數(shù)學:第11章全等三角形復習課件(人教新課標八年級上)_第1頁
數(shù)學:第11章全等三角形復習課件(人教新課標八年級上)_第2頁
數(shù)學:第11章全等三角形復習課件(人教新課標八年級上)_第3頁
數(shù)學:第11章全等三角形復習課件(人教新課標八年級上)_第4頁
數(shù)學:第11章全等三角形復習課件(人教新課標八年級上)_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

全等三角形(復習)一.全等三角形:1:什么是全等三角形?一個三角形經(jīng)過哪些變化可以得到它的全等形?2:全等三角形有哪些性質(zhì)?能夠完全重合的兩個三角形叫做全等三角形。一個三角形經(jīng)過平移、翻折、旋轉(zhuǎn)可以得到它的全等形。(1):全等三角形的對應邊相等、對應角相等。(2):全等三角形的周長相等、面積相等。(3):全等三角形的對應邊上的對應中線、角平分線、高線分別相等。知識回顧:一般三角形

全等的條件:1.定義(重合)法;2.SSS;3.SAS;4.ASA;5.AAS.直角三角形全等特有的條件:HL.包括直角三角形不包括其它形狀的三角形解題中常用的4種方法回顧知識點:邊邊邊:三邊對應相等的兩個三角形全等(可簡寫成“SSS”)邊角邊:兩邊和它們的夾角對應相等兩個三角形全等(可簡寫成“SAS”)角邊角:兩角和它們的夾邊對應相等的兩個三角形全等(可簡寫成“ASA”)角角邊:兩角和其中一角的對邊對應相等的兩個三角形全等(可簡寫成“AAS”)斜邊.直角邊:斜邊和一條直角邊對應相等的兩個直角三角形全等(可簡寫成“HL”)方法指引證明兩個三角形全等的基本思路:(1):已知兩邊----

找第三邊(SSS)找夾角(SAS)(2):已知一邊一角---已知一邊和它的鄰角找是否有直角(HL)已知一邊和它的對角找這邊的另一個鄰角(ASA)找這個角的另一個邊(SAS)找這邊的對角(AAS)找一角(AAS)已知角是直角,找一邊(HL)(3):已知兩角---找兩角的夾邊(ASA)找夾邊外的任意邊(AAS)練習角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上。用法:

QD⊥OA,QE⊥OB,QD=QE.∴點Q在∠AOB的平分線上.角的平分線上的點到角的兩邊的距離相等.用法:∵

QD⊥OA,QE⊥OB,點Q在∠AOB的平分線上∴QD=QE二.角的平分線:1.角平分線的性質(zhì):2.角平分線的判定:1、如圖:在△ABC中,∠C=900,AD平分∠

BAC,DE⊥AB交AB于E,BC=30,BD:CD=3:2,則DE=

。12cABDE三.練習:2.如圖,△ABC的角平分線BM,CN相交于點P,

求證:點P到三邊AB、BC、CA的距離相等∵BM是△ABC的角平分線,點P在BM上,ABCPMNDEF∴PD=PE

(角平分線上的點到這個角的兩邊距離相等).同理,PE=PF.∴PD=PE=PF.即點P到三邊AB、BC、CA的距離相等證明:過點P作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F3.如圖,已知△ABC的外角∠CBD和∠BCE的平分線相交于點F,求證:點F在∠DAE的平分線上.證明:過點F作FG⊥AE于G,F(xiàn)H⊥AD于H,F(xiàn)M⊥BC于MGHM∵點F在∠BCE的平分線上,F(xiàn)G⊥AE,F(xiàn)M⊥BC∴FG=FM又∵點F在∠CBD的平分線上,F(xiàn)H⊥AD,F(xiàn)M⊥BC∴FM=FH∴FG=FH∴點F在∠DAE的平分線上4.已知,△ABC和△ECD都是等邊三角形,且點B,C,D在一條直線上求證:BE=AD

EDCAB變式:以上條件不變,將△ABC繞點C旋轉(zhuǎn)一定角度(大于零度而小于六十度),以上的結(jié)論海成立嗎?證明:∵△ABC和△ECD都是等邊三角形∴AC=BCDC=EC∠BCA=∠DCE=60°∴∠BCA+∠ACE=∠DCE+∠ACE即∠BCE=∠DCA在△ACD和△BCE中

AC=BC∠BCE=∠DCADC=EC∴△ACD≌△BCE(SAS)∴BE=AD5:如圖,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD嗎?為什么?4321EDCBA解:AC=AD理由:在△EBC和△EBD中∠1=∠2∠3=∠4EB=EB∴△EBC≌△EBD(AAS)∴BC=BD在△ABC和△ABD中

AB=AB

∠1=∠2BC=BD∴△ABC≌△ABD(SAS)

∴AC=AD練習6:如圖,已知,AB∥DE,AB=DE,AF=DC。請問圖中有那幾對全等三角形?請任選一對給予證明。FEDCBA答:△ABC≌△DEF證明:∵AB∥DE∴∠A=∠D∵AF=DC∴AF+FC=DC+FC∴AC=DF在△ABC和△DEF中

AC=DF

∠A=∠DAB=DE∴△ABC≌△DEF(SAS)練習7:如圖,已知,EG∥AF,請你從下面三個條件中,再選出兩個作為已知條件,另一個作為結(jié)論,推出一個正確的命題。(只寫出一種情況)①AB=AC②DE=DF③BE=CF

已知:EG∥AF

求證:GFEDCBA高拓展題8.如圖,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求證:BC∥EFBCAFED拓展題9.如圖,已知AC∥BD,EA、EB分別平分∠CAB和∠DBA,CD過點E,則AB與AC+BD相等嗎?請說明理由。ACEBD要證明兩條線段的和與一條線段相等時常用的兩種方法:1、可在長線段上截取與兩條線段中一條相等的一段,然后證明剩余的線段與另一條線段相等。(割)2、把一個三角形移到另一位置,使兩線段補成一條線段,再證明它與長線段相等。(補)10.如圖:在四邊形ABCD中,點E在邊CD上,連接AE、BE并延長AE交BC的延長線于點F,給出下列5個關(guān)系式::①AD∥BC,②,DE=EC③∠1=∠2,④∠3=∠4,⑤AD+BC=AB。將其中三個關(guān)系式作為已知,另外兩個作為結(jié)論,構(gòu)成正確的命題。請用序號寫出兩個正確的命題:(書寫形式:如果……那么……)(1)

;(2)

;總結(jié)提高學習全等三角形應注意以下幾個問題:(1):要正確區(qū)分“對應邊”與“對邊”,“對應角”與“對角”的不同含義;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論