2021-2023年高考數(shù)學(xué)真題分類匯編專題18 坐標(biāo)系與參數(shù)方程、不等式選講(解析版)_第1頁
2021-2023年高考數(shù)學(xué)真題分類匯編專題18 坐標(biāo)系與參數(shù)方程、不等式選講(解析版)_第2頁
2021-2023年高考數(shù)學(xué)真題分類匯編專題18 坐標(biāo)系與參數(shù)方程、不等式選講(解析版)_第3頁
2021-2023年高考數(shù)學(xué)真題分類匯編專題18 坐標(biāo)系與參數(shù)方程、不等式選講(解析版)_第4頁
2021-2023年高考數(shù)學(xué)真題分類匯編專題18 坐標(biāo)系與參數(shù)方程、不等式選講(解析版)_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

專題18坐標(biāo)系與參數(shù)方程、不等式選講知識點目錄知識點1:不等式選講之面積問題知識點2:不等式選講之證明不等式、范圍問題知識點3:直角坐標(biāo)方程與極坐標(biāo)方程互化知識點4:SKIPIF1<0的幾何意義近三年高考真題知識點1:不等式選講之面積問題1.(2023?甲卷(文))設(shè)SKIPIF1<0,函數(shù)SKIPIF1<0.(1)求不等式SKIPIF1<0的解集;(2)若曲線SKIPIF1<0與SKIPIF1<0軸所圍成的圖形的面積為2,求SKIPIF1<0.【解析】(1)SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則當(dāng)SKIPIF1<0時,由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,此時SKIPIF1<0,當(dāng)SKIPIF1<0時,由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,此時SKIPIF1<0,綜上SKIPIF1<0,即不等式的解集為SKIPIF1<0,SKIPIF1<0.(2)作出SKIPIF1<0的圖象如圖:則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0的高SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0.2.(2023?乙卷(文))已知SKIPIF1<0.(1)求不等式SKIPIF1<0的解集;(2)在直角坐標(biāo)系SKIPIF1<0中,求不等式組SKIPIF1<0所確定的平面區(qū)域的面積.【解析】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則當(dāng)SKIPIF1<0時,由SKIPIF1<0得SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,此時SKIPIF1<0.當(dāng)SKIPIF1<0時,由SKIPIF1<0得SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,此時SKIPIF1<0.當(dāng)SKIPIF1<0時,由SKIPIF1<0得SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,此時SKIPIF1<0.綜上SKIPIF1<0,即不等式的解集為SKIPIF1<0,SKIPIF1<0.(2)不等式組SKIPIF1<0等價為SKIPIF1<0,作出不等式組對應(yīng)的平面區(qū)域如圖:則SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,則陰影部分的面積SKIPIF1<0.3.(2023?甲卷(理))已知SKIPIF1<0,SKIPIF1<0.(1)解不等式SKIPIF1<0;(2)若曲線SKIPIF1<0與SKIPIF1<0軸所圍成的面積為2,求SKIPIF1<0.【解析】(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0可化為:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0原不等式的解集為SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的對稱軸為SKIPIF1<0,且最低點的坐標(biāo)為SKIPIF1<0令SKIPIF1<0,可得SKIPIF1<0的兩零點分別為SKIPIF1<0和SKIPIF1<0,函數(shù)圖象大致如下:SKIPIF1<0曲線SKIPIF1<0與SKIPIF1<0軸所圍成的面積為SKIPIF1<0,SKIPIF1<0解得SKIPIF1<0.知識點2:不等式選講之證明不等式、范圍問題4.(2022?乙卷(文))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0都是正數(shù),且SKIPIF1<0,證明:(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)證明:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0都是正數(shù),SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立.因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,得證.(2)根據(jù)基本不等式SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立,故得證.5.(2022?甲卷(文))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0均為正數(shù),且SKIPIF1<0,證明:(1)SKIPIF1<0;(2)若SKIPIF1<0,則SKIPIF1<0.【解析】證明:(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0均為正數(shù),且SKIPIF1<0,SKIPIF1<0由柯西不等式知,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0;當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時取等號;(2)法一、由(1)知,SKIPIF1<0且SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,由權(quán)方和不等式可知,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時取等號,故SKIPIF1<0.法二、由(1)知,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0等號成立,SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0等號成立,故SKIPIF1<0.6.(2021?乙卷(文))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求不等式SKIPIF1<0的解集;(2)若SKIPIF1<0,求SKIPIF1<0的取值范圍.【解析】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0不等式的解集為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(2)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,不等式恒成立;當(dāng)SKIPIF1<0時,SKIPIF1<0,不等式SKIPIF1<0兩邊平方可得SKIPIF1<0,解得SKIPIF1<0,綜上可得,SKIPIF1<0的取值范圍是SKIPIF1<0,SKIPIF1<0.知識點3:直角坐標(biāo)方程與極坐標(biāo)方程互化7.(2021?乙卷(文))在直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0的圓心為SKIPIF1<0,半徑為1.(1)寫出SKIPIF1<0的一個參數(shù)方程;(2)過點SKIPIF1<0作SKIPIF1<0的兩條切線.以坐標(biāo)原點為極點,SKIPIF1<0軸正半軸為極軸建立極坐標(biāo)系,求這兩條切線的極坐標(biāo)方程.【解析】(1)SKIPIF1<0的圓心為SKIPIF1<0,半徑為1,則SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0,SKIPIF1<0的一個參數(shù)方程為SKIPIF1<0為參數(shù)).(2)由題意可知兩條切線方程斜率存在,設(shè)切線方程為SKIPIF1<0,即SKIPIF1<0,圓心SKIPIF1<0到切線的距離SKIPIF1<0,解得SKIPIF1<0,所以切線方程為SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,所以這兩條切線的極坐標(biāo)方程為SKIPIF1<0.8.(2022?甲卷(文))在直角坐標(biāo)系SKIPIF1<0中,曲線SKIPIF1<0的參數(shù)方程為SKIPIF1<0為參數(shù)),曲線SKIPIF1<0的參數(shù)方程為SKIPIF1<0為參數(shù)).(1)寫出SKIPIF1<0的普通方程;(2)以坐標(biāo)原點為極點,SKIPIF1<0軸正半軸為極軸建立極坐標(biāo)系,曲線SKIPIF1<0的極坐標(biāo)方程為SKIPIF1<0,求SKIPIF1<0與SKIPIF1<0交點的直角坐標(biāo),及SKIPIF1<0與SKIPIF1<0交點的直角坐標(biāo).【解析】(1)由SKIPIF1<0為參數(shù)),消去參數(shù)SKIPIF1<0,可得SKIPIF1<0的普通方程為SKIPIF1<0;(2)由SKIPIF1<0為參數(shù)),消去參數(shù)SKIPIF1<0,可得SKIPIF1<0的普通方程為SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0,則曲線SKIPIF1<0的直角坐標(biāo)方程為SKIPIF1<0.聯(lián)立SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,SKIPIF1<0與SKIPIF1<0交點的直角坐標(biāo)為SKIPIF1<0,SKIPIF1<0與SKIPIF1<0;聯(lián)立SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,SKIPIF1<0與SKIPIF1<0交點的直角坐標(biāo)為SKIPIF1<0,SKIPIF1<0與SKIPIF1<0.9.(2022?乙卷(文))在直角坐標(biāo)系SKIPIF1<0中,曲線SKIPIF1<0的參數(shù)方程為SKIPIF1<0為參數(shù)).以坐標(biāo)原點為極點,SKIPIF1<0軸正半軸為極軸建立極坐標(biāo)系,已知直線SKIPIF1<0的極坐標(biāo)方程為SKIPIF1<0.(1)寫出SKIPIF1<0的直角坐標(biāo)方程;(2)若SKIPIF1<0與SKIPIF1<0有公共點,求SKIPIF1<0的取值范圍.【解析】(1)由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0的直角坐標(biāo)方程為SKIPIF1<0;(2)由曲線SKIPIF1<0的參數(shù)方程為SKIPIF1<0為參數(shù)).消去參數(shù)SKIPIF1<0,可得SKIPIF1<0,聯(lián)立SKIPIF1<0,得SKIPIF1<0.SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的取值范圍是SKIPIF1<0,SKIPIF1<0.10.(2023?乙卷(文))在直角坐標(biāo)系SKIPIF1<0中,以坐標(biāo)原點SKIPIF1<0為極點,SKIPIF1<0軸正半軸為極軸建立極坐標(biāo)系,曲線SKIPIF1<0的極坐標(biāo)方程為SKIPIF1<0,曲線SKIPIF1<0為參數(shù),SKIPIF1<0.(1)寫出SKIPIF1<0的直角坐標(biāo)方程;(2)若直線SKIPIF1<0既與SKIPIF1<0沒有公共點,也與SKIPIF1<0沒有公共點、求SKIPIF1<0的取值范圍.【解析】(1)曲線SKIPIF1<0的極坐標(biāo)方程為SKIPIF1<0,根據(jù)SKIPIF1<0轉(zhuǎn)換為直角坐標(biāo)方程為SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的直角坐標(biāo)方程為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)由于曲線SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0,曲線SKIPIF1<0為參數(shù),SKIPIF1<0,轉(zhuǎn)換為直角坐標(biāo)方程為SKIPIF1<0,SKIPIF1<0;如圖所示:由于SKIPIF1<0與圓SKIPIF1<0相交于點SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時,直線SKIPIF1<0與曲線SKIPIF1<0沒有公共點;當(dāng)曲線SKIPIF1<0與直線SKIPIF1<0相切時,圓心SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,解得SKIPIF1<0(負(fù)值舍去),由于直線SKIPIF1<0與曲線SKIPIF1<0沒有公共點,所以SKIPIF1<0,故直線SKIPIF1<0既與SKIPIF1<0沒有公共點,也與SKIPIF1<0沒有公共點、實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.知識點4:SKIPIF1<0的幾何意義11.(2023?甲卷(理))已知SKIPIF1<0,直線SKIPIF1<0為參數(shù)),SKIPIF1<0為SKIPIF1<0的傾斜角,SKIPIF1<0與SKIPIF1<0軸,SKIPIF1<0軸正半軸交于SKIPIF1<0,SKIPIF1<0兩點,SKIPIF1<0.(1)求SKIPIF1<0的值;(2)以原點為極點,SKIPIF1<0軸正半軸為極軸建立極坐標(biāo)系,求SKIPIF1<0的極坐標(biāo)方程.【解析】(1)已知SKIPIF1<0,直線SKIPIF1<0為參數(shù)),SKIPIF1<0與SKIPIF1<0軸,SKIPIF1<0軸正半軸交于SKIPIF1<0,SKIPIF1<0兩點,SKIPIF1<0.令SKIPIF1<0,解得SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,由于SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,由于SKIPIF1<0與SKIPIF1<0軸,SKIPIF1<0軸正半軸,所以直線SKIPIF1<0的傾斜角SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.(2)由(1)可知SKIPIF1<0,SKIPIF1<0斜率為SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論