版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省合肥市尚真實驗中學2021年高二數(shù)學理期末試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.如果方程表示焦點在軸上的橢圓,那么實數(shù)的取值范圍是
A.
B.
C.
D.參考答案:D2.已知兩條不重合的直線的傾斜角分別為,給出如下四個命題:
①若∥
②若∥
③若
④若
其中真命題是
(
)A.①③
B.②④
C.②③
D.①②③④參考答案:B略3.用數(shù)學歸納法證明“”時,由的假設證明時,如果從等式左邊證明右邊,則必須證得右邊為(
)
A、
B、
C、
D、參考答案:D略4.若,則1+2+22+23+…+2n-1=(A)2n-1-1
(B)2n-1
(C)
(D)參考答案:B略5.數(shù)列1,3,7,15,…的通項公式等于(
)A.
B.
C.
D.參考答案:C6.直線y=x-3與拋物線y2=4x交于A、B兩點,過A、B兩點向拋物線的準線作垂線,垂足分別為P、Q,則梯形APQB的面積為
()(A).72
(B).56
(C).64
(D).48參考答案:D7.圓在點處的切線方程為(
)A.
B.
C.
D.參考答案:D
解析:的在點處的切線方程為8.已知過雙曲線的右焦點且傾斜角為的直線僅與雙曲線的右支有一個交點,則雙曲線的離心率的取值范圍是(
)
A.
B.
C.
D.參考答案:A9.三個共面向量、、兩兩所成的角相等,且,,,則
等于(
)A.
B.6
C.或6
D.3或6參考答案:C略10.如圖為函數(shù)f(x)=x3+bx2+cx+d的大致圖象,則x12+x22=
▲
。參考答案:略二、填空題:本大題共7小題,每小題4分,共28分11.命題“任取x∈R,x2-2x+4≤0”的否定為________.參考答案:存在x0∈R,x-2x0+4>0略12.拋物線的弦軸,若,則焦點F到直線AB的距離為
。參考答案:2略13.如圖所示是一算法的偽代碼,執(zhí)行此算法時,輸出的結果
是
.(注:“”也可寫成“”或“”,均表示賦值語句)參考答案:略14.如圖給出的是計算的值的一個程序框圖,則判斷框內應填入的條件是________.參考答案:i≤1007或i<1008略15.已知兩個正數(shù),的等差中項為,等比中項為,且,則橢圓的離心率為
.參考答案:16.設是定義在R上的奇函數(shù),且當時,,若對任意的,不等式恒成立,則實數(shù)t的取值范圍是___________.參考答案:【分析】根據(jù)奇函數(shù)的定義求出函數(shù)的解析式,可得,可將對任意的均成立轉化為對任意的恒成立,即可求解.【詳解】由題意得:當時,,所以是上的增函數(shù)且為奇函數(shù),的解析式為.由題意得成立,從而原不等式等價于對任意的均成立,即對任意的恒成立∴對恒成立∴.【點睛】本題主要考查利用奇函數(shù)求解析式的方法.解答本題的關鍵是利用轉化思想,將對任意的均成立轉化為對任意的恒成立.17.設{an}是由正數(shù)組成的等比數(shù)列,Sn為其前n項和.已知a2a4=1,S3=7,則S5=________.參考答案:三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.某校在一次趣味運動會的頒獎儀式上,高一、高二、高三各代表隊人數(shù)分別為120人、120人、n人.為了活躍氣氛,大會組委會在頒獎過程中穿插抽獎活動,并用分層抽樣的方法從三個代表隊中共抽取20人在前排就坐,其中高二代表隊有6人.(1)求n的值;(2)把在前排就坐的高二代表隊6人分別記為a,b,c,d,e,f,現(xiàn)隨機從中抽取2人上臺抽獎.求a和b至少有一人上臺抽獎的概率.(3)抽獎活動的規(guī)則是:代表通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的均勻隨機數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎”,則該代表中獎;若電腦顯示“謝謝”,則不中獎,求該代表中獎的概率.參考答案:【考點】程序框圖;古典概型及其概率計算公式;幾何概型.【分析】(1)根據(jù)分層抽樣可得,故可求n的值;(2)求出高二代表隊6人,從中抽取2人上臺抽獎的基本事件,確定a和b至少有一人上臺抽獎的基本事件,根據(jù)古典概型的概率公式,可得a和b至少有一人上臺抽獎的概率;(3)確定滿足0≤x≤1,0≤y≤1點的區(qū)域,由條件得到的區(qū)域為圖中的陰影部分,計算面積,可求該代表中獎的概率.【解答】解:(1)由題意可得,∴n=160;(2)高二代表隊6人,從中抽取2人上臺抽獎的基本事件有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b.f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)共15種,其中a和b至少有一人上臺抽獎的基本事件有9種,∴a和b至少有一人上臺抽獎的概率為=;(3)由已知0≤x≤1,0≤y≤1,點(x,y)在如圖所示的正方形OABC內,由條件得到的區(qū)域為圖中的陰影部分由2x﹣y﹣1=0,令y=0可得x=,令y=1可得x=1∴在x,y∈[0,1]時滿足2x﹣y﹣1≤0的區(qū)域的面積為=∴該代表中獎的概率為=.19.(本小題13分)已知雙曲線的弦AB過以P(-8,-10)為中點,(1)求直線AB的方程.(2)若O為坐標原點,求三角形OAB的面積.參考答案:(1)設A(),B(),則,.......(2分)又,,可得,.......(4分)而直線過P,所以AB的方程為,經(jīng)檢驗此方程滿足條件。,.......(7分)(2)O點到AB的距離為,.......(11分)所以所求面積為20........(13分)20.為了讓學生了解更多“奧運會”知識,某中學舉行了一次“奧運知識競賽”,共有800名學生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計.請你根據(jù)尚未完成并有局部污損的頻率分布表,解答下列問題:(1)若用系統(tǒng)抽樣的方法抽取50個樣本,現(xiàn)將所有學生隨機地編號為000,001,002,…,799,試寫出第二組第一位學生的編號;(2)填充頻率分布表的空格(將答案直接填在表格內),并作出頻率分布直方圖;(3)若成績在85.5~95.5分的學生為二等獎,問參賽學生中獲得二等獎的學生約為多少人?參考答案:解:(1)編號為016;
(2)分組頻數(shù)頻率60.5~70.580.1670.5~80.5100.2080.5~90.5180.3690.5~100.5140.28合計501
(3)在被抽到的學生中獲二獎的人數(shù)是9+7=16人,占樣本的比例是,即獲二等獎的概率約為32%,所以獲二等獎的人數(shù)估計為800×32%=256人。答:獲二等獎的大約有256人
略21.(本題12分)已知函數(shù)是定義在R上的偶函數(shù),當時,,(1)求函數(shù)的解析式;(2)求的值;(3)若,求實數(shù)的值.參考答案:(本題12分)解:(1)當時,有又是定義在R上的偶函數(shù),所求函數(shù)的解析式是(2),(3)當時,由得,當時,由得,綜上可得所求實數(shù)的值為略22.2008年奧運會在中國舉行,某商場預計2008年從1日起前x個月,顧客對某種奧運商品的需求總量p(x)件與月份x的近似關系是且x≤12),該商品的進價q(x)元與月份x的近似關系是q(x)=150+2x,(x∈N*且x≤12). (1)寫出今年第x月的需求量f(x)件與月份x的函數(shù)關系式; (2)該商品每件的售價為185元,若不計其他費用且每月都能滿足市場需求,則此商場今年銷售該商品的月利潤預計最大是多少元? 參考答案:【考點】根據(jù)實際問題選擇函數(shù)類型. 【專題】應用題. 【分析】(1)由題意可得,第x個月的需求量等于第x個月的需求總量減去第x﹣1個月的需求總量,故當x=1時,f(1)=p(1),當2≤x≤12時,f(x)=p(x)﹣P(x﹣1); (2)根據(jù)月利潤=該商品每件的利潤×月銷售量,列出關系式,再利用導數(shù)求最值求解即可. 【解答】解:(1)當x=1時,f(1)=p(1)=37.(2分) 當2≤x≤12時,且x≤12)(5分) 驗證x=1符合f(x)=﹣3x2+40x,∴f(x)=﹣3x2+40x(x∈N*且x≤12).該商場預計銷售該商品的月利潤為g(x)=(﹣3x2+40x)(185﹣150﹣2x)=6x3﹣185x2+1400x,(x∈N*且x≤12), 令h(x)=6x3﹣185x2+1400x(1≤x≤12),h'(x)=18x2﹣370x+1400
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年小鱗片式鏈條爐排項目可行性研究報告
- 2024專利權轉讓的合同范本
- 2024裝修承包合同書范本
- 2024微信小程序開發(fā)服務合同
- 2024《采礦權出讓合同》
- 課程設計在哪個網(wǎng)站找
- 配油盤課程設計熱赤露
- 煉鐵過程中的濕法除塵技術研究考核試卷
- 旅游景區(qū)安全管理講座考核試卷
- 2024年白糖物流責任與義務協(xié)議樣本版
- 臨床病理診斷報告管理制度
- 小學英語教師專業(yè)發(fā)展計劃6篇
- CATTI漢英詞匯手冊
- 《無人機法律法規(guī)知識》課件-第1章 民用航空法概述
- GB/Z 44306-2024顆粒質量一致性評價指南
- 大健康產(chǎn)業(yè)互聯(lián)網(wǎng)醫(yī)療服務創(chuàng)新方案設計
- 幼兒家庭教育(山東聯(lián)盟)智慧樹知到答案2024年青島濱海學院
- 2024年安全工程師考試真題及答案
- 公開課課件-《大氣的組成和垂直分層》
- 三年級上冊多位數(shù)乘一位數(shù)豎式計算練習200道及答案
- 三個和尚幼兒故事課件
評論
0/150
提交評論