下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年內(nèi)蒙古自治區(qū)錫林郭勒盟單招數(shù)學(xué)一模測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.等差數(shù)列{an}的前5項(xiàng)和為5,a2=0則數(shù)列的公差為()
A.1B.2C.3D.4
2.已知A(1,1),B(-1,0),C(3,-1)三點(diǎn),則向量AB*向量AC=()
A.-6B.-2C.2D.3
3.函數(shù)f(x)=x2-2x-3()
A.在(-∞,2)內(nèi)為增函數(shù)
B.在(-∞,1)內(nèi)為增函數(shù)
C.在(1,+∞)內(nèi)為減函數(shù)
D.在(1,+∞)內(nèi)為增函數(shù)
4.log??1000等于()
A.1B.2C.3D.4
5.下列函數(shù)中既是奇函數(shù)又是增函數(shù)的是()
A.y=2xB.y=2xC.y=x2/2D.y=-x/3
6.sin300°=()
A.1/2B.√2/2C.√3/2D.6/Π
7.“x>0”是“x≠0”的()
A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件
8.設(shè)集合A={1,2,3},B={1,2,4}則A的∪B=()
A.{1,2}B.{1,2,3}C.{1,2,4}D.{1,2,3,4}
9.“|x-1|<2成立”是“x(x-3)<0成立”的(
)
A.充分而不必要條件B.充分而不必要條件C.充分必要條件D.既不充分也不必要條件
10.函數(shù)y=4sin2x(x∈R)的最小值是()
A.?4B.?1C.0D.4
11.函數(shù)y=4x2的單調(diào)遞增區(qū)間是().
A.(0,+∞)B.(1/2,+∞)C.(-∞,0)D.(-∞,-1/2)
12.函數(shù)f(x)=(√x)2的定義域是()
A.RB.(-∞,0)U(0,+∞)C.(0,+∞)D.[0,+∞)
13.log?64-log?16等于()
A.1B.2C.4D.8
14.在空間中,直線與平面的位置關(guān)系是()
A.平行B.相交C.直線在平面內(nèi)D.平行、相交或直線在平面內(nèi)
15.已知α為第二象限角,sinα=3/5,則sin2α=()
A.-24/25B.-12/25C.12/25D.24/25
16.不等式|4x+2|>10的解集為()
A.{x|-3
B.{x|-3
C.{x|x<-2或x3}
D.{x|x<-3或x2}
17.已知點(diǎn)A(-2,2),B(1,5),則線段AB的中點(diǎn)坐標(biāo)為()
A.(-1,7)B.(3/2,3/2)C.(-3/2,-3/2)D.(-1/2,7/2)
18.已知角α的終邊上一點(diǎn)P(-3,4),則cosα的值為()
A.3/5B.4/5C.-3/5D.-4/5
19.10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)是15,17,14,10,15,17,17,16,14,12.設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有().
A.a>b>cB.b>c>aC.c>a>bD.c>b>a
20.在△ABC中,若A=60°,B=45°,BC=3√2,則AC=()
A.4√3B.2√3C.√3D.√3/2
參考答案
1.AS5=(a1+a5)/2=5,a1+a5=2,即2a3=2,a3=1,公差d=a3-a2=1-0=1.考點(diǎn):等差數(shù)列求公差.
2.BAB=(-1,0)-(1,1)=(-2,-1),AC=(3,-1)-(1,1)=(2,-2),AB*AC=(-2)*2+(-1)′*(-2)=-2考點(diǎn):平面向量數(shù)量積.
3.D
4.C
5.Ay=2x既是增函數(shù)又是奇函數(shù);y=1/x既是減函數(shù)又是奇函數(shù);y=1/2x2是偶函數(shù),且在(-∞,0)上為減函數(shù),在[0,+∞)上為增函數(shù);y=-x/3既是減函數(shù)又是奇函數(shù),故選A.考點(diǎn):函數(shù)的奇偶性.感悟提高:對(duì)常見的一次函數(shù)、二次函數(shù)、反比例函數(shù),可根據(jù)圖像的特點(diǎn)判斷其單調(diào)性;對(duì)于函數(shù)的奇偶性,則可依據(jù)其定義來判斷。首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,如果定義域不關(guān)于原點(diǎn)對(duì)稱,則函數(shù)不具有奇偶性;如果定義域關(guān)于原點(diǎn)對(duì)稱,再判斷f(-x)=f(x)(偶函數(shù));f(-x)=-f(x)(奇函數(shù))
6.Asin300°=1/2考點(diǎn):特殊角度的三角函數(shù)值.
7.A[答案]A[解析]講解:邏輯判斷題,x>0肯定x≠0,但x≠0不一定x>0,所以是充分不必要條件
8.D
9.B[解析]講解:解不等式,由|x-1|<2得x?(-1,3),由x(x-3)<0得x?(0,3),后者能推出前者,前者推不出后者,所以是必要不充分條件。
10.A[解析]講解:正弦函數(shù)圖像的考察,正弦函數(shù)的最值是1和-1,所以4sin2x最小值為-4,選A
11.A[解析]講解:二次函數(shù)的考察,函數(shù)對(duì)稱軸為y軸,則單調(diào)增區(qū)間為(0,+∞)
12.D因?yàn)槎胃絻?nèi)的數(shù)要求大于或等于0,所以x≥0,即定義域?yàn)閇0,+∞),選D.考點(diǎn):函數(shù)二次根式的定義域
13.A
14.D
15.A因?yàn)棣翞榈诙笙藿?,故cosα<0而sinα=3/5,cosα=-√1-sin2α=-4/5,所以sin2α=2sinαcosα=-24/25,故選A.考點(diǎn):同角三角函數(shù)求值.感悟提高:已知sina或cosa,求sina或cosa時(shí),注意a的象限,確定所求三角函數(shù)的符合,再開方.
16.D|4x+2|>10=>4x+2>10或4x+2<-10,解不等式為x>2或x<3,所以解集為{x|x<-3或x>2.考點(diǎn):絕對(duì)值不等式求解集.
17.D考點(diǎn):中點(diǎn)坐標(biāo)公式應(yīng)用.
18.C
19.D[答
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024物流金融、信用保險(xiǎn)服務(wù)合同
- 2025年度市政道路改造工程設(shè)計(jì)與施工總承包合同書3篇
- 2025年IDC機(jī)房租賃合同及網(wǎng)絡(luò)安全評(píng)估協(xié)議3篇
- 二零二五版金融租賃合同抵押擔(dān)保與租賃資產(chǎn)處置協(xié)議2篇
- 2025廠房升級(jí)改造與設(shè)備更新一體化合同3篇
- 2024跨區(qū)域綠色能源開發(fā)與合作框架合同
- 2025版韻達(dá)快遞業(yè)務(wù)承包及運(yùn)營合同3篇
- 幼兒園2025年度綠化維護(hù)服務(wù)合同2篇
- 二零二五年房車托管與戶外運(yùn)動(dòng)俱樂部合作合同3篇
- 個(gè)人二手手機(jī)買賣合同(2024版)2篇
- 【傳媒大學(xué)】2024年新營銷
- 乳腺癌的綜合治療及進(jìn)展
- 【大學(xué)課件】基于BGP協(xié)議的IP黑名單分發(fā)系統(tǒng)
- 2025屆廣東省佛山市高三上學(xué)期普通高中教學(xué)質(zhì)量檢測(cè)(一模)英語試卷(無答案)
- 自身免疫性腦炎課件
- 人力資源管理各崗位工作職責(zé)
- 信陽農(nóng)林學(xué)院《新媒體傳播學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024建筑公司年終工作總結(jié)(32篇)
- 信息安全意識(shí)培訓(xùn)課件
- 2024年項(xiàng)目投資計(jì)劃書(三篇)
- 配電安規(guī)課件
評(píng)論
0/150
提交評(píng)論