版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
開(kāi)關(guān)電源控制環(huán)設(shè)計(jì)原理(完整版)實(shí)用資料(可以直接使用,可編輯完整版實(shí)用資料,歡迎下載)
開(kāi)關(guān)電源控制環(huán)設(shè)計(jì)原理開(kāi)關(guān)電源控制環(huán)設(shè)計(jì)原理(完整版)實(shí)用資料(可以直接使用,可編輯完整版實(shí)用資料,歡迎下載)譯者:smartway時(shí)間:2021-11-26664次閱讀【網(wǎng)友評(píng)論0條我要評(píng)論】
收藏電源網(wǎng)訊開(kāi)關(guān)電源控制環(huán)設(shè)計(jì)1.緒論在開(kāi)關(guān)模式的功率轉(zhuǎn)換器中,功率開(kāi)關(guān)的導(dǎo)通時(shí)間是根據(jù)輸入和輸出電壓來(lái)調(diào)節(jié)的。因而,功率轉(zhuǎn)換器是一種反映輸入與輸出的變化而使其導(dǎo)通時(shí)間被調(diào)制的獨(dú)立控制系統(tǒng)。由于理論近似,控制環(huán)的設(shè)計(jì)往往陷入復(fù)雜的方程式中,使開(kāi)關(guān)電源的控制設(shè)計(jì)面臨挑戰(zhàn)并且常常走入誤區(qū)。下面幾頁(yè)將展示控制環(huán)的簡(jiǎn)單化近似分析,首先大體了解開(kāi)關(guān)電源系統(tǒng)中影響性能的各種參數(shù)。給出一個(gè)實(shí)際的開(kāi)關(guān)電源作為演示以表明哪些器件與設(shè)計(jì)控制環(huán)的特性有關(guān)。測(cè)試結(jié)果和測(cè)量方法也包含在其中。
2.基本控制環(huán)概念2.1傳輸函數(shù)和博得圖系統(tǒng)的傳輸函數(shù)定義為輸出除以輸入。它由增益和相位因素組成并可以在博得圖上分別用圖形表示。整個(gè)系統(tǒng)的閉環(huán)增益是環(huán)路里各個(gè)部分增益的乘積。在博得圖中,增益用對(duì)數(shù)圖表示。因?yàn)閮蓚€(gè)數(shù)的乘積的對(duì)數(shù)等于他們各自對(duì)數(shù)的和,他們的增益可以畫(huà)成圖相加。系統(tǒng)的相位是整個(gè)環(huán)路相移之和。2.2極點(diǎn)數(shù)學(xué)上,在傳輸方程式中,當(dāng)分母為零時(shí)會(huì)產(chǎn)生一個(gè)極點(diǎn)。在圖形上,當(dāng)增益以20dB每十倍頻的斜率開(kāi)始遞減時(shí),在博得圖上會(huì)產(chǎn)生一個(gè)極點(diǎn)。圖1舉例說(shuō)明一個(gè)低通濾波器通常在系統(tǒng)中產(chǎn)生一個(gè)極點(diǎn)。其傳輸函數(shù)和博得圖也一并給出。
2.3零點(diǎn)零點(diǎn)是頻域范圍內(nèi)的傳輸函數(shù)當(dāng)分子等于零時(shí)產(chǎn)生的。在博得圖中,零點(diǎn)發(fā)生在增益以20dB每十倍頻的斜率開(kāi)始遞增的點(diǎn),并伴隨有90度的相位超前。圖2描述一個(gè)由高通濾波器電路引起的零點(diǎn)。
存在第二種零點(diǎn),即右半平面零點(diǎn),它引起相位滯后而非超前。伴隨著增益遞增,右半平面零點(diǎn)引起90度的相位滯后。右半平面零點(diǎn)經(jīng)常出現(xiàn)于BOOST和BUCK-BOOST轉(zhuǎn)換器中,所以,在設(shè)計(jì)反饋補(bǔ)償電路的時(shí)候要非常警惕,以使系統(tǒng)的穿越頻率大大低于右半平面零點(diǎn)的頻率。右半平面零點(diǎn)的博得圖見(jiàn)圖3。3.0開(kāi)關(guān)電源的理想增益相位圖設(shè)計(jì)任何控制系統(tǒng)首先必須清楚地定義出目標(biāo)。通常,這個(gè)目標(biāo)是建立一個(gè)簡(jiǎn)單的博得圖以達(dá)到最好的系統(tǒng)動(dòng)態(tài)響應(yīng),最緊密的線性和負(fù)載調(diào)節(jié)率和最好的穩(wěn)定性。理想的閉環(huán)博得圖應(yīng)該包含三個(gè)特性:足夠的相位裕量,寬的帶寬,和高增益。高的相位裕量能阻尼振蕩并縮短瞬態(tài)調(diào)節(jié)時(shí)間。寬的帶寬允許電源系統(tǒng)快速響應(yīng)線性和負(fù)載的突變。高的增益保證良好的線性和負(fù)載調(diào)節(jié)率。3.1相位裕量參看圖4,相位裕量是在穿越頻率處相位高于0度的數(shù)量。這不同于大多數(shù)控制系統(tǒng)教科書(shū)里提出的從-180度開(kāi)始測(cè)量相位裕量。其中包括DC負(fù)反饋所提供的180度初始相移。在實(shí)際測(cè)量中,這180度相移在DC處被補(bǔ)償并允許相位裕量從0度開(kāi)始測(cè)量。根據(jù)奈奎斯特穩(wěn)定性判據(jù),當(dāng)系統(tǒng)的相位裕量大于0度時(shí),此系統(tǒng)是穩(wěn)定的。然而,有一個(gè)邊界穩(wěn)定區(qū)域存在,此處(指邊界穩(wěn)定區(qū),譯注),系統(tǒng)由于瞬態(tài)響應(yīng)引起振蕩到經(jīng)過(guò)一個(gè)長(zhǎng)的調(diào)節(jié)時(shí)間最終穩(wěn)定下來(lái)。如果相位裕量小于45度,則系統(tǒng)在邊界穩(wěn)定。當(dāng)相位裕量超過(guò)45度時(shí),能提供最好的動(dòng)態(tài)響應(yīng),短的調(diào)節(jié)時(shí)間和最少過(guò)沖。3.2增益帶寬增益帶寬是指單位增益時(shí)的頻率,見(jiàn)圖4,增益帶寬就是穿越頻率Fcs。最大穿越頻率的主要限制因素是電源的開(kāi)關(guān)頻率。根據(jù)采樣定理,如果采樣頻率小于2倍信號(hào)頻率(更嚴(yán)謹(jǐn)一點(diǎn)的說(shuō)法是應(yīng)該小于2倍最大信號(hào)頻率,譯注),則被采樣的信息就不能被完全讀取。在開(kāi)關(guān)電源中,開(kāi)關(guān)頻率可以從輸出紋波中看得出來(lái),它是錯(cuò)誤的信息,并且必須不被控制環(huán)路所傳遞。因此,系統(tǒng)的穿越頻率必須小于開(kāi)關(guān)頻率的一半,否則,開(kāi)關(guān)噪聲和紋波會(huì)扭曲輸出電壓中想要得到的信息,并導(dǎo)致系統(tǒng)不穩(wěn)定。3.3增益高的系統(tǒng)增益對(duì)于保證好的線性和負(fù)載調(diào)節(jié)率提供重要貢獻(xiàn)。它能夠使PWM比較器在響應(yīng)輸入輸出電壓的變化時(shí)精確地改變電源開(kāi)關(guān)的占空比,通常,需要在決定高增益和低相位裕量之間做出權(quán)衡。4.實(shí)際設(shè)計(jì)分析舉例用經(jīng)典環(huán)路控制分析方法,開(kāi)關(guān)調(diào)整器的控制環(huán)分為四個(gè)主要部分:輸出濾波器,PWM電路,誤差放大器補(bǔ)償和反饋。圖5用方塊圖舉例說(shuō)明這四部分,圖6舉例說(shuō)明一個(gè)開(kāi)關(guān)電源電路圖。
首先,輸出電壓被反饋網(wǎng)絡(luò)降壓,然后把這個(gè)反饋電壓送入誤差放大器,使之與基準(zhǔn)電壓相比較而產(chǎn)生一個(gè)誤差電壓信號(hào)。脈寬調(diào)制部分拾取這個(gè)誤差電壓并且把它與功率變壓器的電流相比較并轉(zhuǎn)化為合適的占空比去控制輸出部分功率脈沖調(diào)制的數(shù)量。輸出濾波器部分使來(lái)自于功率變壓器的斬波電壓或電流平滑,使反饋控制環(huán)完善。下面確定每一部分的增益和相位,并把他們聯(lián)合起來(lái)形成系統(tǒng)的傳輸函數(shù)和系統(tǒng)的增益相位點(diǎn)。4.1反饋網(wǎng)絡(luò)H(s)反饋網(wǎng)絡(luò)把輸出電壓降到誤差放大器參考電壓的水平,其傳輸式按簡(jiǎn)單的電阻分壓式得到:4.2輸出濾波部分G1(S)在電流模式控制系統(tǒng)中,輸出電流被調(diào)節(jié)以達(dá)到目標(biāo)的輸出電壓。輸出濾波部分把脈動(dòng)的輸出電流轉(zhuǎn)換為目標(biāo)輸出電壓。小信號(hào)分析得到:輸出電容的ESR和反饋網(wǎng)絡(luò)的電阻(R1+R2=RFB)反映出輸出濾波器傳輸函數(shù)的特性。圖7的電路分析給出ESR和RSENSE的影響。傳輸函數(shù)G1(S)給出RFB的初始低頻增益。這個(gè)增益在fPOLE=1/2*π*(RFB+ESR)*C處開(kāi)始滾降,并在fZERO=1/2*π*ESR*C變?yōu)樗?。G1(S)的博得圖見(jiàn)圖8。4.3PWM電路部分G2(S)光耦電路把誤差放大網(wǎng)路產(chǎn)生的誤差信號(hào)傳輸?shù)街鬟?。AS3842PWM電路把這個(gè)誤差電壓與通過(guò)主邊功率變壓器的電流進(jìn)行比較。然后功率場(chǎng)效應(yīng)管的占空比被調(diào)制,以提供足夠的電流到副邊來(lái)維持想要的輸出。光耦的小信號(hào)傳輸函數(shù)是與光耦的電流傳輸比成比例的固定增益。R5(原文誤為R6,式5一并改為R5,譯注)是與光耦的二極管串聯(lián)的限流電阻,并且是AS3842誤差放大器的輸出阻抗(此句應(yīng)該理解為R5是這個(gè)AS3842開(kāi)關(guān)電源電路中,誤差放大器部分的輸出阻抗,譯注)。這一點(diǎn)在應(yīng)用文檔“SecondaryerroramplifierwiththeAS431”中有深入的闡述。從誤差放大器的輸出到AS3842的COMP腳的傳輸函數(shù)是:VCATHODE是AS431的陰極電壓,也就是誤差補(bǔ)償放大器的輸出電壓。CTR是光耦的電流傳輸比。R5(原文為R6,譯注)是與光耦的二極管串聯(lián)的限流電阻。RCOMP是AS3842的COMP腳當(dāng)其試圖拉電流超過(guò)它的最大輸出電流時(shí)的輸出阻抗。當(dāng)誤差信號(hào)傳遞到補(bǔ)償腳以后,將其與電流檢測(cè)信號(hào)比較。圖9表示一個(gè)電流檢測(cè)比較器和開(kāi)關(guān)部分的簡(jiǎn)單框圖:在閉環(huán)系統(tǒng)中,VCOMP與ISENSE維持同樣的電平。因此,IPRIMARY被VCOMP有效的調(diào)節(jié):從ISECONDARY以后(見(jiàn)圖9),副邊電流或者說(shuō)輸出電流與主邊電流成比例,把等式(4)重新排列表示出副邊電流與VCOMP之間的關(guān)系。結(jié)合等式(3)和(6)得到PWM部分的傳輸函數(shù):
傳輸函數(shù)G2(s)僅包含增益沒(méi)有相移。
4.4誤差放大器補(bǔ)償網(wǎng)絡(luò)G3(S)一旦輸出濾波器和PWM電路部分的傳輸函數(shù)確定下來(lái),然后可以設(shè)定誤差放大器補(bǔ)償網(wǎng)絡(luò)以取得最優(yōu)化的系統(tǒng)性能。圖10例舉出一個(gè)在低頻時(shí)提供高的頻率滾降和高增益的補(bǔ)償方案。這個(gè)補(bǔ)償方案有一些很好的特性適合于誤差放大器的補(bǔ)償,它有很高的直流增益和易控的滾降。4.5整個(gè)系統(tǒng)因?yàn)檫@是一個(gè)線性系統(tǒng),可以用疊加的方法得到整個(gè)系統(tǒng)的傳輸函數(shù)。通過(guò)把整個(gè)環(huán)路各部分的增益和相位疊加起來(lái),產(chǎn)生整個(gè)系統(tǒng)的博得圖。通過(guò)放置補(bǔ)償網(wǎng)絡(luò)的極點(diǎn)和零點(diǎn)使系統(tǒng)的性能最優(yōu)化。圖11把各部分的博得圖結(jié)合起來(lái),負(fù)反饋系統(tǒng)的180度相移也加入進(jìn)來(lái)了。5.測(cè)量結(jié)果構(gòu)造一個(gè)150W的電流模式正激轉(zhuǎn)換器,經(jīng)過(guò)修正的小信號(hào)環(huán)路特性顯示出它在系統(tǒng)瞬態(tài)響應(yīng)時(shí)所起的作用。圖13(原文誤為圖12,譯注)給出它的增益-相位圖。與圖11所展示的一樣,獲得了相同的博得圖曲線。此增益相位圖顯示這個(gè)系統(tǒng)有86.7度的相位裕量。意味著穩(wěn)定的系統(tǒng)有快速的瞬態(tài)響應(yīng)。圖15(原文誤為圖13,譯注)給出系統(tǒng)的瞬態(tài)響應(yīng)。為了展示相位裕量的作用,通過(guò)增加整個(gè)系統(tǒng)的增益和提高穿越頻率,系統(tǒng)的相位裕量會(huì)減少。穿越頻率提高時(shí)系統(tǒng)的相位裕量在減少。圖12(原文誤為圖14,譯注)給出更高的穿越頻率和更少的相位裕量(65度)時(shí)的系統(tǒng)博得圖。其瞬態(tài)響應(yīng)見(jiàn)圖14(原文誤為圖15,譯注),注意更少的相位裕量導(dǎo)致更大的振蕩和更長(zhǎng)的調(diào)節(jié)時(shí)間。表1比較了這兩個(gè)不同增益大小的系統(tǒng)之間線性和負(fù)載調(diào)節(jié)率的變化。正如前面所述,高的環(huán)路增益得到更緊密的線性和負(fù)載調(diào)節(jié)率。還應(yīng)該注意需在高的相位裕量和較低的環(huán)路增益之間取得平衡。圖12
圖13
圖14
圖15
6.測(cè)量方法為了保證準(zhǔn)確的結(jié)果,測(cè)試信號(hào)接入節(jié)點(diǎn)的阻抗必須大于它的輸出阻抗。在圖6的測(cè)試電路中,誤差放大器在副邊,PWM電路在主邊。測(cè)試信號(hào)在光耦的輸出和AS3842的VCOMP輸入之前接入。輸入阻抗是從VCOMP腳看入時(shí)的阻抗,輸出阻抗是光耦的輸出阻抗。在其他誤差放大器和PWM電路沒(méi)有隔離的應(yīng)用中,測(cè)試信號(hào)可以在輸出濾波電容之后接入,使其與誤差放大器的輸入相串聯(lián)。開(kāi)關(guān)電源控制環(huán)設(shè)計(jì)資料來(lái)源:Switchingpowersupplycontrolloopdesign(ASTEC-ApplicationNote5譯者:smartway1.緒論在開(kāi)關(guān)模式的功率轉(zhuǎn)換器中,功率開(kāi)關(guān)的導(dǎo)通時(shí)間是根據(jù)輸入和輸出電壓來(lái)調(diào)節(jié)的。因而,功率轉(zhuǎn)換器是一種反映輸入與輸出的變化而使其導(dǎo)通時(shí)間被調(diào)制的獨(dú)立控制系統(tǒng)。由于理論近似,控制環(huán)的設(shè)計(jì)往往陷入復(fù)雜的方程式中,使開(kāi)關(guān)電源的控制設(shè)計(jì)面臨挑戰(zhàn)并且常常走入誤區(qū)。下面幾頁(yè)將展示控制環(huán)的簡(jiǎn)單化近似分析,首先大體了解開(kāi)關(guān)電源系統(tǒng)中影響性能的各種參數(shù)。給出一個(gè)實(shí)際的開(kāi)關(guān)電源作為演示以表明哪些器件與設(shè)計(jì)控制環(huán)的特性有關(guān)。測(cè)試結(jié)果和測(cè)量方法也包含在其中。2.基本控制環(huán)概念2.1傳輸函數(shù)和博得圖系統(tǒng)的傳輸函數(shù)定義為輸出除以輸入。它由增益和相位因素組成并可以在博得圖上分別用圖形表示。整個(gè)系統(tǒng)的閉環(huán)增益是環(huán)路里各個(gè)部分增益的乘積。在博得圖中,增益用對(duì)數(shù)圖表示。因?yàn)閮蓚€(gè)數(shù)的乘積的對(duì)數(shù)等于他們各自對(duì)數(shù)的和,他們的增益可以畫(huà)成圖相加。系統(tǒng)的相位是整個(gè)環(huán)路相移之和。2.2極點(diǎn)數(shù)學(xué)上,在傳輸方程式中,當(dāng)分母為零時(shí)會(huì)產(chǎn)生一個(gè)極點(diǎn)。在圖形上,當(dāng)增益以20dB每十倍頻的斜率開(kāi)始遞減時(shí),在博得圖上會(huì)產(chǎn)生一個(gè)極點(diǎn)。圖1舉例說(shuō)明一個(gè)低通濾波器通常在系統(tǒng)中產(chǎn)生一個(gè)極點(diǎn)。其傳輸函數(shù)和博得圖也一并給出。2.3零點(diǎn)零點(diǎn)是頻域范圍內(nèi)的傳輸函數(shù)當(dāng)分子等于零時(shí)產(chǎn)生的。在博得圖中,零點(diǎn)發(fā)生在增益以20dB每十倍頻的斜率開(kāi)始遞增的點(diǎn),并伴隨有90度的相位超前。圖2描述一個(gè)由高通濾波器電路引起的零點(diǎn)。存在第二種零點(diǎn),即右半平面零點(diǎn),它引起相位滯后而非超前。伴隨著增益遞增,右半平面零點(diǎn)引起90度的相位滯后。右半平面零點(diǎn)經(jīng)常出現(xiàn)于BOOST和BUCK-BOOST轉(zhuǎn)換器中,所以,在設(shè)計(jì)反饋補(bǔ)償電路的時(shí)候要非常警惕,以使系統(tǒng)的穿越頻率大大低于右半平面零點(diǎn)的頻率。右半平面零點(diǎn)的博得圖見(jiàn)圖3。3.0開(kāi)關(guān)電源的理想增益相位圖設(shè)計(jì)任何控制系統(tǒng)首先必須清楚地定義出目標(biāo)。通常,這個(gè)目標(biāo)是建立一個(gè)簡(jiǎn)單的博得圖以達(dá)到最好的系統(tǒng)動(dòng)態(tài)響應(yīng),最緊密的線性和負(fù)載調(diào)節(jié)率和最好的穩(wěn)定性。理想的閉環(huán)博得圖應(yīng)該包含三個(gè)特性:足夠的相位裕量,寬的帶寬,和高增益。高的相位裕量能阻尼振蕩并縮短瞬態(tài)調(diào)節(jié)時(shí)間。寬的帶寬允許電源系統(tǒng)快速響應(yīng)線性和負(fù)載的突變。高的增益保證良好的線性和負(fù)載調(diào)節(jié)率。3.1相位裕量參看圖4,相位裕量是在穿越頻率處相位高于0度的數(shù)量。這不同于大多數(shù)控制系統(tǒng)教科書(shū)里提出的從-180度開(kāi)始測(cè)量相位裕量。其中包括DC負(fù)反饋所提供的180度初始相移。在實(shí)際測(cè)量中,這180度相移在DC處被補(bǔ)償并允許相位裕量從0度開(kāi)始測(cè)量。根據(jù)奈奎斯特穩(wěn)定性判據(jù),當(dāng)系統(tǒng)的相位裕量大于0度時(shí),此系統(tǒng)是穩(wěn)定的。然而,有一個(gè)邊界穩(wěn)定區(qū)域存在,此處(指邊界穩(wěn)定區(qū),譯注,系統(tǒng)由于瞬態(tài)響應(yīng)引起振蕩到經(jīng)過(guò)一個(gè)長(zhǎng)的調(diào)節(jié)時(shí)間最終穩(wěn)定下來(lái)。如果相位裕量小于45度,則系統(tǒng)在邊界穩(wěn)定。當(dāng)相位裕量超過(guò)45度時(shí),能提供最好的動(dòng)態(tài)響應(yīng),短的調(diào)節(jié)時(shí)間和最少過(guò)沖。3.2增益帶寬增益帶寬是指單位增益時(shí)的頻率,見(jiàn)圖4,增益帶寬就是穿越頻率Fcs。最大穿越頻率的主要限制因素是電源的開(kāi)關(guān)頻率。根據(jù)采樣定理,如果采樣頻率小于2倍信號(hào)頻率(更嚴(yán)謹(jǐn)一點(diǎn)的說(shuō)法是應(yīng)該小于2倍最大信號(hào)頻率,譯注,則被采樣的信息就不能被完全讀取。在開(kāi)關(guān)電源中,開(kāi)關(guān)頻率可以從輸出紋波中看得出來(lái),它是錯(cuò)誤的信息,并且必須不被控制環(huán)路所傳遞。因此,系統(tǒng)的穿越頻率必須小于開(kāi)關(guān)頻率的一半,否則,開(kāi)關(guān)噪聲和紋波會(huì)扭曲輸出電壓中想要得到的信息,并導(dǎo)致系統(tǒng)不穩(wěn)定。3.3增益高的系統(tǒng)增益對(duì)于保證好的線性和負(fù)載調(diào)節(jié)率提供重要貢獻(xiàn)。它能夠使PWM比較器在響應(yīng)輸入輸出電壓的變化時(shí)精確地改變電源開(kāi)關(guān)的占空比,通常,需要在決定高增益和低相位裕量之間做出權(quán)衡。4.實(shí)際設(shè)計(jì)分析舉例用經(jīng)典環(huán)路控制分析方法,開(kāi)關(guān)調(diào)整器的控制環(huán)分為四個(gè)主要部分:輸出濾波器,PWM電路,誤差放大器補(bǔ)償和反饋。圖5用方塊圖舉例說(shuō)明這四部分,圖6舉例說(shuō)明一個(gè)開(kāi)關(guān)電源電路圖。首先,輸出電壓被反饋網(wǎng)絡(luò)降壓,然后把這個(gè)反饋電壓送入誤差放大器,使之與基準(zhǔn)電壓相比較而產(chǎn)生一個(gè)誤差電壓信號(hào)。脈寬調(diào)制部分拾取這個(gè)誤差電壓并且把它與功率變壓器的電流相比較并轉(zhuǎn)化為合適的占空比去控制輸出部分功率脈沖調(diào)制的數(shù)量。輸出濾波器部分使來(lái)自于功率變壓器的斬波電壓或電流平滑,使反饋控制環(huán)完善。下面確定每一部分的增益和相位,并把他們聯(lián)合起來(lái)形成系統(tǒng)的傳輸函數(shù)和系統(tǒng)的增益相位點(diǎn)。4.1反饋網(wǎng)絡(luò)H(s反饋網(wǎng)絡(luò)把輸出電壓降到誤差放大器參考電壓的水平,其傳輸式按簡(jiǎn)單的電阻分壓式得到:4.2輸出濾波部分G1(S在電流模式控制系統(tǒng)中,輸出電流被調(diào)節(jié)以達(dá)到目標(biāo)的輸出電壓。輸出濾波部分把脈動(dòng)的輸出電流轉(zhuǎn)換為目標(biāo)輸出電壓。小信號(hào)分析得到:輸出電容的ESR和反饋網(wǎng)絡(luò)的電阻(R1+R2=RFB反映出輸出濾波器傳輸函數(shù)的特性。圖7的電路分析給出ESR和RSENSE的影響。傳輸函數(shù)G1(S給出RFB的初始低頻增益。這個(gè)增益在fPOLE=1/2*π*(RFB+ESR*C處開(kāi)始滾降,并在fZERO=1/2*π*ESR*C變?yōu)樗?。G1(S的博得圖見(jiàn)圖8。4.3PWM電路部分G2(S光耦電路把誤差放大網(wǎng)路產(chǎn)生的誤差信號(hào)傳輸?shù)街鬟叀S3842PWM電路把這個(gè)誤差電壓與通過(guò)主邊功率變壓器的電流進(jìn)行比較。然后功率場(chǎng)效應(yīng)管的占空比被調(diào)制,以提供足夠的電流到副邊來(lái)維持想要的輸出。光耦的小信號(hào)傳輸函數(shù)是與光耦的電流傳輸比成比例的固定增益。R5(原文誤為R6,式5一并改為R5,譯注是與光耦的二極管串聯(lián)的限流電阻,并且是AS3842誤差放大器的輸出阻抗(此句應(yīng)該理解為R5是這個(gè)AS3842開(kāi)關(guān)電源電路中,誤差放大器部分的輸出阻抗,譯注。這一點(diǎn)在應(yīng)用文檔“SecondaryerroramplifierwiththeAS431”中有深入的闡述。從誤差放大器的輸出到AS3842的COMP腳的傳輸函數(shù)是:VCATHODE是AS431的陰極電壓,也就是誤差補(bǔ)償放大器的輸出電壓。CTR是光耦的電流傳輸比。R5(原文為R6,譯注是與光耦的二極管串聯(lián)的限流電阻。RCOMP是AS3842的COMP腳當(dāng)其試圖拉電流超過(guò)它的最大輸出電流時(shí)的輸出阻抗。當(dāng)誤差信號(hào)傳遞到補(bǔ)償腳以后,將其與電流檢測(cè)信號(hào)比較。圖9表示一個(gè)電流檢測(cè)比較器和開(kāi)關(guān)部分的簡(jiǎn)單框圖:在閉環(huán)系統(tǒng)中,VCOMP與ISENSE維持同樣的電平.因此,IPRIMARY被VCOMP有效的調(diào)節(jié):從ISECONDARY以后(見(jiàn)圖9,副邊電流或者說(shuō)輸出電流與主邊電流成比例,把等式(4重新排列表示出副邊電流與VCOMP之間的關(guān)系.結(jié)合等式(3和(6得到PWM部分的傳輸函數(shù):傳輸函數(shù)G2(s僅包含增益沒(méi)有相移.4.4誤差放大器補(bǔ)償網(wǎng)絡(luò)G3(S一旦輸出濾波器和PWM電路部分的傳輸函數(shù)確定下來(lái),然后可以設(shè)定誤差放大器補(bǔ)償網(wǎng)絡(luò)以取得最優(yōu)化的系統(tǒng)性能.圖10例舉出一個(gè)在低頻時(shí)提供高的頻率滾降和高增益的補(bǔ)償方案.這個(gè)補(bǔ)償方案有一些很好的特性適合于誤差放大器的補(bǔ)償,它有很高的直流增益和易控的滾降.4.5整個(gè)系統(tǒng)因?yàn)檫@是一個(gè)線性系統(tǒng),可以用疊加的方法得到整個(gè)系統(tǒng)的傳輸函數(shù).通過(guò)把整個(gè)環(huán)路各部分的增益和相位疊加起來(lái),產(chǎn)生整個(gè)系統(tǒng)的博得圖.通過(guò)放置補(bǔ)償網(wǎng)絡(luò)的極點(diǎn)和零點(diǎn)使系統(tǒng)的性能最優(yōu)化.圖11把各部分的博得圖結(jié)合起來(lái),負(fù)反饋系統(tǒng)的180度相移也加入進(jìn)來(lái)了.5.測(cè)量結(jié)果構(gòu)造一個(gè)150W的電流模式正激轉(zhuǎn)換器,經(jīng)過(guò)修正的小信號(hào)環(huán)路特性顯示出它在系統(tǒng)瞬態(tài)響應(yīng)時(shí)所起的作用.圖13(原文誤為圖12,譯注給出它的增益-相位圖.與圖11所展示的一樣,獲得了相同的博得圖曲線.此增益相位圖顯示這個(gè)系統(tǒng)有86.7度的相位裕量.意味著穩(wěn)定的系統(tǒng)有快速的瞬態(tài)響應(yīng).圖15(原文誤為圖13,譯注給出系統(tǒng)的瞬態(tài)響應(yīng).為了展示相位裕量的作用,通過(guò)增加整個(gè)系統(tǒng)的增益和提高穿越頻率,系統(tǒng)的相位裕量會(huì)減少.穿越頻率提高時(shí)系統(tǒng)的相位裕量在減少.圖12(原文誤為圖14,譯注給出更高的穿越頻率和更少的相位裕量(65度時(shí)的系統(tǒng)博得圖.其瞬態(tài)響應(yīng)見(jiàn)圖14(原文誤為圖15,譯注,注意更少的相位裕量導(dǎo)致更大的振蕩和更長(zhǎng)的調(diào)節(jié)時(shí)間.表1比較了這兩個(gè)不同增益大小的系統(tǒng)之間線性和負(fù)載調(diào)節(jié)率的變化.正如前面所述,高的環(huán)路增益得到更緊密的線性和負(fù)載調(diào)節(jié)率.還應(yīng)該注意需在高的相位裕量和較低的環(huán)路增益之間取得平衡.6.測(cè)量方法為了保證準(zhǔn)確的結(jié)果,測(cè)試信號(hào)接入節(jié)點(diǎn)的阻抗必須大于它的輸出阻抗.在圖6的測(cè)試電路中,誤差放大器在副邊,PWM電路在主邊.測(cè)試信號(hào)在光耦的輸出和AS3842的VCOMP輸入之前接入.輸入阻抗是從VCOMP腳看入時(shí)的阻抗,輸出阻抗是光耦的輸出阻抗.在其他誤差放大器和PWM電路沒(méi)有隔離的應(yīng)用中,測(cè)試信號(hào)可以在輸出濾波電容之后接入,使其與誤差放大器的輸入相串聯(lián).全文完2006-6-6開(kāi)關(guān)電源EMI濾波器原理與設(shè)計(jì)研究魏應(yīng)冬,吳燮華(浙江大學(xué)電氣工程學(xué)院,浙江
杭州
310027)摘要:在開(kāi)關(guān)電源中,EMI濾波器對(duì)共模和差模傳導(dǎo)噪聲的抑制起著顯著的作用。在研究濾波器原理的基礎(chǔ)上,探討了一種對(duì)共模、差模信號(hào)進(jìn)行獨(dú)立分析,分別建模的方法,最后基于此提出了一種EMI濾波器的設(shè)計(jì)程序。關(guān)鍵詞:開(kāi)關(guān)電源;EMI濾波器;共模;差模0
引言
高頻開(kāi)關(guān)電源由于其在體積、重量、功率密度、效率等方面的諸多優(yōu)點(diǎn),已經(jīng)被廣泛地應(yīng)用于工業(yè)、國(guó)防、家電產(chǎn)品等各個(gè)領(lǐng)域。在開(kāi)關(guān)電源應(yīng)用于交流電網(wǎng)的場(chǎng)合,整流電路往往導(dǎo)致輸入電流的斷續(xù),這除了大大降低輸入功率因數(shù)外,還增加了大量高次諧波。同時(shí),開(kāi)關(guān)電源中功率開(kāi)關(guān)管的高速開(kāi)關(guān)動(dòng)作(從幾十kHz到數(shù)MHz),形成了EMI(electromagneticinterference)騷擾源。從已發(fā)表的開(kāi)關(guān)電源論文可知,在開(kāi)關(guān)電源中主要存在的干擾形式是傳導(dǎo)干擾和近場(chǎng)輻射干擾,傳導(dǎo)干擾還會(huì)注入電網(wǎng),干擾接入電網(wǎng)的其他設(shè)備。
減少傳導(dǎo)干擾的方法有很多,諸如合理鋪設(shè)地線,采取星型鋪地,避免環(huán)形地線,盡可能減少公共阻抗;設(shè)計(jì)合理的緩沖電路;減少電路雜散電容等。除此之外,可以利用EMI濾波器衰減電網(wǎng)與開(kāi)關(guān)電源對(duì)彼此的噪聲干擾。
EMI騷擾通常難以精確描述,濾波器的設(shè)計(jì)通常是通過(guò)反復(fù)迭代,計(jì)算制作以求逐步逼近設(shè)計(jì)要求。本文從EMI濾波原理入手,分別通過(guò)對(duì)其共模和差模噪聲模型的分析,給出實(shí)際工作中設(shè)計(jì)濾波器的方法,并分步驟給出設(shè)計(jì)實(shí)例。1
EMI濾波器設(shè)計(jì)原理
在開(kāi)關(guān)電源中,主要的EMI騷擾源是功率半導(dǎo)體器件開(kāi)關(guān)動(dòng)作產(chǎn)生的dv/dt和di/dt,因而電磁發(fā)射EME(ElectromagneticEmission)通常是寬帶的噪聲信號(hào),其頻率范圍從開(kāi)關(guān)工作頻率到幾MHz。所以,傳導(dǎo)型電磁環(huán)境(EME)的測(cè)量,正如很多國(guó)際和國(guó)家標(biāo)準(zhǔn)所規(guī)定,頻率范圍在0.15~30MHz。設(shè)計(jì)EMI濾波器,就是要對(duì)開(kāi)關(guān)頻率及其高次諧波的噪聲給予足夠的衰減?;谏鲜鰳?biāo)準(zhǔn),通常情況下只要考慮將頻率高于150kHz的EME衰減至合理范圍內(nèi)即可。
在數(shù)字信號(hào)處理領(lǐng)域普遍認(rèn)同的低通濾波器概念同樣適用于電力電子裝置中。簡(jiǎn)言之,EMI濾波器設(shè)計(jì)可以理解為要滿足以下要求:
1)規(guī)定要求的阻帶頻率和阻帶衰減;(滿足某一特定頻率fstop有需要Hstop的衰減);
2)對(duì)電網(wǎng)頻率低衰減(滿足規(guī)定的通帶頻率和通帶低衰減);3)低成本。1.1
常用低通濾波器模型
EMI濾波器通常置于開(kāi)關(guān)電源與電網(wǎng)相連的前端,是由串聯(lián)電抗器和并聯(lián)電容器組成的低通濾波器。如圖1所示,噪聲源等效阻抗為Zsource、電網(wǎng)等效阻抗為Zsink。濾波器指標(biāo)(fstop和Hstop)可以由一階、二階或三階低通濾波器實(shí)現(xiàn),濾波器傳遞函數(shù)的計(jì)算通常在高頻下近似,也就是說(shuō)對(duì)于n階濾波器,忽略所有ωk相關(guān)項(xiàng)(當(dāng)k<n),只取含ωn相關(guān)項(xiàng)。表1列出了幾種常見(jiàn)的濾波器拓?fù)浼捌鋫鬟f函數(shù)。特別要注意的是要考慮輸入、輸出阻抗不匹配給濾波特性帶來(lái)的影響。圖1
濾波器設(shè)計(jì)等效電路表1
幾種濾波器模型及傳遞函數(shù)1.2
EMI濾波器等效電路
傳導(dǎo)型EMI噪聲包含共模(CM)噪聲和差模(DM)噪聲兩種。共模噪聲存在于所有交流相線(L、N)和共模地(E)之間,其產(chǎn)生來(lái)源被認(rèn)為是兩電氣回路之間絕緣泄漏電流以及電磁場(chǎng)耦合等;差模噪聲存在于交流相線(L、N)之間,產(chǎn)生來(lái)源是脈動(dòng)電流,開(kāi)關(guān)器件的振鈴電流以及二極管的反向恢復(fù)特性。這兩種模式的傳導(dǎo)噪聲來(lái)源不同,傳導(dǎo)途徑也不同,因而共模濾波器和差模濾波器應(yīng)當(dāng)分別設(shè)計(jì)。
顯然,針對(duì)兩種不同模式的傳導(dǎo)噪聲,將其分離并分別測(cè)量出實(shí)際水平是十分必要的,這將有利于確定那種模式的噪聲占主要部分,并相應(yīng)地體現(xiàn)在對(duì)應(yīng)的濾波器設(shè)計(jì)過(guò)程中,實(shí)現(xiàn)參數(shù)優(yōu)化。在文獻(xiàn)[6]和[7]中,提供了兩種用于區(qū)分共模和差模噪聲的噪聲分離器,他們能有選擇地對(duì)共模或差模噪聲至少衰減50dB,因而可有效地測(cè)量出共模和差模成分。分離器的原理和使用超出了本文的討論范圍,詳細(xì)內(nèi)容可見(jiàn)參考文獻(xiàn)[6]和[7]。
以一種常用的濾波器拓?fù)洹矆D2(a)〕為例,分別對(duì)共模、差模噪聲濾波器等效電路進(jìn)行分析。圖2(b)及圖2(c)分別代表濾波器共模衰減和差模衰減等效電路。分析電路可知,Cx1和Cx2只用于抑制差模噪聲,理想的共模扼流電感LC只用于抑制共模噪聲。但是,由于實(shí)際的LC繞制的不對(duì)稱,在兩組LC之間存在有漏感Lg也可用于抑制差模噪聲。Cy即可抑制共模干擾、又可抑制差模噪聲,只是由于差模抑制電容Cx2遠(yuǎn)大于Cy,Cy對(duì)差模抑制可忽略不計(jì)。同樣,LD既可抑制共模干擾、又可抑制差模干擾,但LD遠(yuǎn)小于LC,因而對(duì)共模噪聲抑制作用也相對(duì)很小。(a)常用的濾波器拓?fù)洌╞)共模衰減等效電路(c)差模衰減等效電路圖2
一種常用的濾波器拓?fù)?/p>
由表1和圖2可以推出,對(duì)于共模等效電路,濾波器模型為一個(gè)二階LC型低通濾波器,將等效共模電感記為L(zhǎng)CM,等效共模電容記為CCM,則有
LCM=LC+LD(1)
CCM=2Cy(2)
對(duì)于差模等效電路,濾波器模型為一個(gè)三階CLC型低通濾波器,將等效差模電感記為L(zhǎng)DM,等效差模電容記為CDM(令Cx1=Cx2且認(rèn)為Cy/2<<Cx2),則有
LDM=2LD+Lg(3)CDM=Cx1=Cx2(4)
LC型濾波器截止頻率計(jì)算公式為
fR,CM=(5)
將式(1)及式(2)代入式(5),則有
fR,CM=≈(LC>>LD)(6)
CLC型濾波器截止頻率計(jì)算公式為
fR,DM=(7)
將式(3)及式(4)代入式(7),則有
fR,DM=(8)
在噪聲源阻抗和電網(wǎng)阻抗均確定,且相互匹配的情況下,EMI濾波器對(duì)共模和差模噪聲的抑制作用,如圖3所示。圖3
濾波器差模與共模衰減2
設(shè)計(jì)EMI濾波器的實(shí)際方法2.1
設(shè)計(jì)中的幾點(diǎn)考慮
EMI濾波器的效果不但依賴于其自身,還與噪聲源阻抗及電網(wǎng)阻抗有關(guān)。電網(wǎng)阻抗Zsink通常利用靜態(tài)阻抗補(bǔ)償網(wǎng)絡(luò)(LISN)來(lái)校正,接在濾波器與電網(wǎng)之間,包括電感、電容和一個(gè)50Ω電阻,從而保證電網(wǎng)阻抗可由已知標(biāo)準(zhǔn)求出。而EMI源阻抗則取決于不同的變換器拓?fù)湫问健?/p>
以典型的反激式開(kāi)關(guān)電源為例,如圖4(a)所示,其全橋整流電路電流為斷續(xù)狀態(tài),電流電壓波形如圖5所示。對(duì)于共模噪聲,圖4(b)所示Zsource可以看作一個(gè)電流源IS和一個(gè)高阻抗ZP并聯(lián);圖4(c)中對(duì)于差模噪聲,取決于整流橋二極管通斷情況,Zsource有兩種狀態(tài):當(dāng)其中任意兩只二極管導(dǎo)通時(shí),Zsource等效為一個(gè)電壓源VS與一個(gè)低值阻抗ZS串連;當(dāng)二極管全部截止時(shí),等效為一個(gè)電流源IS和一個(gè)高阻抗ZP并聯(lián)。因而噪聲源差模等效阻抗Zsource以2倍工頻頻率在上述兩種狀態(tài)切換[2]。(a)典型反激式開(kāi)關(guān)電源(b)共模噪聲源等效電路(c)差模噪聲源等效電路圖4
典型反激式開(kāi)關(guān)電源及其噪聲源等效電路圖5
電源輸入端電壓、電流波形
在前述設(shè)計(jì)過(guò)程中,EMI濾波器元件(電感、電容)均被看作是理想的。然而由于實(shí)際元件存在寄生參數(shù),比如電容的寄生電感,電感間的寄生電容,以及PCB板布線存在的寄生參數(shù),實(shí)際的高頻特性往往與理想元件仿真有較大的差異。這涉及到EMC高頻建模等諸多問(wèn)題,模型的參數(shù)往往較難確定,所以,本文僅考慮EMI濾波器的低頻抑制特性,而高頻建??蓞⒖次墨I(xiàn)[8]等。故ZS及ZP取值與這些寄生電容、電感以及整流橋等效電容等寄生參數(shù)有關(guān),直接采用根據(jù)電路拓?fù)浼皡?shù)建模的方案求解源阻抗難以實(shí)現(xiàn),因而,在設(shè)計(jì)中往往采用實(shí)際測(cè)量Zsource。2.2
實(shí)際設(shè)計(jì)步驟
EMI濾波器設(shè)計(jì)往往要求在實(shí)現(xiàn)抑制噪聲的同時(shí),自身體積要盡可能小,成本要盡可能低廉。同時(shí),濾波效果也取決于實(shí)際的噪聲水平的高低,分析共模和差模噪聲的干擾權(quán)重,為此,在設(shè)計(jì)前要求確定以下參量,以實(shí)現(xiàn)設(shè)計(jì)的優(yōu)化。
1)測(cè)量干擾源等效阻抗Zsource和電網(wǎng)等效阻抗。實(shí)際過(guò)程中往往是依靠理論和經(jīng)驗(yàn)的指導(dǎo),先作出電源的PCB板,這是因?yàn)楣材!⒉钅5脑肼曉春透蓴_途徑互不相同,電路板走線的微小差異都可能導(dǎo)致很大EME變化。
2)測(cè)量出未加濾波器前的干擾噪聲頻譜,并利用噪聲分離器將共模噪聲VMEASUREE,CM和差模噪聲Vmeasure,CM分離,做出相應(yīng)的干擾頻譜。
接著就可以進(jìn)行實(shí)際的設(shè)計(jì)了,仍以本文中提出的濾波器模型為例,步驟如下。
(1)依照式(9)計(jì)算濾波器所需要的共模、差模衰減,并做出曲線Vmeasure,CM-f和Vmeasure,DM-f,其中Vmeasure,CM和Vmeasure,DM已經(jīng)測(cè)得,Vstandard,CM和Vstandard,DM可參照傳導(dǎo)EMI干擾國(guó)標(biāo)設(shè)定。加上3dB的原因在于用噪音分離器的測(cè)量值比實(shí)際值要大3dB。
(Vreq,CM)dB=(Vmeasure,CM)-(Vstandard,CM)+3dB
(Vreq,DM)dB=(Vmeasure,DM)-(Vstandard,DM)+3dB(9)
(2)由圖3可知,斜率分別為40dB/dec和60dB/dec的兩條斜線與頻率軸的交點(diǎn)即為fR,CM和fR,DM。作Vmeasure,CM-f和Vmeasure,DM-f的切線,切線斜率分別為40dB/dec和60dB/dec,比較可知,只要測(cè)量他們與頻率軸的交點(diǎn),即可得出fR,CM和fR,DM,圖6所示為其示意圖。(a)實(shí)線為共模目標(biāo)衰減;虛線為斜率為40dB/dec切線(b)實(shí)線為差模目標(biāo)衰減;虛線為斜率為60dB/dec切線圖6
fR,DM與fR,CM的確定
(3)濾波器元件參數(shù)設(shè)計(jì)
——共模參數(shù)的選取
Cy接在相線和大地之間,該電容器容量過(guò)大將會(huì)造成漏電流過(guò)大,安全性降低。對(duì)漏電流要求越小越好,安全標(biāo)準(zhǔn)通常為幾百μA到幾mA。
EMI對(duì)地漏電流Iy計(jì)算公式為
Iy=2πfCVc(10)式中:f為電網(wǎng)頻率。
在本例中,Vc是電容Cy上的壓降,f=50Hz,C=2Cy,Vc=220/2=110V,則
Cy=(11)若設(shè)定對(duì)地漏電流為0.15mA,可求得Cy≈2200pF。將Cy代入步驟(2)中求得fR,CM值,再將fR,CM代入式(6)中可得
Lc=(12)
——差模參數(shù)選取
由式(8)可知,Cx1,Cx2,以及LD的選取沒(méi)有唯一解,允許設(shè)計(jì)者有一定的自由度。
由圖2可知,共模電感Lc的漏感Lg也可抑制差模噪聲,有時(shí)為了簡(jiǎn)化濾波器,也可以省去LD。經(jīng)驗(yàn)表明,漏感Lg量值多為L(zhǎng)c量值的0.5%~2%。Lg可實(shí)測(cè)獲得。此時(shí),相應(yīng)地Cx1、Ccx2值要更大。3
結(jié)語(yǔ)
本文的論述是基于低通濾波器的低頻模型分析。由于實(shí)際元件寄生參數(shù)的影響,尤其在高頻段更加顯著,因而往往需要在第一次確定參數(shù)之后反復(fù)修正參數(shù),以及使用低ESR和ESL的電容,優(yōu)化繞制磁芯的材料和工藝,逐步逼近要求的技術(shù)指標(biāo)。
由于只涉及到單級(jí)濾波器的設(shè)計(jì),如LC型濾波器衰減程度只有40dB/dec,當(dāng)要求衰減程度在60~80dB以上的指標(biāo)時(shí),往往需要使用多級(jí)濾波器。
通用型的EMI濾波器通常很難設(shè)計(jì),這是由于不同的功率變換器之間,由于拓?fù)?、選用元件、PCB布版等原因,電磁環(huán)境水平相差很大,再加上阻抗匹配的問(wèn)題,在很大程度上影響了濾波器的通用性,所以,濾波器的設(shè)計(jì)往往需要有針對(duì)性,并在實(shí)際調(diào)試中逐步修正。微弱信號(hào)檢測(cè)課程報(bào)告組員:李政張輝劉興兵班級(jí):076081 指導(dǎo)老師:宋俊磊班級(jí):2021.06 開(kāi)關(guān)電源EMI噪聲分析及抑制0引言開(kāi)關(guān)電源作為一種通用電源,以其輕、薄、小和高效率等特點(diǎn)為人們所熟知,是各種電子設(shè)備小型化和低成本化不可缺少的一種電源方式,已成為當(dāng)今的主流電源。隨著電子信息產(chǎn)的迅猛發(fā)展,其應(yīng)用范圍也必將日益擴(kuò)大,需求量也會(huì)與日俱增。然而,當(dāng)人們盡情享用開(kāi)關(guān)電源所帶來(lái)的輕、薄、小和高效率等種種便利之時(shí),同時(shí)也帶來(lái)了噪聲干擾的種種危害。特別是開(kāi)關(guān)電源在向更小體積、更高頻率、更大功率的方向發(fā)展,其dV/dt、dI/dt所帶來(lái)的EMI噪聲也將會(huì)更大。它的傳導(dǎo)噪聲、輻射噪聲會(huì)波及整機(jī)的安全,有時(shí)會(huì)干擾一些CPU的指令,引起系統(tǒng)的誤操作,嚴(yán)重時(shí)還會(huì)引起系統(tǒng)的顛覆性破壞。為此,我們?cè)谑褂瞄_(kāi)關(guān)電源時(shí),要密切關(guān)注開(kāi)關(guān)電源的EMI噪聲所帶來(lái)的危害,采取積極的防范措施來(lái)降低EMI噪聲,把EMI噪聲的影響降到最低。1電源噪聲基本概念電源噪聲是電磁干擾的一種,其傳導(dǎo)噪聲的頻譜大致為10kHz~30MHz,最高可150MHz。電源噪聲,特別是瞬態(tài)噪聲干擾,其上升速度快、持續(xù)時(shí)間短、電壓振幅度高、隨機(jī)性強(qiáng),對(duì)微機(jī)和數(shù)字電路易產(chǎn)生嚴(yán)重干擾。根據(jù)傳播方向的不同,電源噪聲可分為兩大類:①.一類是從電源進(jìn)線引入的外界干擾;②.一類是由電子設(shè)備產(chǎn)生并經(jīng)電源線傳導(dǎo)出去的噪聲。從形成特點(diǎn)看,噪聲干擾分串模干擾與共模干擾兩種:①.串模干擾是兩條電源線之間(簡(jiǎn)稱線對(duì)線)的噪聲。②.共模干擾則是兩條電源線對(duì)大地(簡(jiǎn)稱線對(duì)地)的噪聲。開(kāi)關(guān)電源屬于強(qiáng)干擾源,其本身產(chǎn)生的干擾直接危害著電子設(shè)備的正常工作。因此,抑制開(kāi)關(guān)電源本身的電磁噪聲,同時(shí)提高其對(duì)電磁干擾的抗擾性,在設(shè)計(jì)和開(kāi)發(fā)過(guò)程中需要特別的關(guān)注。2電源噪聲分析開(kāi)關(guān)電源的電路拓?fù)浣Y(jié)構(gòu)很多,在中小功率開(kāi)關(guān)電源模塊中,使用較多的電路拓?fù)浣Y(jié)構(gòu)為推挽式、單端正激式、單端反激式等。典型的單端正激式開(kāi)關(guān)電源電路框圖如圖1所示。圖1單端正激變換電路電路工作時(shí),由PWM控制單元送出脈寬可變的脈沖信號(hào)來(lái)驅(qū)動(dòng)開(kāi)關(guān)管Ql,其導(dǎo)通關(guān)斷狀態(tài)不斷改變。在功率開(kāi)關(guān)管Q1的高頻開(kāi)關(guān)切換過(guò)程中,流過(guò)功率開(kāi)關(guān)管和高頻變壓器的脈沖會(huì)產(chǎn)生紛雜的諧波電壓及諧波電流。這些諧波電壓及諧波電流產(chǎn)生的噪聲可通過(guò)電源輸入線傳到公共供電端,或通過(guò)開(kāi)關(guān)電源的輸出線傳到負(fù)載上,從而對(duì)其它系統(tǒng)或敏感元器件造成干擾。這些噪聲在電源線上傳導(dǎo)的噪聲頻譜圖如圖2所示,從圖中可以看出,在幾百kHz到50MHz的頻段內(nèi),也就是在開(kāi)關(guān)頻率的基波和若干次諧波的頻段內(nèi),干擾噪聲的幅值遠(yuǎn)遠(yuǎn)超過(guò)了GJBl51A所規(guī)定的范圍,因而會(huì)造成系統(tǒng)傳導(dǎo)噪聲等電磁兼容指標(biāo)超標(biāo)。圖2開(kāi)關(guān)電源在電源線上的傳導(dǎo)噪聲頻譜圖2.1共模噪聲電流金屬封裝結(jié)構(gòu)表面貼裝開(kāi)關(guān)電源模塊的整個(gè)電路元器件全部都裝配在基片上。PWM控制片、功率開(kāi)關(guān)管、整流二極管等有源器件全部采用表面貼裝封裝元件,輸入輸出的電壓電流由引線送出。這樣的連接方式雖然構(gòu)成了電路回路,但也給電路帶來(lái)了新的寄生電容Cp,這些寄生電容的分布如圖3所示。圖3開(kāi)關(guān)電源的寄生電容Cp分布在初級(jí)回路中,功率開(kāi)關(guān)管芯片、PWM控制芯片、運(yùn)算放大器芯片、電源正負(fù)輸入線的走線軌跡等都會(huì)與外殼底板之間產(chǎn)生寄生電容Cp,寄生電容的容量大小取決于基片的厚度和它們?cè)诘装迳纤紦?jù)的面積。這樣,在電路中,這些元器件及其走線與外殼底板之間就形成了分布電容Cp1、Cp2、……、Cp6等。這些分布電容在dV/dt、dI/dt及整流二極管反向恢復(fù)電流等共同影響下,就會(huì)引起噪聲電流。這些噪聲電流對(duì)于輸入電源線的正負(fù)之間、以及輸出負(fù)載線的正負(fù)之間大小相等,相位相同,稱之為共模噪聲電流。共模噪聲電流的大小與分布電容的大小、dV/dt、dI/dt等有關(guān)。2.2初級(jí)差模噪聲電流圖4所示是初級(jí)差模干擾電流示意圖。在初級(jí)回路中,功率開(kāi)關(guān)管Q1、高頻變壓器原邊繞組Lp與輸入濾波電容Ci構(gòu)成了開(kāi)關(guān)電源的輸入直流變換回路,這個(gè)變換回路在正常工作時(shí),會(huì)將輸入的直流能量通過(guò)高頻變壓器傳給次級(jí)。但在功率開(kāi)關(guān)管Q1開(kāi)關(guān)時(shí),高頻脈沖的上升和下降所引起的基波及諧波會(huì)沿著輸入濾波電容Ci傳向輸入供電端,這種沿著輸入電源線正負(fù)端傳播的噪聲電流稱之為初級(jí)差模噪聲電流IDIFF。圖4初級(jí)差模噪聲電流示意圖這種差模干擾電流IDIFF經(jīng)輸入電源線流向公共供電端,特別是當(dāng)輸入濾波電容Ci濾波不足時(shí),對(duì)輸入電源線的干擾很大,它還會(huì)通過(guò)公共的供電端干擾系統(tǒng)的其它部分,從而使其它部分的性能指標(biāo)降低。2.3次級(jí)差模噪聲電流圖5次級(jí)差模噪聲電流示意圖次級(jí)差模干擾電流示意圖如圖5所示。在開(kāi)關(guān)電源的次級(jí)回路中,高頻變壓器副邊繞組Ls和整流二極管V2負(fù)責(zé)將輸入的能量傳給負(fù)載。輸出濾波電感L、輸出濾波電容Co對(duì)高頻部分進(jìn)行濾波。整流二極管V2的作用是將次級(jí)繞組的脈沖波整流成直流。脈沖波為高電平時(shí),整流二極管導(dǎo)通,此時(shí)將能量傳給負(fù)載,脈沖波為低電平時(shí)截止,輸出電流通過(guò)V3進(jìn)行續(xù)流。當(dāng)整流二極管V2由導(dǎo)通變?yōu)榻刂箷r(shí),由于二極管的載流子移動(dòng)會(huì)產(chǎn)生很大的反向恢復(fù)電流,這個(gè)反向恢復(fù)電流會(huì)沿著輸出濾波電感和輸出濾波電容傳播到負(fù)載回路中。所以,沿著輸出線傳播的EMI噪聲電流包含有兩個(gè)部分,一部分是正常傳送能量時(shí)所攜帶的開(kāi)關(guān)基頻與諧波的干擾電流,另一部分是二極管反向恢復(fù)電流所引起的干擾電流。這個(gè)沿著輸出線正負(fù)端傳播的噪聲電流是差模噪聲電流IDIFF。這種差模噪聲電流會(huì)給負(fù)載電路帶來(lái)非常不利的影響,特別是輸出濾波電容濾波不足時(shí),表現(xiàn)得特別厲害,它會(huì)影響負(fù)載電路中的模擬電路的靈敏度和數(shù)字電路的門(mén)限等,嚴(yán)重時(shí),還會(huì)導(dǎo)致電路誤觸發(fā),從而引起整個(gè)系統(tǒng)的工作不正常。3噪聲抑制措施抑制電磁干擾(EMI)噪聲應(yīng)該從干擾源、傳播途徑和受擾設(shè)備入手。首先應(yīng)該抑制干擾源,直接消除干擾原因;其次是消除騷擾源和受擾設(shè)備之間的耦合和輻射,切斷電磁干擾的傳播途徑;第三是提高受擾設(shè)備的抗擾能力,減低其對(duì)噪聲的敏感度。常用的方法是屏蔽、接地和濾波。3.1屏蔽屏蔽可以用來(lái)控制電場(chǎng)或磁場(chǎng)從空間的一個(gè)區(qū)域到另一個(gè)區(qū)域的傳播,這是克服電場(chǎng)耦合干擾、。磁場(chǎng)耦合干擾以及電磁輻射干擾的最有效手段。屏蔽的目的是利用導(dǎo)電材料或高磁導(dǎo)率材料來(lái)減少磁場(chǎng)、電場(chǎng)或電磁場(chǎng)的強(qiáng)度。通常采用兩層屏蔽技術(shù),外層屏蔽材料的磁導(dǎo)率不是很高,但是其達(dá)到磁飽和的磁場(chǎng)強(qiáng)度卻很高,內(nèi)層屏蔽材料采用高磁導(dǎo)率,以充分吸收噪聲。圖6屏蔽示意圖發(fā)揮屏蔽效果的關(guān)鍵是如何設(shè)計(jì)屏蔽盒的開(kāi)口和連接部分之間的間隙。必須增多屏蔽盒的連接部分,從而使開(kāi)口和間隙的最長(zhǎng)的邊減至最小。圖7是幾種良好屏蔽示例與不良示例的比較。圖7屏蔽示例比較3.2接地為了阻止電路塊之間出現(xiàn)噪聲干擾,必須減小各個(gè)電路塊之間的GND阻抗,以使來(lái)自各個(gè)電路塊的GND電流不會(huì)互相干擾。通過(guò)加寬和縮短信號(hào)間的接地布局,可減小接地阻抗,這將減小對(duì)地勢(shì)差。通常采用混合接板地方式,如圖8所示。圖8混合接地方式對(duì)于低頻地電流,小電容阻抗很大,該方式相當(dāng)于并行單點(diǎn)接地;對(duì)于高頻電流,該方式相當(dāng)于多點(diǎn)接板地。3.3濾波加裝EMI電源濾波器是抑制EMI噪聲最好的方法之一。在電源輸入端加裝EMI電源濾波器可以獲得雙重效果,它既可以抑制開(kāi)關(guān)電源產(chǎn)生的EMI干擾傳向電源端,亦可抑制來(lái)自電源端的EMI噪聲對(duì)開(kāi)關(guān)電源造成的干擾。在輸出端也可加EMI濾波器。EMI濾波器典型結(jié)構(gòu)如圖9所示。圖9EMI濾波器典型結(jié)構(gòu)該電路由共模濾波電路和差模濾波電路組成。其中Ll和L2是繞在同一磁芯上的兩只獨(dú)立線圈,稱為共模扼流線圈,其所繞線的圈數(shù)相同,線圈繞向相反。這樣,EMI濾波器接入電路后,兩個(gè)線圈內(nèi)共模電流產(chǎn)生的磁通在磁罐內(nèi)將互相抵消,因而不會(huì)使磁罐達(dá)到磁飽和,因此,兩只線圈的電感值能保持不變。其中,L1、L2和兩個(gè)電容Cy構(gòu)成兩個(gè)獨(dú)立端口間的低通濾波器,可以抑制電源線上存在的共模EMI信號(hào),以使這些共模EMI信號(hào)無(wú)法在電源線上進(jìn)行傳導(dǎo)。L3、L4是差模扼流線圈,Cx是差模濾波電容能夠抑制差模信號(hào)。采用EMI濾波器后的濾波效果如圖10所示。有圖可知,噪聲水平一限制在標(biāo)準(zhǔn)線之下。圖10加裝EMI濾波器后的傳導(dǎo)噪聲頻譜圖EMIFIL是由村田制作所推出的產(chǎn)品,可有效濾除EMI噪聲,其內(nèi)部結(jié)構(gòu)、濾波原理與EMI濾波器一樣,抑制噪聲過(guò)程如圖11所示。圖11濾波器工作過(guò)程4總結(jié)如何使整機(jī)通過(guò)電磁兼容測(cè)試是系統(tǒng)設(shè)計(jì)人員越來(lái)越關(guān)心的事情。要全面、系統(tǒng)的解決電磁兼容問(wèn)題,就必須從最初的設(shè)計(jì)和最基礎(chǔ)的原理入手。研究表明,電磁兼容設(shè)計(jì)必須從系統(tǒng)研制的初期(即方案論證階段)開(kāi)始考慮,并應(yīng)貫穿于研制過(guò)程的各個(gè)階段。而且電磁兼容設(shè)計(jì)是實(shí)現(xiàn)系統(tǒng)電磁兼容的關(guān)鍵環(huán)節(jié)。有資料表明,若在產(chǎn)品開(kāi)始研制時(shí)進(jìn)行電磁兼容設(shè)計(jì),大約90%的傳導(dǎo)和輻射干擾都可得到控制,由此可見(jiàn),從EMI噪聲的產(chǎn)生開(kāi)始分析,從中找到抑制EMI噪聲的方法,并孰知有關(guān)的EMI噪聲測(cè)試方法,對(duì)整機(jī)通過(guò)電磁兼容測(cè)試是大有裨益的。開(kāi)關(guān)電源原理(希望能幫到同行的你更加深入的了解開(kāi)關(guān)電源,溫故而知新嗎?。。?/p>
一、開(kāi)關(guān)電源的電路組成[/b]::
開(kāi)關(guān)電源的主要電路是由輸入電磁干擾濾波器(EMI)、整流濾波電路、功率變換電路、PWM控制器電路、輸出整流濾波電路組成。輔助電路有輸入過(guò)欠壓保護(hù)電路、輸出過(guò)欠壓保護(hù)電路、輸出過(guò)流保護(hù)電路、輸出短路保護(hù)電路等。
開(kāi)關(guān)電源的電路組成方框圖如下:二、輸入電路的原理及常見(jiàn)電路[/b]::
1、AC輸入整流濾波電路原理:①防雷電路:當(dāng)有雷擊,產(chǎn)生高壓經(jīng)電網(wǎng)導(dǎo)入電源時(shí),由MOV1、MOV2、MOV3:F1、F2、F3、FDG1組成的電路進(jìn)行保護(hù)。當(dāng)加在壓敏電阻兩端的電壓超過(guò)其工作電壓時(shí),其阻值降低,使高壓能量消耗在壓敏電阻上,若電流過(guò)大,F(xiàn)1、F2、F3會(huì)燒毀保護(hù)后級(jí)電路。
②輸入濾波電路:C1、L1、C2、C3組成的雙π型濾波網(wǎng)絡(luò)主要是對(duì)輸入電源的電磁噪聲及雜波信號(hào)進(jìn)行抑制,防止對(duì)電源干擾,同時(shí)也防止電源本身產(chǎn)生的高頻雜波對(duì)電網(wǎng)干擾。當(dāng)電源開(kāi)啟瞬間,要對(duì)C5充電,由于瞬間電流大,加RT1(熱敏電阻)就能有效的防止浪涌電流。因瞬時(shí)能量全消耗在RT1電阻上,一定時(shí)間后溫度升高后RT1阻值減?。≧T1是負(fù)溫系數(shù)元件),這時(shí)它消耗的能量非常小,后級(jí)電路可正常工作。
③整流濾波電路:交流電壓經(jīng)BRG1整流后,經(jīng)C5濾波后得到較為純凈的直流電壓。若C5容量變小,輸出的交流紋波將增大。
2、DC輸入濾波電路原理:①輸入濾波電路:C1、L1、C2組成的雙π型濾波網(wǎng)絡(luò)主要是對(duì)輸入電源的電磁噪聲及雜波信號(hào)進(jìn)行抑制,防止對(duì)電源干擾,同時(shí)也防止電源本身產(chǎn)生的高頻雜波對(duì)電網(wǎng)干擾。C3、C4為安規(guī)電容,L2、L3為差模電感。
②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7組成抗浪涌電路。在起機(jī)的瞬間,由于C6的存在Q2不導(dǎo)通,電流經(jīng)RT1構(gòu)成回路。當(dāng)C6上的電壓充至Z1的穩(wěn)壓值時(shí)Q2導(dǎo)通。如果C8漏電或后級(jí)電路短路現(xiàn)象,在起機(jī)的瞬間電流在RT1上產(chǎn)生的壓降增大,Q1導(dǎo)通使Q2沒(méi)有柵極電壓不導(dǎo)通,RT1將會(huì)在很短的時(shí)間燒毀,以保護(hù)后級(jí)電路。
三、功率變換電路[/b]::
1、MOS管的工作原理:目前應(yīng)用最廣泛的絕緣柵場(chǎng)效應(yīng)管是MOSFET(MOS管),是利用半導(dǎo)體表面的電聲效應(yīng)進(jìn)行工作的。也稱為表面場(chǎng)效應(yīng)器件。由于它的柵極處于不導(dǎo)電狀態(tài),所以輸入電阻可以大大提高,最高可達(dá)105歐姆,MOS管是利用柵源電壓的大小,來(lái)改變半導(dǎo)體表面感生電荷的多少,從而控制漏極電流的大小。
2、常見(jiàn)的原理圖:
3、工作原理:
R4、C3、R5、R6、C4、D1、D2組成緩沖器,和開(kāi)關(guān)MOS管并接,使開(kāi)關(guān)管電壓應(yīng)力減少,EMI減少,不發(fā)生二次擊穿。在開(kāi)關(guān)管Q1關(guān)斷時(shí),變壓器的原邊線圈易產(chǎn)生尖峰電壓和尖峰電流,這些元件組合一起,能很好地吸收尖峰電壓和電流。從R3測(cè)得的電流峰值信號(hào)參與當(dāng)前工作周波的占空比控制,因此是當(dāng)前工作周波的電流限制。當(dāng)R5上的電壓達(dá)到1V時(shí),UC3842停止工作,開(kāi)關(guān)管Q1立即關(guān)斷。
R1和Q1中的結(jié)電容CGS、CGD一起組成RC網(wǎng)絡(luò),電容的充放電直接影響著開(kāi)關(guān)管的開(kāi)關(guān)速度。R1過(guò)小,易引起振蕩,電磁干擾也會(huì)很大;R1過(guò)大,會(huì)降低開(kāi)關(guān)管的開(kāi)關(guān)速度。Z1通常將MOS管的GS電壓限制在18V以下,從而保護(hù)了MOS管。
Q1的柵極受控電壓為鋸形波,當(dāng)其占空比越大時(shí),Q1導(dǎo)通時(shí)間越長(zhǎng),變壓器所儲(chǔ)存的能量也就越多;當(dāng)Q1截止時(shí),變壓器通過(guò)D1、D2、R5、R4、C3釋放能量,同時(shí)也達(dá)到了磁場(chǎng)復(fù)位的目的,為變壓器的下一次存儲(chǔ)、傳遞能量做好了準(zhǔn)備。IC根據(jù)輸出電壓和電流時(shí)刻調(diào)整著⑥腳鋸形波占空比的大小,從而穩(wěn)定了整機(jī)的輸出電流和電壓。
C4和R6為尖峰電壓吸收回路。
4、推挽式功率變換電路:
Q1和Q2將輪流導(dǎo)通。5、有驅(qū)動(dòng)變壓器的功率變換電路:T2為驅(qū)動(dòng)變壓器,T1為開(kāi)關(guān)變壓器,TR1為電流環(huán)。四、輸出整流濾波電路[/b]::
1、正激式整流電路:
T1為開(kāi)關(guān)變壓器,其初極和次極的相位同相。D1為整流二極管,D2為續(xù)流二極管,R1、C1、R2、C2為削尖峰電路。L1為續(xù)流電感,C4、L2、C5組成π型濾波器。
2、反激式整流電路:
T1為開(kāi)關(guān)變壓器,其初極和次極的相位相反。D1為整流二極管,R1、C1為削尖峰電路。L1為續(xù)流電感,R2為假負(fù)載,C4、L2、C5組成π型濾波器。
3、同步整流電路:
工作原理:當(dāng)變壓器次級(jí)上端為正時(shí),電流經(jīng)C2、R5、R6、R7使Q2導(dǎo)通,電路構(gòu)成回路,Q2為整流管。Q1柵極由于處于反偏而截止。當(dāng)變壓器次級(jí)下端為正時(shí),電流經(jīng)C3、R4、R2使Q1導(dǎo)通,Q1為續(xù)流管。Q2柵極由于處于反偏而截止。L2為續(xù)流電感,C6、L1、C7組成π型濾波器。R1、C1、R9、C4為削尖峰電路。
五、穩(wěn)壓環(huán)路原理[/b]:
1、反饋電路原理圖:
2、工作原理:
當(dāng)輸出U0升高,經(jīng)取樣電阻R7、R8、R10、VR1分壓后,U1③腳電壓升高,當(dāng)其超過(guò)U1②腳基準(zhǔn)電壓后U1①腳輸出高電平,使Q1導(dǎo)通,光耦OT1發(fā)光二極管發(fā)光,光電三極管導(dǎo)通,UC3842①腳電位相應(yīng)變低,從而改變U1⑥腳輸出占空比減小,U0降低。
當(dāng)輸出U0降低時(shí),U1③腳電壓降低,當(dāng)其低過(guò)U1②腳基準(zhǔn)電壓后U1①腳輸出低電平,Q1不導(dǎo)通,光耦OT1發(fā)光二極管不發(fā)光,光電三極管不導(dǎo)通,UC3842①腳電位升高,從而改變U1⑥腳輸出占空比增大,U0降低。周而復(fù)始,從而使輸出電壓保持穩(wěn)定。調(diào)節(jié)VR1可改變輸出電壓值。
反饋環(huán)路是影響開(kāi)關(guān)電源穩(wěn)定性的重要電路。如反饋電阻電容錯(cuò)、漏、虛焊等,會(huì)產(chǎn)生自激振蕩,故障現(xiàn)象為:波形異常,空、滿載振蕩,輸出電壓不穩(wěn)定等。
由于版面有限,還有很多沒(méi)上傳,有空會(huì)上傳上去。如果你急需要看全文的話,可以留個(gè)郵箱。
六、短路保護(hù)電路:
1、在輸出端短路的情況下,PWM控制電路能夠把輸出電流限制在一個(gè)安全范圍內(nèi),它可以用多種方法來(lái)實(shí)現(xiàn)限流電路,當(dāng)功率限流在短路時(shí)不起作用時(shí),只有另增設(shè)一部分電路。
2、短路保護(hù)電路通常有兩種,下圖是小功率短路保護(hù)電路,其原理簡(jiǎn)述如下:當(dāng)輸出電路短路,輸出電壓消失,光耦OT1不導(dǎo)通,UC3842①腳電壓上升至5V左右,R1與R2的分壓超過(guò)TL431基準(zhǔn),使之導(dǎo)通,UC3842⑦腳VCC電位被拉低,IC停止工作。UC3842停止工作后①腳電位消失,TL431不導(dǎo)通UC3842⑦腳電位上升,UC3842重新啟動(dòng),周而復(fù)始。當(dāng)短路現(xiàn)象消失后,電路可以自動(dòng)恢復(fù)成正常工作狀態(tài)。
3、下圖是中功率短路保護(hù)電路,其原理簡(jiǎn)述如下:
當(dāng)輸出短路,UC3842①腳電壓上升,U1③腳
電位高于②腳時(shí),比較器翻轉(zhuǎn)①腳輸出高電位,給
C1充電,當(dāng)C1兩端電壓超過(guò)⑤腳基準(zhǔn)電壓時(shí)
U1⑦腳輸出低電位,UC3842①腳低于1V,UCC3842
停止工作,輸出電壓為0V,周而復(fù)始,當(dāng)短路
消失后電路正常工作。R2、C1是充放電時(shí)間常數(shù),
阻值不對(duì)時(shí)短路保護(hù)不起作用。
4、下圖是常見(jiàn)的限流、短路保護(hù)電路。其工作原理簡(jiǎn)述如下:
當(dāng)輸出電路短路或過(guò)流,變壓器原邊電流增大,R3
兩端電壓降增大,③腳電壓升高,UC3842⑥腳輸出占空
比逐漸增大,③腳電壓超過(guò)1V時(shí),UC3842關(guān)閉無(wú)輸出。
5、下圖是用電流互感器取樣電流的保護(hù)電路,有
著功耗小,但成本高和電路較為復(fù)雜,其工作原
理簡(jiǎn)述如下:
輸出電路短路或電流過(guò)大,TR1次級(jí)線圈感
應(yīng)的電壓就越高,當(dāng)UC3842③腳超過(guò)1伏,UC3842
停止工作,周而復(fù)始,當(dāng)短路或過(guò)載消失,電路自行恢復(fù)。
七、輸出端限流保護(hù):]:
上圖是常見(jiàn)的輸出端限流保護(hù)電路,其工作原理簡(jiǎn)述如上圖:當(dāng)輸出電流過(guò)大時(shí),RS(錳銅絲)兩端電壓上升,U1③腳電壓高于②腳基準(zhǔn)電壓,U1①腳輸出高電壓,Q1導(dǎo)通,光耦發(fā)生光電效應(yīng),UC3842①腳電壓降低,輸出電壓降低,從而達(dá)到輸出過(guò)載限流的目的。
八、輸出過(guò)壓保護(hù)電路的原理:
輸出過(guò)壓保護(hù)電路的作用是:當(dāng)輸出電壓超過(guò)設(shè)計(jì)值時(shí),把輸出電壓限定在一安全值的范圍內(nèi)。當(dāng)開(kāi)關(guān)電源內(nèi)部穩(wěn)壓環(huán)路出現(xiàn)故障或者由于用戶操作不當(dāng)引起輸出過(guò)壓現(xiàn)象時(shí),過(guò)壓保護(hù)電路進(jìn)行保護(hù)以防止損壞后級(jí)用電設(shè)備。應(yīng)用最為普遍的過(guò)壓保護(hù)電路有如下幾種:
1、可控硅觸發(fā)保護(hù)電路:
如上圖,當(dāng)Uo1輸出升高,穩(wěn)壓管(Z3)擊穿導(dǎo)通,可控硅(SCR1)的控制端得到觸發(fā)電壓,因此可控硅導(dǎo)通。Uo2電壓對(duì)地短路,過(guò)流保護(hù)電路或短路保護(hù)電路就會(huì)工作,停止整個(gè)電源電路的工作。當(dāng)輸出過(guò)壓現(xiàn)象排除,可控硅的控制端觸發(fā)電壓通過(guò)R對(duì)地泄放,可控硅恢復(fù)斷開(kāi)狀態(tài)。
2、光電耦合保護(hù)電路:
如上圖,當(dāng)Uo有過(guò)壓現(xiàn)象時(shí),穩(wěn)壓管擊穿導(dǎo)通,經(jīng)光耦(OT2)R6到地產(chǎn)生電流流過(guò),光電耦合器的發(fā)光二極管發(fā)光,從而使光電耦合器的光敏三極管導(dǎo)通。Q1基極得電導(dǎo)通,
3842的③腳電降低,使IC關(guān)閉,停止整個(gè)電源的工作,Uo為零,周而復(fù)始,。
3、輸出限壓保護(hù)電路:
輸出限壓保護(hù)電路如下圖,當(dāng)輸出電壓升高,穩(wěn)壓管導(dǎo)通光耦導(dǎo)通,Q1基極有驅(qū)動(dòng)電壓而道通,UC3842③電壓升高,輸出降低,穩(wěn)壓管不導(dǎo)通,UC3842③電壓降低,輸出電壓升高。周而復(fù)始,輸出電壓將穩(wěn)定在一范圍內(nèi)(取決于穩(wěn)壓管的穩(wěn)壓值)。
4、輸出過(guò)壓鎖死電路:
圖A的工作原理是,當(dāng)輸出電壓Uo升高,穩(wěn)壓管導(dǎo)通,光耦導(dǎo)通,Q2基極得電導(dǎo)通,由于Q2的導(dǎo)通Q1基極電壓降低也導(dǎo)通,Vcc電壓經(jīng)R1、Q1、R2使Q2始終導(dǎo)通,UC3842③腳始終是高電平而停止工作。在圖B中,UO升高U1③腳電壓升高,①腳輸出高電平,由于D1、R1的存在,U1①腳始終輸出高電平Q1始終導(dǎo)通,UC3842①腳始終是低電平而停止工作。
九、功率因數(shù)校正電路(PFC):
1、原理示意圖:
2、工作原理:
輸入電壓經(jīng)L1、L2、L3等組成的EMI濾波器,BRG1整流一路送PFC電感,另一路經(jīng)R1、R2分壓后送入PFC控制器作為輸入電壓的取樣,用以調(diào)整控制信號(hào)的占空比,即改變Q1的導(dǎo)通和關(guān)斷時(shí)間,穩(wěn)定PFC輸出電壓。L4是PFC電感,它在Q1導(dǎo)通時(shí)儲(chǔ)存能量,在Q1關(guān)斷時(shí)施放能量。D1是啟動(dòng)二極管。D2是PFC整流二極管,C6、C7濾波。PFC電壓一路送后級(jí)電路,另一路經(jīng)R3、R4分壓后送入PFC控制器作為PFC輸出電壓的取樣,用以調(diào)整控制信號(hào)的占空比,穩(wěn)定PFC輸出電壓。
十、輸入過(guò)欠壓保護(hù):
1、原理圖:
2、工作原理:
AC輸入和DC輸入的開(kāi)關(guān)電源的輸入過(guò)欠壓保護(hù)原理大致相同。保護(hù)電路的取樣電壓均來(lái)自輸入濾波后的電壓。
取樣電壓分為兩路,一路經(jīng)R1、R2、R3、R4分壓后輸入比較器3腳,如取樣電壓高于2腳基準(zhǔn)電壓,比較器1腳輸出高電平去控制主控制器使其關(guān)斷,電源無(wú)輸出。另一路經(jīng)R7、R8、R9、R10分壓后輸入比較器6腳,如取樣電壓低于5腳基準(zhǔn)電壓,比較器7腳輸出高電平去控制主控制器使其關(guān)斷,電源無(wú)輸出。
十一、電池管理:
1、電池管理原理圖:
虛線框A內(nèi)的零件組成電池啟動(dòng)和關(guān)斷電路;虛線框B為電池充電線性穩(wěn)壓電路;虛線框C為電子開(kāi)關(guān)電路;虛線框D為電池充電電流限制電路。
2、電池啟動(dòng)原理:
輸入電壓由INPUT和AGND端輸入,分為三路。第一路經(jīng)D7直接送后級(jí)和電池啟動(dòng)、關(guān)斷電路。R28、R27、R26分壓后的電壓使U3導(dǎo)通(此電壓在設(shè)計(jì)時(shí)已計(jì)算好了,正常工作時(shí)高于2.5V),光藕OT1導(dǎo)通。R25為U3提供工作電壓,R23、R24為光藕的限流及保護(hù)電阻。
光藕導(dǎo)通后電源經(jīng)R22、OT1、D9給Q4提供基極偏置電壓,Q4導(dǎo)通,R21為Q4的下偏置電阻。繼電器RLY1-A的線圈中有電流流過(guò),繼電器觸點(diǎn)RLY1-B吸合,將電池BAT接入電路中。D4為阻止在Q4關(guān)斷時(shí)繼電器線圈產(chǎn)生的電動(dòng)勢(shì)影響后級(jí)電路,D5為防止在Q4關(guān)斷時(shí)繼電器線圈產(chǎn)生的電動(dòng)勢(shì)損壞Q4,將繼電器線圈產(chǎn)生的能量釋放。
3、電池充電穩(wěn)壓原理:
在通電的初期,由于Q3沒(méi)有偏置而不導(dǎo)通,D3的正端無(wú)電壓。電源經(jīng)R1降壓Z1穩(wěn)壓后給U1和U2提供工作電壓。R2、U1組成基準(zhǔn)電壓,R13、R4、R5、R6、VR1組成電池電壓檢測(cè)電路,當(dāng)U2②腳檢測(cè)電壓低于③腳電壓時(shí),其①腳輸出高電平,經(jīng)R14給Q2提供偏置電壓,Q2導(dǎo)通、Q3也跟著導(dǎo)通,電源經(jīng)Q3、D3、繼電器觸點(diǎn)RLY1-B、F1給電池BAT充電。
當(dāng)U2②腳檢測(cè)電壓高于③腳電壓時(shí),其①腳輸出低電平,Q2失去偏置電壓而截止,Q3截止,D3的正端無(wú)電壓,其負(fù)極電壓下降,U2②腳檢測(cè)電壓也跟著下降,當(dāng)U2②腳檢測(cè)電壓低于③腳電壓時(shí),其①腳輸出高電平,Q2、Q3導(dǎo)通繼續(xù)充電,如此周而復(fù)始,使D3的負(fù)端電壓維持在某一設(shè)定值。調(diào)節(jié)VR1可以改變充電電壓值。
4、電池充電限流原理:>
在充電的過(guò)程中,電流經(jīng)Q3、RLY1-B、F1、BAT、R20回到地(AG
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度人工智能產(chǎn)業(yè)投資轉(zhuǎn)借款合作協(xié)議模板3篇
- 國(guó)防建設(shè)知識(shí)
- 二零二五年度個(gè)人知識(shí)產(chǎn)權(quán)侵權(quán)糾紛授權(quán)委托書(shū)3篇
- 二零二五年度商場(chǎng)消防安全責(zé)任協(xié)議書(shū)3篇
- 二零二五年度城市停車(chē)場(chǎng)信息化建設(shè)承包協(xié)議3篇
- 二零二五年辦公樓智能安防與保潔服務(wù)合同3篇
- 二零二五版海洋石油鉆井平臺(tái)外派海員聘用合同范本3篇
- 二零二五年度商品房團(tuán)購(gòu)項(xiàng)目合作代理協(xié)議3篇
- 二零二五年度高校研究生學(xué)術(shù)交流活動(dòng)合作協(xié)議3篇
- 藝術(shù)地坪施工方案
- 4.1中國(guó)特色社會(huì)主義進(jìn)入新時(shí)代+課件-2024-2025學(xué)年高中政治統(tǒng)編版必修一中國(guó)特色社會(huì)主義
- 班級(jí)建設(shè)方案中等職業(yè)學(xué)校班主任能力大賽
- T-TJSG 001-2024 天津市社會(huì)組織社會(huì)工作專業(yè)人員薪酬指導(dǎo)方案
- 人教版九上化學(xué)第二單元課題2氧氣課件
- 中頻治療儀的使用流程
- 梁湘潤(rùn)《子平基礎(chǔ)概要》簡(jiǎn)體版
- 圖形的位似課件
- 調(diào)料廠工作管理制度
- 人教版《道德與法治》四年級(jí)下冊(cè)教材簡(jiǎn)要分析課件
- 2023年MRI技術(shù)操作規(guī)范
- 辦公用品、易耗品供貨服務(wù)方案
評(píng)論
0/150
提交評(píng)論