HeavyDutyTruckCoolingSystemDesignUsingCoSimulation-重型汽車?yán)鋮s系統(tǒng)設(shè)計(jì)方案中的協(xié)同仿真應(yīng)用_第1頁
HeavyDutyTruckCoolingSystemDesignUsingCoSimulation-重型汽車?yán)鋮s系統(tǒng)設(shè)計(jì)方案中的協(xié)同仿真應(yīng)用_第2頁
HeavyDutyTruckCoolingSystemDesignUsingCoSimulation-重型汽車?yán)鋮s系統(tǒng)設(shè)計(jì)方案中的協(xié)同仿真應(yīng)用_第3頁
HeavyDutyTruckCoolingSystemDesignUsingCoSimulation-重型汽車?yán)鋮s系統(tǒng)設(shè)計(jì)方案中的協(xié)同仿真應(yīng)用_第4頁
HeavyDutyTruckCoolingSystemDesignUsingCoSimulation-重型汽車?yán)鋮s系統(tǒng)設(shè)計(jì)方案中的協(xié)同仿真應(yīng)用_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

HeavyDutyTruckCoolingSystemDesignUsingCo-Simulation重型汽車?yán)鋮s系統(tǒng)設(shè)計(jì)中的協(xié)同仿真應(yīng)用ABSTRACT摘要Inordertomeetthelegislatedemissionslevels,futuredieselengineswilllikelyutilizecooledexhaustgasre-circulation(EGR)toreducee(cuò)missions。TheadditionoftheEGRcoolertotheconventionalvehiclecoolantsystemcreatesseveralchallenges.Firstly,theenginecoolingsystemflowandheatrejectionrequirementsbothincreaseasitislikelythatsomeEGRwillberequiredattheratedpowercondition.Thisadverselyaffectspackagingandfueleconomy.Thesystemdesignisfurthercomplicat(yī)edbythefactthatthepeakdutyoftheEGRcooleroccursatpartload,lowspee(cuò)dconditions,whereasthecoolingsystemistraditionallydesignedtohandlemaximumheatdutiesat(yī)therat(yī)edpowerconditionoftheengine.Toaddressthesystemdesignchallenges,RicardohaveundertakenananalyticalstudytoevaluatetheperformanceofdifferentcoolingsystemstrategieswhichincorporateEGRcoolers.Thiswasachievedbyperformingaco-simulationusingcommerciallyavailable1—dimensionalcodes.為了符合法規(guī)的排放水平,將來的柴油發(fā)動(dòng)機(jī)將有可能采納冷卻時(shí)廢氣再循環(huán)(EGR)技術(shù),以削減溫室氣體排放。增加的廢氣再循環(huán)(EGR)冷卻器給常規(guī)汽車?yán)鋮s系統(tǒng)也帶來肯定挑戰(zhàn)。首先,由于增加的廢氣再循環(huán)(EGR)可能會(huì)導(dǎo)致發(fā)動(dòng)機(jī)冷卻系統(tǒng)的流量和散熱的額定功率增大。這對(duì)發(fā)動(dòng)機(jī)的包裝和燃油經(jīng)濟(jì)性有格外不利的影響。由于廢氣再循環(huán)(EGR)冷卻器的增加導(dǎo)致該系統(tǒng)設(shè)計(jì)更加簡潔是個(gè)現(xiàn)實(shí)問題,格外是在部分負(fù)載和低轉(zhuǎn)速條件下,而冷卻系統(tǒng)通常被設(shè)計(jì)處理的是在額定功率情況下的最大熱負(fù)荷時(shí)的發(fā)動(dòng)機(jī)工況。為了解決系統(tǒng)設(shè)計(jì)的挑戰(zhàn),里卡多進(jìn)行了大量的分析討論,以評(píng)估不同性能的冷卻系統(tǒng)的策略,其中包括EGR冷卻器。這是通過使用市面上一維協(xié)同仿真代碼。INTRODUCTION引言Thecoolantsystemofcurrentvehiclesisalreadylimitedonperformanceduetopackageandstylingconstraints.Thus,anyfutureincrementaldemandsonthecoolantsystemwillnee(cuò)dtobemanagedeffectivelysoastoremainwithintheseconstraints.Further,thedrivetoincreasefueleconomy,particularlyintheClass7&8trucks,requiresreduceddragcoefficientsandfrontalarea.Sincethecoolingpackinthevehiclehasamajorinfluenceonfrontalarea,itisimportantthatthethermalmanagementofthecoolingrequirementsbegivenahighpriority。由于包裝和造型的限制,當(dāng)前車輛冷卻系統(tǒng)的性能已經(jīng)格外有限。因此,將來在冷卻液系統(tǒng)上的任何增量式改進(jìn)都需要被有效地管理,以便滿意這些限制和約束。此外,推動(dòng)提高燃油經(jīng)濟(jì)性,格外是7和8類卡車,需要降低風(fēng)阻系數(shù)和迎風(fēng)面積.由于車輛中的冷卻組件對(duì)迎風(fēng)面積有重大影響,所以給與對(duì)散熱管理高度重視是很有必要的。ItisalsoanticipatedthatfuturedieselengineswillmakeuseofcooledEGRinordertomeettheperformanceandemissionslevelsrequired.Thisplacesfurtherdemandsonthecoolingsystemthatneedtobemanagedappropriately.Traditionally,theheatrejectedtocoolingsystemsbytheenginepeakaroundtheratedpowerconditionoftheengine,asillustratedinFigure1.Thisplotalsoillustratesthattheheatrejectedbytheengineatlowspee(cuò)dsandloadsisrelativelysmallcomparedtothepeaklevel。Infact,inmostapplicationsthecoolingcapacityonthecoolantsideismorethanenoughtocopewiththedemand.我們估計(jì),將來柴油發(fā)動(dòng)機(jī)使用EGR冷卻,以滿意性能的需要和排放水平的需求。這個(gè)冷卻系統(tǒng)的進(jìn)一步改進(jìn)需要進(jìn)行適當(dāng)?shù)墓芾?。傳統(tǒng)上,在發(fā)動(dòng)機(jī)額定功率工況四周的發(fā)動(dòng)機(jī)峰值時(shí)拒絕熱冷卻系統(tǒng),如圖1所示。這一點(diǎn)也體現(xiàn)了熱拒絕了發(fā)動(dòng)機(jī)在低速和負(fù)荷相對(duì)比較小時(shí)的峰值水平.事實(shí)上,在大多數(shù)應(yīng)用中的冷卻能力冷卻一側(cè)不僅僅是足以應(yīng)付需要。Figure1.TypicalTruckEngineHeatRejectionToCoolant圖1.典型的汽車發(fā)動(dòng)散熱冷卻Figure2.ExampleOfTruckEngineEGRStrategy(EGRRate)Nee(cuò)dedToMeetUSFedTransientTest圖2.滿意美國聯(lián)邦瞬態(tài)試驗(yàn)需求的汽車發(fā)動(dòng)機(jī)廢氣再循環(huán)策略(EGR)的范例AtypicalstrategyforEGRfortruckdieselengines,overtheoperatingrangeofthee(cuò)ngine,isshowninFigure2。在發(fā)動(dòng)機(jī)額定工作范圍內(nèi)的一個(gè)典型的卡車柴油發(fā)動(dòng)機(jī)的廢氣再循環(huán)策略,如圖2所示。FromthisitcanbeseenthatthehighlevelsofEGRoccuratthepartloadandpartspeedconditions。Takingintoaccountthetotalmassflowrateofexhaustgasandtheexhaustgastemperature,therequiredheat(yī)rejectionfromtheEGRcanbecalculated.Figure3showsaplotofEGRheatrejectionforatruckengine.從這可以看出,在部分負(fù)荷和部分速度條件下產(chǎn)生高水平的廢氣再循環(huán).考慮到排氣氣體的總質(zhì)量流速和排氣溫度,所需的熱量抑制從廢氣再循環(huán)可以計(jì)算出來。圖3所示的是卡車發(fā)動(dòng)機(jī)的廢氣再循環(huán)散熱曲線。Figure3.TypicalTruckEngineEGRHeatRejection。圖3.典型的卡車發(fā)動(dòng)機(jī)廢氣再循環(huán)散熱曲線AsaresultofthedifferenceincoolingrequirementsbetweentheengineandtheEGRcooler,itisimportantthatthecoolantsystemisdesignedsuchthatbothneedsaremeetwhilstmaintainingaminimumfuelconsumption。Hencethewat(yī)erpumpwillnowneedtodelivercoolantat(yī)acorrecttemperatureandflowratetotheEGRcoolerat(yī)lowenginespeed,withoutproducingexcesscoolantflowratesandpressurerisesatrat(yī)edenginespeedandtoavoidboilingintheEGRcooler。Also,engineandpassengercompartmentwarmuptimeisaconcernforemissionsandpassengercomfortneeds.Thus,theincorporationoftheEGRcoolerneedstominimizeanypenaltyincoolingsystem.由于在發(fā)動(dòng)機(jī)和EGR冷卻器之間的不同冷卻需求的原因,同時(shí)以滿意這兩個(gè)需求的冷卻系統(tǒng)的設(shè)計(jì)是格外重要的,同時(shí)還必須保證最小的燃油消耗。因此,在發(fā)動(dòng)機(jī)低速時(shí)水泵需要供應(yīng)恰當(dāng)溫度和流速的冷卻水到EGR冷卻器,在發(fā)動(dòng)機(jī)額定轉(zhuǎn)速情況下沒有產(chǎn)生過大的冷卻水流量和壓力上升,避開在廢氣EGR冷卻器里沸騰.此外,發(fā)動(dòng)機(jī)和乘客艙預(yù)熱時(shí)間是一個(gè)關(guān)系到發(fā)動(dòng)機(jī)排放和乘客舒適度的需求。因此,把EGR冷卻器對(duì)冷卻系統(tǒng)的反饋盡量削減。Obviously,morecomplexcontrolledcoolantsystemscanbedesignedtocopewiththesedemandsrelativelyeasily。However,toderiveadesignthatbestmeetstheneedsforfueleconomy,emissions,passengercomfortand,alsoimportantly,cost,amoredetailedanalysisofalltheoptionsavailableisnecessary.很顯然,用更簡潔的冷卻系統(tǒng)掌握設(shè)計(jì)來應(yīng)付這些需求相對(duì)比較容易。然而,為了獲得最好的設(shè)計(jì),為了獲得最恰當(dāng)?shù)娜加徒?jīng)濟(jì)性、排放、乘員的舒適性、以及更簡略地成本,這都是最有必要的。Traditionally,thesesystemshave,somewhat,bee(cuò)ndesignedinisolation.That(yī)is,thecoolantsystemdesignerhaslittleunderstandingoftheimpactofthecoolantsystemonengineperformanceandviceversa。Also,thecontrolsenginee(cuò)rwillimplementstrategiesbasedondiscussionwiththesystemsengineersbutwillhavelittledirectexperienceonhowhisfunctioninfluencestheoverallsystemsperformance。Thus,thereisanee(cuò)dtolookat(yī)alltheimplicationsonthecoolantsystemdesignofalargetruckengineduetotheincorporationofcooledEGR.傳統(tǒng)上,這些系統(tǒng)有時(shí)被孤立地設(shè)計(jì).那是由于,冷卻系統(tǒng)的工程師很少了解冷卻系統(tǒng)對(duì)發(fā)動(dòng)機(jī)性能的影響,反之亦然。此外,掌握工程師在實(shí)施掌握策略時(shí)是基于系統(tǒng)工程師的商量結(jié)果的,但是很少有直接的閱歷了解該系統(tǒng)是如何影響整體系統(tǒng)性能的。因此,有必要仔細(xì)討論當(dāng)一個(gè)大卡車發(fā)動(dòng)機(jī)由于增加了冷卻的廢氣再循環(huán)系統(tǒng)對(duì)汽車?yán)鋮s系統(tǒng)的影響。InordertodothisRicardohavedevelopeddetailedmodelsthat(yī)couldsimulatethedynamicsysteminteractionbetweenengine,EGRandcoolingsystem。Thiswasachievedbyperformingaco-simulationusingcommerciallyavailable1-dimensionalcodesforengineandEGRsystem(WAVE),thermal-fluidanalysis(FLOWMASTER?)andcontrolsystemanalysis(MATLAB?Simulink?).Theintentionofthisanalysistoolistoaidinthedesignofthecoolantsystemaswellastohelpcalibratethevehiclecontroller.為了做到這一點(diǎn),里卡多已經(jīng)制作出簡略的模型,可以模擬發(fā)動(dòng)機(jī),廢氣再循環(huán)及冷卻系統(tǒng)的動(dòng)態(tài)系統(tǒng)之間的相互作用。這是通過執(zhí)行一個(gè)使用可用一維代碼的發(fā)動(dòng)機(jī)和廢氣再循環(huán)系統(tǒng)(WAVE)聯(lián)合仿真,以及(FLOWMASTEREQ\o\ac(○,R))熱流體分析和(MATLABEQ\o\ac(○,R)SIMULINKEQ\o\ac(○,R))掌握系統(tǒng)分析。本文所說的分析工具可以幫助設(shè)計(jì)冷卻系統(tǒng),以及幫助校準(zhǔn)車輛掌握器.Thispaperdetailsthedevelopmentofthevehiclemodelco-simulation,itsusetoevaluatedifferentcoolingsystemoptions,andsomeobservationsonpotentialfueleconomysavings。Theworkincludesaninvestigationofactivecomponentsincludingsolenoidcoolantvalvesandanelectricwaterpump。本文簡略介紹了汽車聯(lián)合仿真模型的進(jìn)展,評(píng)估其使用不同的冷卻系統(tǒng)的效果,以及潛在的節(jié)省了燃油經(jīng)濟(jì)性上的一些建議。這項(xiàng)工作包括討論主動(dòng)組件,并包括電磁冷卻閥和電動(dòng)水泵.CO-SIMULATIONBACKGROUND仿真背景Thetermco-simulationisoftenusedtodescribevarioustypesofanalysisandthusitisworthprovidingsomediscussionastohowitisusedhere。Thesimplestmethodofanalysisistoderiveamodelinasinglecodethat(yī)simulatesasystemormultiplesystems.Thishaslimitationsduetothelevelofcomplexitynee(cuò)dedandthefactthat(yī)therearededicat(yī)edcodesdesignedtomodelspecificsystemsthataremoree(cuò)ffective。Veryoftenthenextstepistobuildmorecomplexmodelsinindividualcodes.Thedatatransferbetweenthesecodesisconductedoff-line(i。e.theoutputdatafromthefirstsimulat(yī)ionismanuallyinputintoanothersimulationtorun)。Thisisusefulsinceeachmodelrunsseparatelyandthusquicklyandareasonablelevelofcomplexitycanbesimulated。However,togaintruetransientcapabilityandtoincreasethelevelofinteractionbetwee(cuò)nsystemsitisnecessarytolinkthesemodelsdynamically.Co—simulationhasbeeninvestigatedforotherapplicationsandthebenefitsofitdiscussedinotherpublications[1].協(xié)同仿真這個(gè)術(shù)語是常常被用來描述不同類型的分析,因此把它用在這里需要值得商量.最簡潔的方法是分析得出一個(gè)模擬了一個(gè)系統(tǒng)或多個(gè)系統(tǒng)的一個(gè)單一代碼的模型。這有它的局限性,由于其簡潔性的需要,事實(shí)上簡略系統(tǒng)的專有代碼設(shè)計(jì)模型會(huì)更有效果。通常下一步是建立更簡潔的個(gè)別代碼模型.這兩者之間的代碼數(shù)據(jù)傳輸采納離線方式(即從第一模擬的輸出數(shù)據(jù)是手動(dòng)輸入到另一個(gè)模擬運(yùn)行)。這是格外有用的,由于每個(gè)模型是分開運(yùn)行,所以可以快速模擬出恰當(dāng)?shù)暮啙嵆潭?然而,為獲得真正的瞬態(tài)性能和提高系統(tǒng)之間相互作用的水平,將這些模型的動(dòng)態(tài)鏈接是格外有必要的。仿真討論了其他應(yīng)用程序和商量過的其他出版物的好處.Trueco-simulation,asconductedinthisstudy,involveswritingcodetolinkthevarioussub-models,indifferentsoftwarecodes,suchthat(yī)thesub-modelssolvetogetherinparallelandcommunicatewitheachotherattherequiredtime-steps.Inthisstudy,threecommerciallyavailable1-dimensionalcodesarelinkedinthismannerinordertocreateacompletemodelofengineperformance(includinggasdynamics),coolantsystemandcontrolsystem.為進(jìn)行這樣討論,真正的聯(lián)合仿真是在不同的軟件代碼間編寫代碼來連接各子模型,并在規(guī)定的時(shí)間步長內(nèi)將子模型并聯(lián)在一起,并相互溝通.在這個(gè)討論中,三個(gè)商用的一維代碼以這種方式相互聯(lián)系,以建立一個(gè)完整的發(fā)動(dòng)機(jī)性能模型(包括氣體動(dòng)力學(xué)),冷卻系統(tǒng)和掌握系統(tǒng)。Firstly,MATLAB?Simulink?isusedtomodelthecontrolofthecoolantsystem.Itisalsousedasthecodethatproducesthelinkstotheothersoftwarecodes,managestheinformationflowbetwee(cuò)nthesub-models,andcontrolsthetime-stepofthesimulation.Theengineperformancemodel,whichincludesthee(cuò)ffectsofgasdynamicsintheengineandEGRsystem,ismodeledusingRicardo’scommerciallyavailablesoftwareWAVE.InfactalinkbetweenMATLAB?Simulink?andWAVEhasexistedforsometime,asitisoftenusedtocontroltheengineandrunmultipleWAVEsimulations,andisincludedintheWAVEpackageassupplied。Finally,thecoolantsystemismodeledusingFLOWMASTER?。首先,MATLAB?Simulink?是用于模擬冷卻系統(tǒng)的掌握.作為產(chǎn)生鏈接到其他軟件代碼的代碼,它也可以用來管理子模型之間的信息流,并掌握仿真的時(shí)間步長。發(fā)動(dòng)機(jī)的性能模型是仿照里卡多的市售軟件WAVE,其中包括了在發(fā)動(dòng)機(jī)和廢氣再循環(huán)(EGR)系統(tǒng)的氣體動(dòng)力學(xué)影響。事實(shí)上,MATLAB?Simulink?和WAVE之間的聯(lián)系已經(jīng)存在一段時(shí)間了,由于它往往是用來掌握發(fā)動(dòng)機(jī)和運(yùn)行多個(gè)WAVE仿真,并包含它所供應(yīng)的WAVE組件.最后,冷卻系統(tǒng)的建模使用FLOWMASTER?。Figure4.Co—SimulationArchitecture&InformationFlow圖4.協(xié)同仿真體系架構(gòu)和信息流Figure4。illustrat(yī)estheco-simulationarchitectureandflowofinformationwithinthemodels.Currently,FLOWMASTER?providesalinktoMATLAB?Simulink?butthisisonlydonebyusingFLOWMASTER?astheinformationandlinkmanager.Thus,inorderforthisstudytoprocee(cuò)dalinkintheoppositedirectionwasdesired。圖4說明白協(xié)同仿真體系架構(gòu)和信息流的模型.目前,F(xiàn)LOWMASTER?供應(yīng)了一個(gè)鏈接到MATLAB?Simulink?,但是這僅僅是通過FLOWMASTER?的信息和鏈接管理器。因此,連續(xù)向上鏈接的討論是有所必要的。MATLAB?TOFLOWMASTER?LINK-InconjunctionwithFLOWMASTER,RicardohavedevelopedascriptinMATLAB?Simulink?thatwillinitiatetheFLOWMASTER?solvermoduleandprovidecommunicationtoandfromit。Theco-simulat(yī)iondevelopedhereusesDCOMsoftwaretechnologytocommunicatebetweenthesoftwareplatformsofMATLAB?Simulink?andFLOWMASTER?.Theco-simulationiscontrolledfromSimulink?,throughanM-fileS-function.MATLAB?到FLOWMASTER?的鏈接:結(jié)合FLOWMASTER,里卡多已經(jīng)在MATLAB?Simulink?中開發(fā)以了一個(gè)腳本,這將啟動(dòng)FLOWMASTER?求解器模塊和供應(yīng)與它的通信。這里開發(fā)的協(xié)同仿真軟件使用的是MATLAB?Simulink?和FLOWMASTER?之間進(jìn)行通信的軟件平臺(tái)DCOM軟件技術(shù).Simulink?協(xié)同仿真掌握是通過一個(gè)M文件的S函數(shù)實(shí)現(xiàn)的。Traditionally,anS-Functionisusedtodescribesomesortofdynamicsystem,i.e。asystemthathasinputs,outputs,andstates.Itmaycontainintegrators,derivativesandotherequationsthat(yī)areusedtocomputethestatesandoutputsofthesystem。ThereforeSimulink?treatstheS—Functionasatransferfunction,suchthat(yī)itgivesthetransferfunctionaninput,andfollowstherequireddirections(denotedbythescriptintheS—Function)toreceiveanoutput。Therestofthesimulationsubsequentlyactsonthisoutput.Inthecaseofthisco-simulation,theS-functionstructureisactuallyusedtohandletheexchangeofinformationwithaclientprogram(hereFLOWMASTER?)。Theclientprogramhandlestheintegrat(yī)ionandothercomputationsrequiredtoadvanceitssimulation.TheS-Functionthereforestillusesinputs,outputsandstat(yī)es,althoughSimulink?onlymonitorsthestates,whichrepresentasmallsubsetofpossiblemodelstatesthat(yī)FLOWMASTER?utilizes.傳統(tǒng)上,S函數(shù)是用來描述某種動(dòng)態(tài)系統(tǒng),即系統(tǒng)的輸入、輸出和狀態(tài)。它可能包含了被用來計(jì)算該系統(tǒng)的狀態(tài)和輸出的其他方程和其導(dǎo)數(shù)的集合。因此,Simulink?把S函數(shù)當(dāng)作傳遞函數(shù),這樣,它給出傳遞函數(shù)的輸入,并如所要求的方向(以S函數(shù)的腳本表示)接收輸出。其余部分的仿真隨后在此處輸出.在協(xié)同仿真的情況下,S函數(shù)的的結(jié)構(gòu)實(shí)際上是用于處理與客戶端程序(此處FLOWMASTER?)的信息溝通??蛻舳顺绦蛱幚淼囊惑w化和其他計(jì)算所需的先進(jìn)仿真.S函數(shù)仍然使用Simulink?的輸入、輸出和狀態(tài),雖然Simulink?只是監(jiān)測狀態(tài),其中一小部分的模型仍然采納FLOWMASTER?.SAMPLETIMES-Theco-simulationoperatesbysynchronizingthetwosimulations,andforpropersynchronizationnee(cuò)dstohaveFLOWMASTER?runningatafaster(orequal)ratethatisanintegermultipleoftherateoftheS-Functionexecution.Forexample,ifFLOWMASTER?executesat0.2sec,theS-Functionnee(cuò)dstoexecuteat0.4sec,0。6sec,1.0sec,etc。采樣時(shí)間:協(xié)同仿真通過同步的兩個(gè)模擬操作,為了能正確的同步,需要由FLOWMASTER?以更快的(或等于)一個(gè)整數(shù)倍速率運(yùn)行S函數(shù)。例如,如果FLOWMASTER?的執(zhí)行時(shí)間在0.2秒,S函數(shù)需要執(zhí)行在0.4秒,0.6秒,1。0秒等等。Forthisreason,sampletimesofallblocksintheSimulink?systemshouldbeanintegermultipleofthesystemsampletimespecifiedintheSimulation/Parameterdialogbox。Thecurrentconfigurationoftheco-simulationS-Functioninheritsthefastestsampletimeofthee(cuò)ntireSimulink?system。Thus,ifallblockshaveintegersampletimes,thentheco-simulationshouldinheritthefastesttimefromthedialogbox.由于這個(gè)緣由,在Simulink?系統(tǒng)中全部模擬/參數(shù)模塊的采樣時(shí)間是對(duì)話框中指定的系統(tǒng)采樣時(shí)間的整數(shù)倍。協(xié)同仿真S函數(shù)的當(dāng)前配制繼承了Simulink?整個(gè)系統(tǒng)的最快采樣時(shí)間。因此,如果全部的模塊采納整數(shù)倍的采樣時(shí)間,然后協(xié)同仿真應(yīng)該從對(duì)話框中繼承最快的時(shí)間。Fortheco-simulationandcontrolsystemdevelopment,FLOWMASTER?wassettorunat0.1secandSimulink?at(yī)1。0sec(inheritedfromSimulationParameters).Thisgivesreasonableresultsforthelong(>1000seconds)testfiles.對(duì)于協(xié)同仿真和掌握系統(tǒng)開發(fā),F(xiàn)LOWMASTER?設(shè)置為在0。1秒內(nèi)運(yùn)行,Simulink?設(shè)置在1。0秒(從模擬參數(shù)繼承)內(nèi)運(yùn)行.對(duì)于長期(〉1000秒)的測試文件,這是合理的結(jié)果。CO-SIMULATIONMODEL仿真模型SIMULATIONCONTROL&COMMUNICATION–Asdiscussedearlier,thecontrolofthesimulationandcommunicat(yī)ionbetwee(cuò)nthesystemmodelsisconductedbyblockswithinSimulink?.Theprimaryfunctionoftheseblocksistotransportdatafromonesystemmodel,whetherinSimulink?ortheothercodes,toanother。Thisdatafallsintotwodistincttypes,controldataandphysicaldata.TheflowofinformationcommunicatedcanbeseeninFigure4。模擬掌握和通信:正如前面所商量的,仿真的掌握和系統(tǒng)模型之間的通信全部在Simulink?模塊中進(jìn)行.這些模塊的主要功能是從一個(gè)系統(tǒng)模型傳輸數(shù)據(jù)到另外一個(gè),無論是在Simulink?或其他代碼.此數(shù)據(jù)分為兩個(gè)不同的類型,分別是掌握數(shù)據(jù)和物理數(shù)據(jù).從圖4可以看出信息流的傳遞過程。Controldataisthatusedbythecontrolsystemwhetherinactuationorfeedbackfromasensor.Thisdat(yī)awillbetransmittedtotheelectroniccontrolmoduleinthereal-worldapplication。Theflowofthistypeofdataisonlytoandfromthecontrolsystemandonlyoneoftheothermodels,thee(cuò)ngineorcoolantsystem,hasknowledgeofthisdata.掌握數(shù)據(jù)是由掌握系統(tǒng)使用,無論來自于傳感器的動(dòng)作或反饋.在實(shí)際應(yīng)用中,這些數(shù)據(jù)將被發(fā)送到電子掌握模塊.這種類型的數(shù)據(jù)流只是來自于掌握系統(tǒng),或只有一個(gè)發(fā)動(dòng)機(jī)或冷卻系統(tǒng)數(shù)據(jù)積累的其他車型。Thephysicaldataispurelyrequiredforthemodelingpurposes.Thisdatadescribestheinteractionbetwee(cuò)ntheengineandcoolantsystem.Thisdataisprimarilyrelatedtotheheat(yī)rejectiontocoolantwithintheengineandtheEGRcooler.Strictlyspeakingthepumpspeedinthemechanicalpumpcircuitsisalsophysicaldatabutasthecontrolsystemlooksafterthepumpspeedintheothertwocircuitsitwasdecidedtodosoinallinstances.InFigure4thisdataisrepresentedaspassingthroughthedottedSimulink?interface.獵取物理數(shù)據(jù)是建模目的的最直接的需求。此數(shù)據(jù)描述了發(fā)動(dòng)機(jī)和冷卻劑系統(tǒng)之間的相互作用。此數(shù)據(jù)主要涉及在發(fā)動(dòng)機(jī)內(nèi)冷卻液的熱抑制和EGR冷卻器。嚴(yán)格的來說,在機(jī)械泵電路中的泵的速度也是物理數(shù)據(jù),但作為掌握系統(tǒng)來看在其他兩個(gè)電路后泵的轉(zhuǎn)速,在全部情況下都會(huì)這樣決定。Figure5.EngineModelLayout圖5.發(fā)動(dòng)機(jī)模型布局ENGINEMODEL-Themodelofthee(cuò)ngineincludesdefinitionoftheintakeandexhaustmanifolds,includingtheEGRsystem,andallowsforcontrolofvariousengineparameterssuchasEGRrate,enginespeed,fuelingetc.發(fā)動(dòng)機(jī)型號(hào)-發(fā)動(dòng)機(jī)模型包括定義的進(jìn)氣和排氣歧管,包括廢氣再循環(huán)系統(tǒng),并允許掌握各種發(fā)動(dòng)機(jī)參數(shù),如廢氣再循環(huán)率,發(fā)動(dòng)機(jī)轉(zhuǎn)速,燃油等。發(fā)動(dòng)機(jī)型號(hào):發(fā)動(dòng)機(jī)型號(hào)包括進(jìn)排氣歧管的定義,包括廢氣再循環(huán)(EGR)系統(tǒng),并允許用于掌握發(fā)動(dòng)機(jī)的各種參數(shù),如EGR效率、發(fā)動(dòng)機(jī)轉(zhuǎn)速、燃料體積等。ArepresentationoftheenginelayoutisincludedinFigure5.Theengineperformancemodelisexecutedonacrankanglebasisandresultsareoutputascycleaveragedvaluesaftereachcompletedcycle.Thisleveloffidelityisrequiredforaccurateperformanceanalysis.Obviously,toruntherestofthemodelatthistime-stepwouldmeanthatahighlevelofprocessingpowerisnee(cuò)ded.Forthisreason,dataispassedtoMATLAB?Simulink?intermittentlyonamuchmorerealistictime-step。圖5所示是其中一種發(fā)動(dòng)機(jī)布局型式。發(fā)動(dòng)機(jī)的性能模型是在曲軸轉(zhuǎn)角的基礎(chǔ)上運(yùn)行的,輸出的結(jié)果是每完成一個(gè)周期后的周期平均值。這個(gè)水平的精確度需要精確的性能分析.很顯然,在這個(gè)時(shí)間步長內(nèi)運(yùn)行其余的模型,這將意味著需要更高的處理能力水平。處于這個(gè)緣由,數(shù)據(jù)在一個(gè)更為實(shí)際的時(shí)間步長內(nèi)間隙性地傳遞到MATLABEQ\o\ac(○,R)SimulinkEQ\o\ac(○,R).COOLANTSYSTEMMODEL–Thisstudywillinvestigatefourpossibleconceptsforthedesignofacoolantsystem,asillustratedinFigurse6ato6d.Theyillustrateaprogressionfromasimplemechanicalsystemwhichischeap,triedandtested,uptoamorecomplexelectricallycontrolledsystem。Obviously,thechoiceofsystemisbestconsideredonacasebycasebasis.冷卻液系統(tǒng)模型:本討論將探討冷卻系統(tǒng)的四個(gè)可能的設(shè)計(jì)概念,如圖6a至圖6d所示。它們展現(xiàn)了從一個(gè)最廉價(jià)最簡潔的機(jī)械系統(tǒng),經(jīng)過嘗試和測試以后,最后形成一個(gè)簡潔的電控系統(tǒng)的進(jìn)展歷程。顯然,系統(tǒng)的選擇最好是考慮在某個(gè)案例的基礎(chǔ)上進(jìn)行。Figure6a.SimpleCoolantCircuit圖6a.簡潔的冷卻液回路Inthesimplecoolantcircuit,Figure6a,theEGRcoolerisconnectedinparalleltotheengine.Theoutletfromthepumpissplitintotwo,analogouswithanoutletfromthecylinderblockadjacenttothepumpordirectlyfromthepumpscrollcasing.ThecoolantthatpassesthroughtheEGRcoolerisfedbacktotheenginejustbeforethemechanicalthermostat.Thisensuresthatthemaximumpressuredropacrossthecoolercanbeachieved。如圖6a所示,在簡潔的冷卻液回路中,EGR冷卻器是被關(guān)聯(lián)鏈接到發(fā)動(dòng)機(jī)上。從泵的出口被分為兩個(gè),類似與從汽缸體相鄰的泵,或直接從滾動(dòng)泵殼體的出口。通過EGR冷卻器的冷卻劑被反饋到發(fā)動(dòng)機(jī)的機(jī)械式自動(dòng)調(diào)溫器。這將確保通過冷卻器的最大壓力的壓降可以得到實(shí)現(xiàn)。Figure6b。SingleControlValveCoolantCircuit圖6單一掌握閥冷劑回路ThecoolantflowratethroughtheEGRcoolerisgovernedbythetotalflowrateandtherespectiveflowresistancesintheengineandcoolercircuit.通過EGR冷卻器中的冷卻液的流速是由總流速和在發(fā)動(dòng)機(jī)及冷卻器回路中的各自的流淌阻力確定的。Inthesecondcoolantcircuitasolenoidactivatedcontrolvalve(EV)isfittedtothecoolercircuit,whiletherestofthecircuitremainsthesame.Theadditionofthecontrolvalveallowsforsomevariationintherestrictionthroughthecoolerlegofthesystemandthuswillhelpregulateflowthroughit.在其次個(gè)冷卻劑回路,一個(gè)電磁掌握閥(EV)被裝配到冷卻器的回路中,而該回路的其余部分仍然是相同的。掌握閥的添加允許了在限制通過系統(tǒng)的冷卻器系統(tǒng)的局限的某些變化,因此將有助于通過它的調(diào)節(jié).Figure6c。SimpleElectricCoolantPumpCircuit圖6c.簡潔的電動(dòng)冷卻液泵回路Thethirdcircuitutilizesanelectricallymotoredcoolantpump,aswellasthecontrolvalve,toregulat(yī)eflow。Theotherpartsofthecircuitareasthefirstcircuit,purelymechanical.第三個(gè)回路運(yùn)用了一個(gè)電動(dòng)冷卻液泵以及掌握閥,以調(diào)節(jié)流量。該回路的其他部分跟第一個(gè)回路一樣,都是純機(jī)械的。Figure6d.ComplexElectricallyControlledCoolantCircuit圖6。簡潔的電控冷卻液回路Thefinalcircuit,Figure6d,showsahighlevelofcomplexitythatoffersasignificantamountofflexibility.Theelectricallymotoredcoolantpumpandanelectricallycontrolledvalve(EV1)allowsforfullcontrolovertheflowofcoolantthroughtheengineandEGRcooler。Also,thesecondelectricallycontrolledthree(cuò)—wayvalve(EV2)canbeusedtocontrolflowthroughtheradiatorand,thuscontrolthecoolanttemperature,regulatedusingthetemperaturesensor(TS).Thisisusedtoraisethecoolanttemperat(yī)ureatlowloadsandspeedsandthusimproveradiatorperformance。如圖6d所示的最后一種回路,顯示出了高度的簡潔性和可供大量的靈敏性。電動(dòng)冷卻液泵和電控閥(EV1)允許完全掌握的冷卻液通過發(fā)動(dòng)機(jī)和EGR冷卻器。此外,其次個(gè)二位三通電控閥可以用來掌握流經(jīng)散熱器,此外,使用溫度傳感器(TS)調(diào)節(jié)掌握冷卻液溫度。這是用來提高在低負(fù)載時(shí)的冷卻劑溫度和速度,從而改善散熱器的性能。CONTROLSYSTEMMODEL–Thecontrolmodelscanbesplitintotwocategories,engineandcoolantsystem.Thecontroloftheengineisdoneviacommonparameterssuchasfueling,enginespeedandEGRvalveposition。AfeedbackloopontheenginetorqueisusedtosetthefuelingandEGRvalveposition.掌握系統(tǒng)模型:這個(gè)掌握模型可以劃分為兩大類,一個(gè)是發(fā)動(dòng)機(jī)系統(tǒng),另一個(gè)是冷卻液系統(tǒng)。發(fā)動(dòng)機(jī)的掌握是有共同的參數(shù)組成的,例如燃料、發(fā)動(dòng)機(jī)轉(zhuǎn)速以及EGR閥的位置.發(fā)動(dòng)機(jī)扭矩上的反饋回路是用來設(shè)置燃料和EGR閥的位置.Sincetherearemultiplecoolantsystems,thereareasimilaramountofcontrolsystemmodels。Forthesimplemechanicalsystem,althoughthereisnospecificcontrolofthesystemitself,thepumpspeediscontrolledinordertomatchtotheenginespeed.Thecontrolofthemechanicalthermostatisconductedwithinthecoolantsystemmodelitself.由于有多個(gè)冷卻系統(tǒng),有一個(gè)類似的掌握系統(tǒng)模型。對(duì)于簡潔的機(jī)械系統(tǒng),雖然沒有特定的掌握本身,但泵的轉(zhuǎn)速仍然是與發(fā)動(dòng)機(jī)轉(zhuǎn)速相匹配.機(jī)械式溫控器的掌握是在冷卻系統(tǒng)模型本身內(nèi)進(jìn)行的。Thecontrolsystemfortheelectricvalvecoolantsystem,Figure6b,nowcontrolsthevalveposition.Inarealvehicleinstallationthevalvepositionwouldbedeterminedbyamapofenginespee(cuò)dand”torque"(whichcanbeobtainedfromaMAPsensororfuelingvalueinthecontrolsysteminactualoperation)andEGRvalveposition.However,tohelpgeneratethismapandforthissimulationexercise,thecontrolsystemmodelusedcoolanttemperaturetocontrolvalveposition。Thiswouldallowforafirstcutestimat(yī)eofanactualcalibrationmapforprototypedevelopment。如圖6所示,電動(dòng)閥的的冷卻液系統(tǒng)中的掌握系統(tǒng)現(xiàn)在用于掌握閥的位置。一個(gè)實(shí)際裝車的閥的位置取決于發(fā)動(dòng)機(jī)轉(zhuǎn)速圖、“轉(zhuǎn)矩”(這可以從一個(gè)MAP傳感器或在實(shí)際操作中掌握系統(tǒng)的加油值)和EGR閥的位置。不過,為了幫助生成圖和這個(gè)模擬演練,掌握系統(tǒng)模型使用冷卻液的溫度來掌握閥的位置。這將允許基于原型開發(fā)的第一次切割評(píng)估的實(shí)際標(biāo)定圖。Thecontrolsystemforthesimpleelectriccoolantpumpcircuit,F(xiàn)igure6c,isverysimilar。Theonlydifferencetothefirstcontrolsystemisthatthepumpspeedisnownolongertiedtotheenginespeed.Again,inanactualinstallationthecontrolsystemwoulduseamapbasedonenginespeedandtorque,butforthepurposesofthissimulationitusesfeedbackfromthecoolanttemperaturetodeterminethepumpspeed.Thee(cuò)lectricvalveiscontrolledinasimilarmannertothat(yī)usedforcircuit6b.如圖6c,簡潔的電冷卻液泵回路與掌握系統(tǒng)是格外相像的.與第一掌握系統(tǒng)唯一的區(qū)分在于,現(xiàn)在泵的轉(zhuǎn)速不再依靠于發(fā)動(dòng)機(jī)的轉(zhuǎn)速。再如,實(shí)際的安裝的掌握系統(tǒng)將使用基于發(fā)動(dòng)機(jī)轉(zhuǎn)速和扭矩圖來確定泵的轉(zhuǎn)速,但對(duì)于這個(gè)模擬的目的是它使用了冷卻劑溫度的反饋。以用于回路6b類似的方式掌握電動(dòng)閥。Finally,thecontrolsystemofthecomplexcoolantcircuitdeterminesthepumpspeedandthepositionoftwovalves.Thepumpspee(cuò)disdeterminedbyfee(cuò)dbackfromthetemperaturesensorandvalvepositions.Thefirstvalve(EV1)iscontrolledviaamap,similartothepreviouscontrolsystems,anddeterminestheflowsplitthroughtheengineandcooler.Thesecondvalve(EV2)usesfeedbackfromthetemperaturesensor(TS)todetermineitsposition。最后,簡潔的冷卻液回路中的掌握系統(tǒng)確定泵的轉(zhuǎn)速和兩個(gè)閥的位置。泵的速度是由溫度傳感器和閥的位置的反饋來確定。第一閥(EV1)通過掌握地圖,類似先前的掌握系統(tǒng),并確定通過發(fā)動(dòng)機(jī)和冷卻器分流。其次閥(EV2)使用來自溫度傳感器(TS)的反饋以確定其位置。RESULTS結(jié)果Whilethesemodelsarecapableoftransientoperationsimulation,itwasdecidedthat(yī),tosimplifytheinvestigation,theevaluationwouldbeconductedbasedonaseriesofsteadystateanalyses。Thisprovidesagoodbasisforcomparingthefourconcepts.Thetransientsimulat(yī)ionwouldbemostbeneficialforoptimizingthecontrolstrategyforthechosenconcept.雖然這些模型能夠進(jìn)行瞬態(tài)仿真模擬,但為了簡化討論,決定在一系列穩(wěn)態(tài)分析的基礎(chǔ)上進(jìn)行評(píng)估.為了四個(gè)概念的比較這供應(yīng)了良好的基礎(chǔ)。瞬態(tài)仿真將是最有利的優(yōu)化掌握策略的概念選擇。Inreality,thee(cuò)nginewilloperateoveranundetermineddutycycle,potentiallyincludingasignificantamountoftimeidlingatovernightstops(commononinter-citytruckstokee(cuò)ptheenginewarminwinterandtoprovideairconditioninginthesummer).However,legislat(yī)ivetestprocedures,nowandfuture,concentrateonemissionsat(yī)ratedpower,andpartspeed/partloadconditionsandnearthepeaktorqueoperat(yī)ingpoints。Also,ascanbesee(cuò)nfromtheEGRstrat(yī)egymap,Figure2。,thereisawiderangeoflevelsofEGRovertheoperatingrangeoftheengine.在實(shí)際中,發(fā)動(dòng)機(jī)將工作在一個(gè)不確定的占空比下,可能包括一個(gè)在通宵停工時(shí)顯著的大量時(shí)間空轉(zhuǎn)(常見的是,在冬季讓發(fā)動(dòng)機(jī)供應(yīng)保暖,在夏季讓發(fā)動(dòng)機(jī)供應(yīng)空調(diào))。然而,現(xiàn)在和將來的立法檢測程序都是集中在額定功率,部分轉(zhuǎn)速/部分負(fù)載條件和峰值扭矩四周的工作點(diǎn)下的排放量.此外,從EGR策略圖可以看出,圖2中在發(fā)動(dòng)機(jī)的操作范圍內(nèi),有一個(gè)格外寬范圍的EGR水平。Toavoidinvolvinganunmanageablenumberoftestpoints,itwasdecidedtoanalyzethesystemperformanceoverarangeofEGRlevelsthatincorporat(yī)ethekeyareasofoperationoftheengineforthelegislativeprocedures。Therefore,thefollowingoperat(yī)ingconditionswerechosen.為了避開涉及一個(gè)無法掌握的測試點(diǎn),這是決定系統(tǒng)性能分析,在一些列的EGR平臺(tái)納入關(guān)鍵領(lǐng)域的發(fā)動(dòng)機(jī)運(yùn)作的立法程序。因此,在一下的操作條件中進(jìn)行選擇。A.Rat(yī)edpower–9%EGRA.額定功率-9%EGRB.Peaktorque–7%EGRB.峰值扭矩—7%EGRC.1400rev/minat50%load–27%EGRC。在負(fù)載50%時(shí),發(fā)動(dòng)機(jī)轉(zhuǎn)速1400rev/min-27%EGRPointA,rat(yī)edpower,ischosenasthiscorrespondswiththeoperat(yī)ingconditionthathasthehighestheat(yī)loadontheengine。Thus,engineheatrejectionispredominant。Obviously,thehighEGRcondition,pointC,correspondstoahighheatloadontheEGRcooler。PointB,peaktorque,ischosenasakeyoperatingpointwithmoderateEGRandmoderateengineheat(yī)load。被選擇的額定功率A點(diǎn)是對(duì)應(yīng)于在發(fā)動(dòng)機(jī)具有最高熱負(fù)荷時(shí)的運(yùn)轉(zhuǎn)狀態(tài)。因此,發(fā)動(dòng)機(jī)散熱是最主要的。顯然,在高EGR條件下C點(diǎn),對(duì)應(yīng)到一個(gè)EGR冷卻器上較高的熱負(fù)荷。峰值扭矩的B點(diǎn)是在溫和的EGR和發(fā)動(dòng)機(jī)適度熱符合時(shí)被選為關(guān)鍵操作點(diǎn)。Also,astimedidnotpermitastudyofthefinalcoolantsystemdesign,Figure6d,therewasnodataproducedforthiscase.However,adiscussiononthepossiblebenefitsandtrade—offsisincluded。此外,由于時(shí)間的原因,圖6d的最后一種冷卻系統(tǒng)的設(shè)計(jì)討論并沒有獲得相關(guān)的簡略數(shù)據(jù)。但是,可能帶來好處和權(quán)衡的商量也包括在其中.CONVENTIONALCOOLANTSYSTEM–Thecoolantsystem,showninFigure6a,isthatofaconventionalinstallation。Insuchaninstallation,thecontrollingorificeandpumpregulatesflowthroughtheengineandEGRcooler.Thesearesizedsuchthat(yī)theflowthroughtheengineatratedpowerissufficienttoproduceareasonableriseintemperaturethroughthee(cuò)ngine,typically5to7°C。Inthiscase,theminimumflowtargetwaschosen,i.e.coolanttemperatureriseof7°C,whichresultsinacoolantflowthroughtheengineof410.8litre/min。常規(guī)冷卻液系統(tǒng):如圖6a所示的冷卻液系統(tǒng)是以往安裝的。在這樣的安裝方式下,通過發(fā)動(dòng)機(jī)和EGR冷卻器的掌握孔和泵調(diào)節(jié)流量。這些通過發(fā)動(dòng)機(jī)在額定功率時(shí)產(chǎn)生的流量大小足以產(chǎn)生一個(gè)合理的通過發(fā)動(dòng)機(jī)引起的溫度上升,一般為5至7℃。在這種情況下,最小流量的目標(biāo)就被確定了,即冷卻液溫度上升7℃,這會(huì)導(dǎo)致冷卻液流過發(fā)動(dòng)機(jī)的流速是410。8L/min。ThetargetfortheEGRcoolerisslightlydifferent.Inordertoachievereasonablepackagesizesthetemperatureriseacrossthecoolercanbehigher,thusallowingalowercoolantflowrat(yī)eandsmallheatexchanger。TheEGRcoolerflowatitsmaximumcondition,withminimumenginespeed,isdeterminedbyanacceptablecoolantoutlettemperat(yī)uresuchthat(yī)ithasareasonableboilingsafetymargin.InthiscaseitwasdeterminedthatthemaximumcoolanttemperatureoutoftheEGRcoolerwouldbe115°C,whichresultedinaEGRcoolercoolantflowatpointCof25。2litre/min.在EGR冷卻器的目標(biāo)是略有不同的。為了實(shí)現(xiàn)合理的封裝尺寸,整個(gè)冷卻器的溫度可以上升更高,從而允許較低的冷卻液流速和較小的熱交換器.在冷卻器流量最大的條件下,而發(fā)動(dòng)機(jī)轉(zhuǎn)速最小時(shí),確定可以接受的冷卻劑出口溫度,使得它有一個(gè)合理的沸點(diǎn)平安裕度。在這種情況下,它被確定為EGR最大冷卻液溫度是115℃,這導(dǎo)致了EGR冷卻器的冷卻液流量在C點(diǎn)為25.2L/min。Havingsizedthesystemtomatchtheseoperatingparameters,thebaselineperformancecharacteristicsforthethree(cuò)operatingpointsweregenerated。TheresultsinTable1showthee(cuò)nginepowerandcoolantpumppoweraswellasthecorrespondingcoolantsystemflowratesandheatrejectioninformation.Also,ifweassumethattheotherauxiliaryloadsplaceduponthee(cuò)ngineinactualoperation,duetoelectricalloadsandA/Cloads,is4kWthenthepumppowerisapproximately0.2%ofthetotalpowerrequirement.Thedataalsoshowsthatat(yī)thehighEGRcondition,pointC,theflowthroughthecoolercircuitproducesacoolanttemperat(yī)ureriseof24。5°C.具有實(shí)際尺寸的系統(tǒng)去匹配這些操作參數(shù),生成三個(gè)操作電與基準(zhǔn)性能特性。表1中的結(jié)果表明發(fā)動(dòng)機(jī)的功率和冷卻泵的功率以及與之相對(duì)應(yīng)的冷卻系統(tǒng)流量和散熱信息。此外,如果我們假設(shè)其他的置于發(fā)動(dòng)機(jī)上的幫助負(fù)載,由于電氣負(fù)載和空調(diào)負(fù)載,在實(shí)際操作中一般按4KW估算,然后泵的功率約為總功率的0.2%計(jì)算。數(shù)據(jù)還表明,在高EGR條件下,流經(jīng)冷卻器的回路在C點(diǎn)產(chǎn)生的冷卻劑溫度上升為24.5℃。OperatingPoints(操作要點(diǎn))PerformanceParameter性能參數(shù)ABCEnginePower,kW發(fā)動(dòng)機(jī)功率328.7260.4151.2FuelCons.,g/kWh燃油消耗230228223PumpPower,kW水泵功率0。730。170。27HeatRejection,kw散熱功率Engine165.3106.672.7EGRCooler(EGR冷卻器)32。921.337。4Total198。2127.9110.1CoolantFlow,litre/minEngine376.8203.3250.9EGRCooler34.021.525.2Total410.8224.8276.1CoolantTemp.R

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論