




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
PAGE
11
SEMIE30-1000?SEMI1992,2000
SEMIE30-1000?SEMI1992,2000
PAGE
10
SEMIE30-1000
GENERICMODELFORCOMMUNICATIONSANDCONTROLOFMANUFACTURINGEQUIPMENT(GEM)
ThisstandardwastechnicallyapprovedbytheGlobalInformation&ControlCommitteeandisthedirectresponsibilityoftheNorthAmericanInformation&ControlCommittee.CurrenteditionapprovedbytheNorthAmericanRegionalStandardsCommitteeonJuly14andAugust28,2000.Initiallyavailableat
August2000;tobepublishedOctober2000.Originallypublishedin1992;previouslypublishedJune2000.
CONTENTS
Introduction
RevisionHistory
Scope
Intent
Figure1.1,GEMScope
Overview
Figure1.2,GEMComponents
ApplicableDocuments
Definitions
StateModels
StateModelMethodology
CommunicationsStateModel
Figure3.0,ExampleEquipmentComponentOverview
Figure3.2.1,CommunicationsStateDiagram
Table3.2,CommunicationsStateTransitionTable
ControlStateModel
Figure3.3,ControlStateModel
Table3.3,CONTROLStateTransitionTable
EquipmentProcessingStates
Figure3.4,ProcessingStateDiagram
Table3.4,ProcessingStateTransitionTable
EquipmentCapabilitiesandScenarios
EstablishCommunications
DataCollection
Figure4.2.1,LimitCombinationIllustration:ControlApplication
Figure4.2.2,ElementsofOneLimit
Figure4.2.3,LimitStateModel
Table4.2,LimitStateTransitionTable
AlarmManagement
Figure4.3,StateDiagramforAlarmALIDnTable4.3.1,AlarmStateTransitionTableTable4.3.2
RemoteControl
EquipmentConstants
ProcessProgramManagement
MaterialMovement
EquipmentTerminalServices
ErrorMessages
Clock
Spooling
Figure4.11,SpoolingStateDiagram
Table4.11,SpoolingStateTransition
Control
DataItems
DataItemRestrictions
VariableItemList
CollectionEvents
Table6.1,GEMDefinedCollectionEvents
SECS-IIMessageSubset
STREAM1:EquipmentStatus
STREAM2:EquipmentControlandDiagnosticsSTREAM5:Exception(Alarm)ReportingSTREAM6:DataCollection
STREAM7:ProcessProgramLoadSTREAM9:SystemErrorsSTREAM10:TerminalServicesSTREAM14:ObjectServices
STREAM15:RecipeManagement
GEMCompliance
FundamentalGEMRequirements
Figure8.1,GEMRequirementsandCapabilities
Table8.1,FundamentalGEMRequirements
GEMCapabilities
Table8.2,SectionReferencesforGEMCapabilities
DefinitionofGEMCompliance
Documentation
Figure8.2,HostViewofGEM
Table8.3,GEMComplianceStatement
Table8.4,SMLNotation
ApplicationNotes
FactoryOperationalScript
AnytimeCapabilities
SystemInitializationandSynchronization
ProductionSet-Up
Processing
Post-Processing
EquipmentFrontPanel
DisplaysandIndicators
Switches/Buttons
ExamplesofEquipmentAlarms
TableA.3,AlarmExamplesPerEquipmentConfigura-tion
TraceDataCollectionExample
HarelNotation
FigureA.5.1,HarelStatechartSymbolsFigureA.5.2,ExampleofORSubstatesFigureA.5.3,ExampleofANDSubstates
StateDefinitions
TransitionTable
TableA.5,TransitionTableforMotorExample
ExampleControlModelApplication
ExamplesofLimitsMonitoring
Introduction
Examples
FigureA.7.1,ValveMonitoringExampleFigureA.7.2,EnvironmentMonitoringExampleFigureA.7.3,CalibrationCounterExample
RecipeParameterModificationforProcessandEquipmentControl
Introduction
EquipmentConstants
Example
FigureA.8.1,CMPSingleWafer“Polishing”SystemwithHostRecipeParameterModificationCapability
Index
SEMIE30-1000
GENERICMODELFORCOMMUNICATIONSANDCONTROLOFMANUFACTURINGEQUIPMENT(GEM)
ThisstandardwastechnicallyapprovedbytheGlobalInformation&ControlCommitteeandisthedirectresponsibilityoftheNorthAmericanInformation&ControlCommittee.CurrenteditionapprovedbytheNorthAmericanRegionalStandardsCommitteeonJuly14andAugust28,2000.Initiallyavailableat
August2000;tobepublishedOctober2000.Originallypublishedin1992;previouslypublishedJune2000.
Introduction
RevisionHistory—ThisisthefirstreleaseoftheGEMstandard.
Scope—ThescopeoftheGEMstandardislimitedtodefiningthebehaviorofsemiconductorequipmentasviewedthroughacommunicationslink.TheSEMIE5(SECS-II)standardprovidesthedefinitionofmessagesandrelateddataitemsexchangedbetweenhostandequipment.TheGEMstandarddefineswhichSECS-IImessagesshouldbeused,inwhatsituations,andwhattheresultingactivityshouldbe.Figure1.1illustratestherelationshipofGEM,SECS-IIandothercommunicationsalternatives.
TheGEMstandarddoesNOTattempttodefinethebehaviorofthehostcomputerinthecommunicationslink.ThehostcomputermayinitiateanyGEMmessagescenarioatanytimeandtheequipmentshallrespondasdescribedintheGEMstandard.WhenaGEMmessagescenarioisinitiatedbyeitherthehostorequipment,theequipmentshallbehaveinthemannerdescribedintheGEMstandardwhenthehostusestheappropriateGEMmessages.
Figure1.1GEMScope
Thecapabilitiesdescribedinthisstandardarespecificallydesignedtobeindependentoflower-level
communicationsprotocolsandconnectionschemes(e.g.,SECS-I,SMS,point-to-point,connection-orientedorconnectionless).Useofthosetypesofstandardsisnotrequiredorprecludedbythisstandard.
Thisstandarddoesnotpurporttoaddresssafetyissues,ifany,associatedwithitsuse.Itistheresponsibilityoftheusersofthisstandardtoestablishappropriatesafetyandhealthpracticesanddeterminetheapplicabilityofregulatorylimitationspriortouse.
Intent—GEMdefinesastandardimplementationofSECS-IIforallsemiconductormanufacturingequipment.TheGEMstandarddefinesacommonsetofequipmentbehaviorandcommunicationscapabilitiesthatprovidethefunctionalityandflexibilitytosupportthemanufacturingautomationprogramsofsemiconductordevicemanufacturers.EquipmentsuppliersmayprovideadditionalSECS-IIfunctionalitynotincludedinGEMaslongastheadditionalfunctionalitydoesnotconflictwithanyofthebehaviororcapabilitiesdefinedinGEM.SuchadditionsmayincludeSECS-IImessages,collectionevents,alarms,remotecommandcodes,processingstates,variabledataitems(datavalues,statusvaluesorequipmentconstants),orotherfunctionalitythatisuniquetoaclass(etchers,steppers,etc.)orspecificinstanceofequipment.
GEMisintendedtoproduceeconomicbenefitsforbothdevicemanufacturersandequipmentsuppliers.EquipmentsuppliersbenefitfromtheabilitytodevelopandmarketasingleSECS-IIinterfacethatsatisfiesmostcustomers.DevicemanufacturersbenefitfromtheincreasedfunctionalityandstandardizationoftheSECS-IIinterfaceacrossallmanufacturingequipment.Thisstandardizationreducesthecostofsoftwaredevelopmentforbothequipmentsuppliersanddevicemanufacturers.Byreducingcostsandincreasingfunctionality,devicemanufacturerscanautomatesemiconductorfactoriesmorequicklyandeffectively.TheflexibilityprovidedbytheGEMstandardalsoenablesdevicemanufacturerstoimplementuniqueautomationsolutionswithinacommonindustryframework.
TheGEMstandardisintendedtospecifythefollowing:
AmodelofthebehaviortobeexhibitedbysemiconductormanufacturingequipmentinaSECS-IIcommunicationenvironment,
Adescriptionofinformationandcontrolfunctionsneededinasemiconductormanufacturingenvironment,
AdefinitionofthebasicSECS-IIcommunicationscapabilitiesofsemiconductormanufacturingequipment,
AsingleconsistentmeansofaccomplishinganactionwhenSECS-IIprovidesmultiplepossiblemethods,and
Standardmessagedialoguesnecessarytoachieveusefulcommunicationscapabilities.
TheGEMstandardcontainstwotypesofrequirements:
fundamentalGEMrequirementsand
requirementsofadditionalGEMcapabilities.
ThefundamentalGEMrequirementsformthefoundationoftheGEMstandard.TheadditionalGEMcapabilitiesprovidefunctionalityrequiredforsometypesoffactoryautomationorfunctionalityapplicabletospecifictypesofequipment.AdetailedlistofthefundamentalGEMrequirementsandadditionalGEMcapabilitiescanbefoundinChapter8,GEMCompliance.Figure1.2illustratesthecomponentsoftheGEMstandard.
Figure1.2GEMComponents
EquipmentsuppliersshouldworkwiththeircustomerstodeterminewhichadditionalGEMcapabilitiesshouldbeimplementedforaspecifictypeofequipment.BecausethecapabilitiesdefinedintheGEMstandardwerespecificallydevelopedtomeetthefactoryautomationrequirementsofsemiconductormanufacturers,itisanticipatedthatmostdevicemanufacturerswillrequiremostoftheGEMcapabilitiesthatapplytoaparticulartypeofequipment.SomedevicemanufacturersmaynotrequirealltheGEMcapabilitiesduetodifferencesintheirfactoryautomationstrategies.
Overview—TheGEMstandardisdividedintosectionsasdescribedbelow.
Section1—Introduction
Thissectionprovidestherevisionhistory,scopeandintentoftheGEMstandard.Italsoprovidesanoverviewofthestructureofthedocumentandalistofrelateddocuments.
Section2—Definitions
Thissectionprovidesdefinitionsoftermsusedthroughoutthedocument.
Section3—StateModels
Thissectiondescribestheconventionsusedthroughoutthisdocumenttodepictstatemodels.Italsodescribesthebasicstatemodelsthatapplytoallsemiconductormanufacturingequipmentandthatpertaintomorethanasinglecapability.Statemodelsdescribethebehavioroftheequipmentfromahostperspective.
Section4—CapabilitiesandScenarios
Thissectionprovidesadetaileddescriptionofthecommunicationscapabilitiesdefinedforsemiconductormanufacturingequipment.Thedescriptionofeachcapabilityincludesthepurpose,definitions,requirements,andscenariosthatshallbesupported.
Section5—DataDefinitions
ThissectionprovidesareferencetotheDataItemDictionaryandVariableItemDictionaryfoundinSEMIStandardE5.ThefirstsubsectionshowsthosedataitemsfromSECS-IIwhichhavebeenrestrictedintheiruse(i.e.,allowedformats).ThesecondsubsectionlistsvariabledataitemsthatareavailabletothehostfordatacollectionandshowsanyrestrictionsontheirSECS-IIdefinitions.
Section6—CollectionEvents
Thissectionprovidesalistofrequiredcollectioneventsandtheirassociateddata.
Section7—SECSMessageSubset
ThissectionprovidesacompositelistoftheSECS-IImessagesrequiredtoimplementallcapabilitiesdefinedintheGEMstandard.
Section8—GEMCompliance
ThissectiondescribesthefundamentalGEMrequirementsandadditionalGEMcapabilitiesandprovidesreferencestoothersectionsofthestandardwheredetailedrequirementsarelocated.Thissectionalsodefinesstandardterminologyanddocumentationthatcanbeusedbyequipmentsuppliersanddevicemanufacturerstodescribecompliancewiththisstandard.
SectionA—ApplicationNotes
Thesesectionsprovideadditionalexplanatoryinformationandexamples.
SectionA.1—FactoryOperationalScript
ThissectionprovidesanoverviewofhowtherequiredSECScapabilitiesmaybeusedinthecontextofatypicalfactoryoperationsequence.Thissectionisorganizedaccordingtothesequenceinwhichactionsaretypicallyperformed.
SectionA.2—EquipmentFrontPanel
Thissectionprovidesguidanceinimplementingtherequiredfrontpanelbuttons,indicators,andswitchesasdefinedinthisdocument.Asummaryofthefrontpanelrequirementsisprovided.
SectionA.3—ExamplesofEquipmentAlarms
Thissectionprovidesexamplesofalarmsrelatedtovariousequipmentconfigurations.
SectionA.4—TraceDataCollectionExample
Thissectionprovidesanexampleoftraceinitializationbythehostandtheperiodictracedatamessagesthatmightbesentbytheequipment.
SectionA.5—HarelNotation
ThissectionexplainsDavidHarel’s“Statechart”notationthatisusedthroughoutthisdocumenttodepictstatemodels.
SectionA.6—ExampleControlModelApplication
Thissectionprovidesoneexampleofahost’sinteractionwithanequipment’scontrolmodel.
SectionA.7—ExamplesofLimitsMonitoring
Thissectioncontainsfourlimitsmonitoringexamplestohelpclarifytheuseoflimitsandtoillustratetypicalapplications.
ApplicableDocuments
SEMIStandards—ThefollowingSEMIstandardsarerelatedtotheGEMstandard.ThespecificportionsofthesestandardsreferencedbyGEMconstituteprovisionsoftheGEMstandard.
SEMIE4—SEMIEquipmentCommunicationsStandard1—MessageTransfer(SECS-I)
SEMIE5—SEMIEquipmentCommunicationsStandard2—MessageContent(SECS-II)
SEMIE13—StandardforSEMIEquipmentCommunicationStandardMessageService(SMS)
SEMIE23—SpecificationforCassetteTransferParallelI/OInterface
OtherReferences
Harel,D.,“Statecharts:AVisualFormalismforComplexSystems,”ScienceofComputerProgramming8(1987)231-2741.
NOTE1:Aslistedorrevised,alldocumentscitedshallbethelatestpublicationsofadoptedstandards.
Definitions
alarm—Analarmisrelatedtoanyabnormalsituationontheequipmentthatmayendangerpeople,equipment,ormaterialbeingprocessed.Suchabnormalsituationsaredefinedbytheequipmentmanufacturerbasedonphysicalsafetylimitations.Equipmentactivitiespotentiallyimpactedbythepresenceofanalarmshallbeinhibited.
Notethatexceedingcontrollimitsassociatedwithprocesstolerancedoesnotconstituteanalarmnordonormalequipmenteventssuchasthestartorcompletionofprocessing.
capabilities—Capabilitiesareoperationsperformedbysemiconductormanufacturingequipment.TheseoperationsareinitiatedthroughthecommunicationsinterfaceusingsequencesofSECS-IImessages(orscenarios).Anexampleofacapabilityisthesettingandclearingofalarms.
collectionevent—Acollectioneventisanevent(orgroupingofrelatedevents)ontheequipmentthatisconsideredtobesignificanttothehost.
communicationfailure—Acommunicationfailureissaidtooccurwhenanestablishedcommunicationslinkisbroken.Suchfailuresareprotocolspecific.Refer
1ElsevierScience,P.O.Box945,NewYork,NY10159-0945,
http://www.elvesier.nl/homepage/browse.htt
totheappropriateprotocolstandard(e.g.,SEMIE4orSEMIE37)foraprotocol-specificdefinitionofcommunicationfailure.
communicationfault—Acommunicationfaultoccurswhentheequipmentdoesnotreceiveanexpectedmessage,orwheneitheratransactiontimeroraconversationtimerexpires.
control—Tocontrolistoexercisedirectinginfluence.
equipmentmodel—Anequipmentmodelisadefinitionbasedoncapabilities,scenarios,andSECS-IImessagesthatmanufacturingequipmentshouldperformtosupportanautomatedmanufacturingenvironment.(SeealsoGenericEquipmentModel.)
event—Aneventisadetectableoccurrencesignificanttotheequipment.
GEMcompliance—Theterm“GEMCompliance”isdefinedwithrespecttoindividualGEMcapabilitiestoindicateadherencetotheGEMstandardforaspecificcapability.Section8includesmoredetailonGEMCompliance.
GenericEquipmentModel—TheGenericEquipmentModelisusedasareferencemodelforanytypeofequipment.Itcontainsfunctionalitythatcanapplytomostequipment,butdoesnotaddressuniquerequirementsofspecificequipment.
host—TheSEMIE4andE5standardsdefineHostas“theintelligentsystemthatcommunicateswiththeequipment.”
messagefault—Amessagefaultoccurswhentheequipmentreceivesamessagethatitcannotprocessbecauseofadefectinthemessage.
operationalscript—Anoperationalscriptisacollectionofscenariosarrangedinasequencetypicalofactualfactoryoperations.Examplesequencesaresysteminitializationpowerup,machinesetup,andprocessing.
operator—Ahumanwhooperatestheequipmenttoperformitsintendedfunction(e.g.,processing).Theoperatortypicallyinteractswiththeequipmentviatheequipmentsuppliedoperatorconsole.
processunit—Aprocessunitreferstothematerialthatistypicallyprocessedasaunitviasingleruncommand,processprogram,etc.Commonprocessunitsarewafers,cassettes,magazines,andboats.
processingcycle—Aprocessingcycleisasequencewhereinallofthematerialcontainedina
typicalprocessunitisprocessed.Thisisoftenusedasameasureofactionortime.
scenario—AscenarioisagroupofSECS-IImessagesarrangedinasequencetoperformacapability.Otherinformationmayalsobeincludedinascenarioforclarity.
SECS-I—SEMIEquipmentCommunicationsStandard1(SEMIE4).ThisstandardspecifiesamethodforamessagetransferprotocolwithelectricalsignallevelsbaseduponEIARS232-C.
SECS-II—SEMIEquipmentCommunicationsStandard2(SEMIE5).Thisstandardspecifiesagroupofmessagesandtherespectivesyntaxandsemanticsforthosemessagesrelatingtosemiconductormanufacturingequipmentcontrol.
SMS—SECSMessageService.AnalternativetoSECS-ItobeusedwhensendingSECS-IIformattedmessagesoveranetwork.
statemodel—AStateModelisacollectionofstatesandstatetransitionsthatcombinetodescribethebehaviorofasystem.Thismodelincludesdefinitionoftheconditionsthatdelineateastate,theactions/reactionspossiblewithinastate,theeventsthattriggertransitionstootherstates,andtheprocessoftransitioningbetweenstates.
systemdefault—Referstostate(s)intheequipmentbehavioralmodelthatareexpectedtobeactiveattheendofsysteminitialization.Italsoreferstothevalue(s)thatspecifiedequipmentvariablesareexpectedtocontainattheendofsysteminitialization.
systeminitialization—Theprocessthatanequipmentperformsatpower-up,systemactivation,and/orsystemreset.Thisprocessisexpectedtopreparetheequipmenttooperateproperlyandaccordingtotheequipmentbehavioralmodels.
user—Ahumanorhumanswhorepresentthefactoryandenforcethefactoryoperationmodel.Auserisconsideredtoberesponsibleformanysetupandconfigurationactivitiesthatcausetheequipmenttobestconformtofactoryoperationspractices.
3StateModels
Thefollowingsectionscontainstatemodelsforsemiconductormanufacturingequipment.Thesestatemodelsdescribethebehavioroftheequipmentfromahostperspectiveinacompactandeasytounderstandformat.Statemodelsfordifferentequipmentwillbeidenticalinsomeareas(e.g.,communications),butmayvaryinotherareas(e.g.,processing).Itisdesirabletodividetheequipmentintoparallelcomponentsthatcan
bemodeledseparatelyandthencombined.AnexampleofacomponentoverviewofanequipmentisprovidedasFigure3.0.
Equipmentmanufacturersmustdocumenttheoperation-albehavioroftheirequipmentusingstatemodelmeth-odology.StatemodelsarediscussedinSections3.1and
A.5andinareferencedarticle.Documentationofastatemodelshallincludethefollowingthreeelements:
Astatediagramshowingthepossiblestatesofthesystemorcomponentsofasystemandallofthepossibletransitionsfromonestatetoanother.Thestatesandtransitionsmusteachbelabeled.UseoftheHarelnotation(seeA.5)isrecommended.
Atransitiontablelistingeachtransition,thebeginningandendstates,whatstimulustriggersthetransition,andanyactionstakenasaresultofthetransition.
Adefinitionofeachstatespecifyingsystembehaviorwhenthatstateisactive.
ExamplesoftheaboveelementsareprovidedinSectionA.5.
Figure3.0
ExampleEquipmentComponentOverview
Thebenefitsofprovidingstatemodelsare:
Statemachinemodelsareausefulspecificationtool,
Ahostsystemcananticipatemachinebehaviorbaseduponthestatemodel,
End-usersandequipmentprogrammershaveacommondescriptionofmachinebehaviorfromwhichtowork,
“Legal”operationscanbedefinedpertainingtoanymachinestate,
Externaleventnotificationscanberelatedtointernalstatetransitions,
Externalcommandscanberelatedtostatetransitions,
Statemodelcomponentsdescribingdifferentaspectsofmachinecontrolcanberelatedtooneanother(example:processingstatemodelwithmaterialtransportstatemodel;processingstatemodelwithinternalmachinesafetysystems).
StateModelMethodology—Todocumenttheexpectedfunctionalityofthevariouscapabilitiesdescribedinthisdocument,the“Statechart”notationdevelopedbyDavidHarelhasbeenadopted.AnarticlebyHarelislistedinSection1.5andshouldbeconsidered“must”readingforafullunderstandingofthenotation.Theconventionusedinthisandfollowingsectionsistodescribethedynamicfunctionalityofacapabilitywiththreeitems:atextualdescriptionofeachstateorsubstatedefined,atablethatdescribesthepossibletransitionsfromonestatetoanother,andagraphicalfigurethatusesthesymbolsdefinedbyHareltoillustratetherelationshipsofthestatesandtransitions.Thecombinationoftheseitemsdefinethestatemodelforasystemorcomponent.AsummaryoftheHarelnotationandamoredetaileddescriptionofthetext,table,andfigureusedtodefinebehaviorwiththismethodologyiscontainedintheApplicationNoteA.5.
Thebasicunitofastatemodelisthestate.Astateisastaticsetofconditions.Iftheconditionsaremet,thestateiscurrent.Theseconditionsmightinvolvesensorreadings,switchpositions,timeofday,etc.Alsopartofastatedefinitionisadescriptionofreactionstospecificstimuli(e.g.,ifmessageSx,Fyisreceived,generatereplymessageSx,Fy+1).StimulimaybequitevariedbutforsemiconductorequipmentwouldincludereceivedSECSmessages,expiredtimers,operatorinputatanequipmentterminal,andchangesinsensorreadings.
Tohelpclarifytheinterpretationofthisdocumentandthestatemodelsdescribedherein,itisusefultodistin-guishbetweenastateandaneventandtherelationshipofonetotheother.Aneventisdynamicratherthanstatic.Itrepresentsachangeinconditions,ormorespecifically,theawarenessofsuchachange.Aneventmightinvolveasensorreadingexceedingalimit,aswitchchangingposition,oratimelimitexceeded.
Achangetoanewactivestate(statetransition)mustalwaysbepromptedbyachangeinconditions,andthusanevent.Inaddition,astatetransitionmayitselfbe
termedanevent.Infact,therearemanyeventsthatmayoccuronanequipment,soitisimportanttoclassifyeventsbasedonwhethertheycanbedetectedandwhethertheyareofinterest.Inthisdocument,thetermeventhasbeenmorenarrowlydefinedasadetectableoccurrencethatissignificanttotheequipment.
Afurthernarrowingofthedefinitionofeventisrepre-sentedbytheterm“collectionevent,”whichisanevent(orgroupofrelatedevents)ontheequipmentthatisconsideredsignificanttothehost.Itistheseeventsthat(ifenabled)arereportedtothehost.Bythisdefinition,thelistofcollectioneventsforanequipmentwouldtyp-icallybeonlyasubsetoftotalevents.Thestatemodelsinthisdocumentareintendedtobelimitedtothelevelofdetailinwhichthehostisinterested.Thus,allstatetransitionsdefinedinthisstandard,unlessotherwisespecified,shallcorrespondtocollectionevents.
CommunicationsStateModel—TheCommunicationsStateModeldefinesthebehavioroftheequipmentinrelationtotheexistenceorabsenceofacommunicationslinkwiththehost.Section4.1expandsonthissectionbydefiningtheEstablishCommunicationscapability.Thismodelpertainstoalogicalconnectionbetweenequipmentandhostratherthanaphysicalconnection.
Terminology—Thetermscommunicationfail-ure,connectiontransactionfailure,andcommunicationlinkaredefinedforusewithinthisdocumentonlyandshouldnotbeconfusedwiththesameorsimilartermsusedelsewhere.
SeeSEMIE4(SECS-I)orSEMIE37(HSMS)foraprotocolspecificdefinitionsofcommunicationsfailure.
Aconnectiontransactionfailureoccurswhenattemptingtoestablishcommunicationsandiscausedby
acommunicationfailure,
thefailuretoreceiveanS1,F14replywithinareplytimeoutlimit,or
receiptofS1,F14thathasbeenimproperlyformattedorwithCOMMACK2notsetto0.
Areplytimeoutperiodbeginsafterthesuccessfultransmissionofacompleteprimarymessageforwhichareplyisexpected.(SeeSEMIE4(SECS-I)
orSEMIE37(HSMS)foraprotocol-specificdefinitionofreplytimeout.)
AcommunicationlinkisestablishedfollowingthefirstsuccessfulcompletionofanyoneS1,F13/F14transactionwithanacknowledgementof“accept”.Theestablishmentofthislinkislogicalratherthanphysical.
Implementationsmayhavemechanismswhichallowoutgoingmessagestobestoredtemporarilypriortobeingsent.Thenounqueueisusedtocoversuchstoredmessages.Theyarequeuedwhenplacedwithinthequeueandaredequeuedbyremovingthemfromthisstorage.
Sendincludes“queuetosend”or“begintheprocessofattemptingtosend”amessage.Itdoesnotimplythesuccessfulcompletionofsendingamessage.
Thehostmayattempttoestablishcommunicationswithequipmentatanytimeduetotheinitializationofthehostorbyindependentdetectionofacommunicationsfailurebythehost.Thus,thehostmayinitiateanS1,F13/F14transactionatanytime.
CommDelayTimer—TheCommDelaytimerrepresentsaninternaltimerusedtomeasuretheintervalbetweenattemptstosendS1,F13.ThelengthofthisintervalisequaltothevalueintheEstablishCommuni-cationsTimeout.TheCommDelaytimerisnotdirectlyvisibletothehost.
EstablishCommunicationsTimeoutistheuser-configur-ableequipmentconstantthatdefinesthedelay,inseconds,betweenattemptstosendS1,F13.ThisvalueisusedtoinitializetheCommDelaytimer.
TheCommDelaytimerisinitializedtobegintiming.TheCommDelaytimerisinitializedonlywhenthestateWAITDELAYisentered.
TheCommDelaytimerisexpiredwhenit“timesout,”andthetimeremainingintheintervalbetweenattemptstosendiszero.WhenthetimerexpiresduringthestateWAITDELAY,ittriggersanewattempttosendS1,F13andthetransitiontothestateWAITCRA3.
Conventions
TheattempttosendS1,F13ismadeonlyupontransitintothestateWAITCRA.TheCommDelayTimershouldbesetto“expired”atthistime.
2EstablishCommunicationsAcknowledgeCode,definedinSection
4.1.SeetheSEMIE5StandardforfurtherdefinitionofthisDataItem.
CRAisthemnemonicdefinedforEstablishCommunicationsRequestAcknowledge(S1,F14).
TheCommDelaytimerisinitializedonlyupontransitint
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025《辦公設(shè)備租賃合同》
- 洗腳房轉(zhuǎn)讓合同范本
- 童車購銷合同范本
- 個(gè)人現(xiàn)金貸款合同范本
- 2025中學(xué)代理商業(yè)助學(xué)貸款借款合同書
- 廣州康大職業(yè)技術(shù)學(xué)院《藏醫(yī)藥學(xué)概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 太原學(xué)院《AutoCAD》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024-2025學(xué)年廣東省肇慶市封開縣初三下學(xué)期第二次大聯(lián)考物理試題試卷含解析
- 2024-2025學(xué)年吉林省梅河口五中等聯(lián)誼校高三第二學(xué)期第一次調(diào)研測(cè)試物理試題含解析
- 四川省成都高新東區(qū)達(dá)標(biāo)名校2024-2025學(xué)年初三4月質(zhì)量檢測(cè)試題物理試題含解析
- 常見惡性心律失常的護(hù)理
- 浙江省杭州市金麗衢十二校2024-2025學(xué)年高三下學(xué)期(3月)第二次聯(lián)考數(shù)學(xué)試題 含解析
- 2025年1月浙江省高考物理試卷(含答案)
- 天然氣站租賃合同
- 2024年貴州貴州烏江煤層氣勘探開發(fā)有限公司招聘筆試真題
- (一模)2025年廣州市普通高中畢業(yè)班綜合測(cè)試(一)生物試卷
- 第二季度營銷計(jì)劃與執(zhí)行方案
- 【公開課】同一直線上二力的合成+課件+2024-2025學(xué)年+人教版(2024)初中物理八年級(jí)下冊(cè)+
- DL∕T 5161.8-2018 電氣裝置安裝工程質(zhì)量檢驗(yàn)及評(píng)定規(guī)程 第8部分:盤、柜及二次回路接線施工質(zhì)量檢驗(yàn)
- (正式版)HGT 22820-2024 化工安全儀表系統(tǒng)工程設(shè)計(jì)規(guī)范
- (2024年)橋梁施工質(zhì)量控制要點(diǎn)
評(píng)論
0/150
提交評(píng)論