousequipmentconfigurations.
SectionA.4—TraceDataCollectionExample
Thissectionprovidesanexampleoftraceinitializationbythehostandtheperiodictracedatamessagesthatmightbesentbytheequipment.
SectionA.5—HarelNotation
ThissectionexplainsDavidHarel’s“Statechart”notationthatisusedthroughoutthisdocumenttodepictstatemodels.
SectionA.6—ExampleControlModelApplication
Thissectionprovidesoneexampleofahost’sinteractionwithanequipment’scontrolmodel.
SectionA.7—ExamplesofLimitsMonitoring
Thissectioncontainsfourlimitsmonitoringexamplestohelpclarifytheuseoflimitsandtoillustratetypicalapplications.
ApplicableDocuments
SEMIStandards—ThefollowingSEMIstandardsarerelatedtotheGEMstandard.ThespecificportionsofthesestandardsreferencedbyGEMconstituteprovisionsoftheGEMstandard.
SEMIE4—SEMIEquipmentCommunicationsStandard1—MessageTransfer(SECS-I)
SEMIE5—SEMIEquipmentCommunicationsStandard2—MessageContent(SECS-II)
SEMIE13—StandardforSEMIEquipmentCommunicationStandardMessageService(SMS)
SEMIE23—SpecificationforCassetteTransferParallelI/OInterface
OtherReferences
Harel,D.,“Statecharts:AVisualFormalismforComplexSystems,”ScienceofComputerProgramming8(1987)231-2741.
NOTE1:Aslistedorrevised,alldocumentscitedshallbethelatestpublicationsofadoptedstandards.
Definitions
alarm—Analarmisrelatedtoanyabnormalsituationontheequipmentthatmayendangerpeople,equipment,ormaterialbeingprocessed.Suchabnormalsituationsaredefinedbytheequipmentmanufacturerbasedonphysicalsafetylimitations.Equipmentactivitiespotentiallyimpactedbythepresenceofanalarmshallbeinhibited.
Notethatexceedingcontrollimitsassociatedwithprocesstolerancedoesnotconstituteanalarmnordonormalequipmenteventssuchasthestartorcompletionofprocessing.
capabilities—Capabilitiesareoperationsperformedbysemiconductormanufacturingequipment.TheseoperationsareinitiatedthroughthecommunicationsinterfaceusingsequencesofSECS-IImessages(orscenarios).Anexampleofacapabilityisthesettingandclearingofalarms.
collectionevent—Acollectioneventisanevent(orgroupingofrelatedevents)ontheequipmentthatisconsideredtobesignificanttothehost.
communicationfailure—Acommunicationfailureissaidtooccurwhenanestablishedcommunicationslinkisbroken.Suchfailuresareprotocolspecific.Refer
1ElsevierScience,P.O.Box945,NewYork,NY10159-0945,
http://www.elvesier.nl/homepage/browse.htt
totheappropriateprotocolstandard(e.g.,SEMIE4orSEMIE37)foraprotocol-specificdefinitionofcommunicationfailure.
communicationfault—Acommunicationfaultoccurswhentheequipmentdoesnotreceiveanexpectedmessage,orwheneitheratransactiontimeroraconversationtimerexpires.
control—Tocontrolistoexercisedirectinginfluence.
equipmentmodel—Anequipmentmodelisadefinitionbasedoncapabilities,scenarios,andSECS-IImessagesthatmanufacturingequipmentshouldperformtosupportanautomatedmanufacturingenvironment.(SeealsoGenericEquipmentModel.)
event—Aneventisadetectableoccurrencesignificanttotheequipment.
GEMcompliance—Theterm“GEMCompliance”isdefinedwithrespecttoindividualGEMcapabilitiestoindicateadherencetotheGEMstandardforaspecificcapability.Section8includesmoredetailonGEMCompliance.
GenericEquipmentModel—TheGenericEquipmentModelisusedasareferencemodelforanytypeofequipment.Itcontainsfunctionalitythatcanapplytomostequipment,butdoesnotaddressuniquerequirementsofspecificequipment.
host—TheSEMIE4andE5standardsdefineHostas“theintelligentsystemthatcommunicateswiththeequipment.”
messagefault—Amessagefaultoccurswhentheequipmentreceivesamessagethatitcannotprocessbecauseofadefectinthemessage.
operationalscript—Anoperationalscriptisacollectionofscenariosarrangedinasequencetypicalofactualfactoryoperations.Examplesequencesaresysteminitializationpowerup,machinesetup,andprocessing.
operator—Ahumanwhooperatestheequipmenttoperformitsintendedfunction(e.g.,processing).Theoperatortypicallyinteractswiththeequipmentviatheequipmentsuppliedoperatorconsole.
processunit—Aprocessunitreferstothematerialthatistypicallyprocessedasaunitviasingleruncommand,processprogram,etc.Commonprocessunitsarewafers,cassettes,magazines,andboats.
processingcycle—Aprocessingcycleisasequencewhereinallofthematerialcontainedina
typicalprocessunitisprocessed.Thisisoftenusedasameasureofactionortime.
scenario—AscenarioisagroupofSECS-IImessagesarrangedinasequencetoperformacapability.Otherinformationmayalsobeincludedinascenarioforclarity.
SECS-I—SEMIEquipmentCommunicationsStandard1(SEMIE4).ThisstandardspecifiesamethodforamessagetransferprotocolwithelectricalsignallevelsbaseduponEIARS232-C.
SECS-II—SEMIEquipmentCommunicationsStandard2(SEMIE5).Thisstandardspecifiesagroupofmessagesandtherespectivesyntaxandsemanticsforthosemessagesrelatingtosemiconductormanufacturingequipmentcontrol.
SMS—SECSMessageService.AnalternativetoSECS-ItobeusedwhensendingSECS-IIformattedmessagesoveranetwork.
statemodel—AStateModelisacollectionofstatesandstatetransitionsthatcombinetodescribethebehaviorofasystem.Thismodelincludesdefinitionoftheconditionsthatdelineateastate,theactions/reactionspossiblewithinastate,theeventsthattriggertransitionstootherstates,andtheprocessoftransitioningbetweenstates.
systemdefault—Referstostate(s)intheequipmentbehavioralmodelthatareexpectedtobeactiveattheendofsysteminitialization.Italsoreferstothevalue(s)thatspecifiedequipmentvariablesareexpectedtocontainattheendofsysteminitialization.
systeminitialization—Theprocessthatanequipmentperformsatpower-up,systemactivation,and/orsystemreset.Thisprocessisexpectedtopreparetheequipmenttooperateproperlyandaccordingtotheequipmentbehavioralmodels.
user—Ahumanorhumanswhorepresentthefactoryandenforcethefactoryoperationmodel.Auserisconsideredtoberesponsibleformanysetupandconfigurationactivitiesthatcausetheequipmenttobestconformtofactoryoperationspractices.
3StateModels
Thefollowingsectionscontainstatemodelsforsemiconductormanufacturingequipment.Thesestatemodelsdescribethebehavioroftheequipmentfromahostperspectiveinacompactandeasytounderstandformat.Statemodelsfordifferentequipmentwillbeidenticalinsomeareas(e.g.,communications),butmayvaryinotherareas(e.g.,processing).Itisdesirabletodividetheequipmentintoparallelcomponentsthatcan
bemodeledseparatelyandthencombined.AnexampleofacomponentoverviewofanequipmentisprovidedasFigure3.0.
Equipmentmanufacturersmustdocumenttheoperation-albehavioroftheirequipmentusingstatemodelmeth-odology.StatemodelsarediscussedinSections3.1and
A.5andinareferencedarticle.Documentationofastatemodelshallincludethefollowingthreeelements:
Astatediagramshowingthepossiblestatesofthesystemorcomponentsofasystemandallofthepossibletransitionsfromonestatetoanother.Thestatesandtransitionsmusteachbelabeled.UseoftheHarelnotation(seeA.5)isrecommended.
Atransitiontablelistingeachtransition,thebeginningandendstates,whatstimulustriggersthetransition,andanyactionstakenasaresultofthetransition.
Adefinitionofeachstatespecifyingsystembehaviorwhenthatstateisactive.
ExamplesoftheaboveelementsareprovidedinSectionA.5.
Figure3.0
ExampleEquipmentComponentOverview
Thebenefitsofprovidingstatemodelsare:
Statemachinemodelsareausefulspecificationtool,
Ahostsystemcananticipatemachinebehaviorbaseduponthestatemodel,
End-usersandequipmentprogrammershaveacommondescriptionofmachinebehaviorfromwhichtowork,
“Legal”operationscanbedefinedpertainingtoanymachinestate,
Externaleventnotificationscanberelatedtointernalstatetransitions,
Externalcommandscanberelatedtostatetransitions,
Statemodelcomponentsdescribingdifferentaspectsofmachinecontrolcanberelatedtooneanother(example:processingstatemodelwithmaterialtransportstatemodel;processingstatemodelwithinternalmachinesafetysystems).
StateModelMethodology—Todocumenttheexpectedfunctionalityofthevariouscapabilitiesdescribedinthisdocument,the“Statechart”notationdevelopedbyDavidHarelhasbeenadopted.AnarticlebyHarelislistedinSection1.5andshouldbeconsidered“must”readingforafullunderstandingofthenotation.Theconventionusedinthisandfollowingsectionsistodescribethedynamicfunctionalityofacapabilitywiththreeitems:atextualdescriptionofeachstateorsubstatedefined,atablethatdescribesthepossibletransitionsfromonestatetoanother,andagraphicalfigurethatusesthesymbolsdefinedbyHareltoillustratetherelationshipsofthestatesandtransitions.Thecombinationoftheseitemsdefinethestatemodelforasystemorcomponent.AsummaryoftheHarelnotationandamoredetaileddescriptionofthetext,table,andfigureusedtodefinebehaviorwiththismethodologyiscontainedintheApplicationNoteA.5.
Thebasicunitofastatemodelisthestate.Astateisastaticsetofconditions.Iftheconditionsaremet,thestateiscurrent.Theseconditionsmightinvolvesensorreadings,switchpositions,timeofday,etc.Alsopartofastatedefinitionisadescriptionofreactionstospecificstimuli(e.g.,ifmessageSx,Fyisreceived,generatereplymessageSx,Fy+1).StimulimaybequitevariedbutforsemiconductorequipmentwouldincludereceivedSECSmessages,expiredtimers,operatorinputatanequipmentterminal,andchangesinsensorreadings.
Tohelpclarifytheinterpretationofthisdocumentandthestatemodelsdescribedherein,itisusefultodistin-guishbetweenastateandaneventandtherelationshipofonetotheother.Aneventisdynamicratherthanstatic.Itrepresentsachangeinconditions,ormorespecifically,theawarenessofsuchachange.Aneventmightinvolveasensorreadingexceedingalimit,aswitchchangingposition,oratimelimitexceeded.
Achangetoanewactivestate(statetransition)mustalwaysbepromptedbyachangeinconditions,andthusanevent.Inaddition,astatetransitionmayitselfbe
termedanevent.Infact,therearemanyeventsthatmayoccuronanequipment,soitisimportanttoclassifyeventsbasedonwhethertheycanbedetectedandwhethertheyareofinterest.Inthisdocument,thetermeventhasbeenmorenarrowlydefinedasadetectableoccurrencethatissignificanttotheequipment.
Afurthernarrowingofthedefinitionofeventisrepre-sentedbytheterm“collectionevent,”whichisanevent(orgroupofrelatedevents)ontheequipmentthatisconsideredsignificanttothehost.Itistheseeventsthat(ifenabled)arereportedtothehost.Bythisdefinition,thelistofcollectioneventsforanequipmentwouldtyp-icallybeonlyasubsetoftotalevents.Thestatemodelsinthisdocumentareintendedtobelimitedtothelevelofdetailinwhichthehostisinterested.Thus,allstatetransitionsdefinedinthisstandard,unlessotherwisespecified,shallcorrespondtocollectionevents.
CommunicationsStateModel—TheCommunicationsStateModeldefinesthebehavioroftheequipmentinrelationtotheexistenceorabsenceofacommunicationslinkwiththehost.Section4.1expandsonthissectionbydefiningtheEstablishCommunicationscapability.Thismodelpertainstoalogicalconnectionbetweenequipmentandhostratherthanaphysicalconnection.
Terminology—Thetermscommunicationfail-ure,connectiontransactionfailure,andcommunicationlinkaredefinedforusewithinthisdocumentonlyandshouldnotbeconfusedwiththesameorsimilartermsusedelsewhere.
SeeSEMIE4(SECS-I)orSEMIE37(HSMS)foraprotocolspecificdefinitionsofcommunicationsfailure.
Aconnectiontransactionfailureoccurswhenattemptingtoestablishcommunicationsandiscausedby
acommunicationfailure,
thefailuretoreceiveanS1,F14replywithinareplytimeoutlimit,or
receiptofS1,F14thathasbeenimproperlyformattedorwithCOMMACK2notsetto0.
Areplytimeoutperiodbeginsafterthesuccessfultransmissionofacompleteprimarymessageforwhichareplyisexpected.(SeeSEMIE4(SECS-I)
orSEMIE37(HSMS)foraprotocol-specificdefinitionofreplytimeout.)
AcommunicationlinkisestablishedfollowingthefirstsuccessfulcompletionofanyoneS1,F13/F14transactionwithanacknowledgementof“accept”.Theestablishmentofthislinkislogicalratherthanphysical.
Implementationsmayhavemechanismswhichallowoutgoingmessagestobestoredtemporarilypriortobeingsent.Thenounqueueisusedtocoversuchstoredmessages.Theyarequeuedwhenplacedwithinthequeueandaredequeuedbyremovingthemfromthisstorage.
Sendincludes“queuetosend”or“begintheprocessofattemptingtosend”amessage.Itdoesnotimplythesuccessfulcompletionofsendingamessage.
Thehostmayattempttoestablishcommunicationswithequipmentatanytimeduetotheinitializationofthehostorbyindependentdetectionofacommunicationsfailurebythehost.Thus,thehostmayinitiateanS1,F13/F14transactionatanytime.
CommDelayTimer—TheCommDelaytimerrepresentsaninternaltimerusedtomeasuretheintervalbetweenattemptstosendS1,F13.ThelengthofthisintervalisequaltothevalueintheEstablishCommuni-cationsTimeout.TheCommDelaytimerisnotdirectlyvisibletothehost.
EstablishCommunicationsTimeoutistheuser-configur-ableequipmentconstantthatdefinesthedelay,inseconds,betweenattemptstosendS1,F13.ThisvalueisusedtoinitializetheCommDelaytimer.
TheCommDelaytimerisinitializedtobegintiming.TheCommDelaytimerisinitializedonlywhenthestateWAITDELAYisentered.
TheCommDelaytimerisexpiredwhenit“timesout,”andthetimeremainingintheintervalbetweenattemptstosendiszero.WhenthetimerexpiresduringthestateWAITDELAY,ittriggersanewattempttosendS1,F13andthetransitiontothestateWAITCRA3.
Conventions
TheattempttosendS1,F13ismadeonlyupontransitintothestateWAITCRA.TheCommDelayTimershouldbesetto“expired”atthistime.
2EstablishCommunicationsAcknowledgeCode,definedinSection
4.1.SeetheSEMIE5StandardforfurtherdefinitionofthisDataItem.
CRAisthemnemonicdefinedforEstablishCommunicationsRequestAcknowledge(S1,F14).
TheCommDelaytimerisinitializedonlyupontransitint
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024政基礎設施工程勞務分包合同管理
- 二零二五年度集體土地房屋買賣合同風險評估與防范3篇
- 2025年人教版(2024)二年級語文下冊階段測試試卷
- 二零二五年新能源發(fā)電項目投資合同規(guī)范文本2篇
- 2025-2030年中國加熱爐市場規(guī)模分析及投資策略研究報告
- 2025-2030年中國保鮮豆腐市場運行動態(tài)分析與營銷策略研究報告
- 2025-2030年中國POCT行業(yè)發(fā)展現(xiàn)狀及投資規(guī)劃研究報告
- 2025-2030年中國3C電子線行業(yè)市場發(fā)展狀況及投資前景預測報告
- 2025年滬科新版九年級語文下冊月考試卷含答案
- 中鐵七局負責西康高鐵XKZQ區(qū)間2024年新建工程協(xié)議版B版
- 礦工睡崗檢查書
- 仁恒江灣城修建幕墻工程監(jiān)理實施細則
- 廣東省佛山南海區(qū)四校聯(lián)考2023屆中考試題猜想數(shù)學試卷含解析
- 2023年江蘇蘇州工業(yè)園區(qū)管委會招聘筆試參考題庫附帶答案詳解
- GB/T 10752-2005船用鋼管對焊接頭
- 酒店婚宴銷售年度工作計劃4篇
- 健康教育工作考核記錄表
- 裝飾工程施工技術ppt課件(完整版)
- SJG 05-2020 基坑支護技術標準-高清現(xiàn)行
- 汽車維修價格表
- 司爐崗位應急處置卡(燃氣)參考
評論
0/150
提交評論