




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
實(shí)驗(yàn)中學(xué)20162017學(xué)年第一學(xué)期高三年級數(shù)學(xué)(理)學(xué)科導(dǎo)學(xué)案班級:小組:姓名:評價(jià):課題平面向量1課型復(fù)習(xí)課課時(shí)2主備人黃玉生審核人周繼軒時(shí)間學(xué)習(xí)目標(biāo)會(huì)進(jìn)行向量基本概念的判斷,利用平面向量基本定理表示向量重點(diǎn)難點(diǎn)會(huì)進(jìn)行向量基本概念的判斷,利用平面向量基本定理表示向量方法小組討論探知部分1.向量的有關(guān)概念(1)向量的概念:既有大小又有的量叫做向量.注意向量和數(shù)量的區(qū)別,向量常用來表示.(2)零向量:的向量叫零向量,記作:,零向量的方向是.(3)單位向量:長度為的向量叫做單位向量(與共線的單位向量是±).(4)相等向量:的兩個(gè)向量叫相等向量,相等向量有傳遞性.(5)平行向量(也叫共線向量):的向量,向量叫做平行向量,記作:,規(guī)定零向量和平行.注意:①相等向量一定是共線向量,但共線向量不一定相等;②兩個(gè)向量平行與兩條直線平行是不同的兩個(gè)概念:兩個(gè)向量平行包含兩個(gè)向量共線,但兩條直線平行不包含兩條直線重合;③平行向量無傳遞性;④三點(diǎn)A、B、C共線?共線.(6)相反向量:的向量叫做相反向量.a(chǎn)的相反向量是-a.2.向量的表示方法(1)幾何表示法:用帶箭頭的有向線段表示,如,注意起點(diǎn)在前,終點(diǎn)在后.(2)符號表示法:用一個(gè)小寫的英文字母來表示,如a,b,c等.3.向量的線性運(yùn)算(1)向量的加法:求兩個(gè)向量的和的運(yùn)算,叫向量的加法.向量加法滿足交換律、結(jié)合律.向量加法可以使用法則,(即首尾相接,連首尾).(2)向量的減法:與向量a方向相反且等長的向量,叫做a的相反向量,記為-a,a+(-a)=0;向量a加上向量b的相反向量,叫做向量的減法,即向量a減去向量b.向量減法可以使用三角形法則,即“共起點(diǎn),連終點(diǎn),方向指向被減向量”.4.實(shí)數(shù)與向量的積實(shí)數(shù)λ與向量a的積是一個(gè)向量,記作λa,它的長度和方向規(guī)定如下:(1)|λa|=|λ||a|,(2)當(dāng)λ>0時(shí),λa的方向與a的方向相同;當(dāng)λ<0時(shí),λa的方向與a的方向;當(dāng)λ=0時(shí),λa=0,注意:λa≠.運(yùn)算律:(μ)=(μ).(+μ)=+μ(+)=+5.向量平行(共線)的充要條件:a∥b?a=λb(b≠0).6.向量垂直的充要條件:a⊥b?|a+b|=|a-b|。7.向量中的一些常用的結(jié)論(1)一個(gè)封閉圖形首尾連接而成的向量和為零向量,要注意運(yùn)用.(2)||a|-|b||≤|a±b|≤|a|+|b|,特別地,當(dāng)a、b同向時(shí)|a+b|=|a|+|b|≥||a|-|b||=|a-b|;當(dāng)a、b反向時(shí)|a-b|=|a|+|b|≥||a|-|b||=|a+b|;當(dāng)a、b不共線?||a|-|b||<|a±b|<|a|+|b|(這些和實(shí)數(shù)比較類似)研究部分題型一向量的有關(guān)概念例1、下列命題:(1)零向量沒有方向;(2)若|a|=|b|,則a=b;(3)單位向量都相等;(4)向量就是有向線段;(5)兩相等向量若其起點(diǎn)相同,則終點(diǎn)也相同;(6)若a=b,b=c,則a=c;(7)若a∥b,b∥c,則a∥c;(8)若四邊形ABCD是平行四邊形,則;其中正確的命題有.題型二結(jié)合圖形考查向量的加、減法、數(shù)乘運(yùn)算例2.如圖所示,在△ABC中,D,F(xiàn)分別是BC,AC的中點(diǎn),=eq\f(2,3),=,=.用,表示向量=題型三共線向量定理的應(yīng)用例3.設(shè),是兩個(gè)不共線向量,已知=2-8,=+3,=2-.(1)求證:A,B,D三點(diǎn)共線;(2)若=3-k,且B,D,F(xiàn)三點(diǎn)共線,求k的值.應(yīng)用部分1.已知向量,,,其中、不共線,求實(shí)數(shù)、,使.2.如圖所示的平行四邊形ABCD中,點(diǎn)M是AB的中點(diǎn),點(diǎn)N在BD上,且BN=eq\f(1,3)BD,求證:M,N,C三點(diǎn)共線.鞏固部分1.已知點(diǎn)O為△ABC外接圓的圓心,且++=,則△ABC的內(nèi)角A等于()A.30°B.60°C.90°D.120°2.已知向量,其中,均為非零向量,則||的取值范圍是()A.B.C.(0,2]D.3.點(diǎn)M是△ABC所在平面內(nèi)的一點(diǎn),且滿足5=+3,則△ABM與△ABC的面積比為()A.eq\f(1,5)B.eq\f(2,5)C.eq\f(3,5)D.eq\f(4,5)4.設(shè),為向量,則“|·|=||||”是“∥”的()A.充分不必要條件B.必要不充分條件C.充分必要條件D.既不充分也不必要條件5.點(diǎn)OO是三角形ABC平面內(nèi)一點(diǎn),且,三角形的形狀為()A、等腰三角形B、直角三角形C、等腰直角三角形D、等邊三角形6.已知平面內(nèi)任一點(diǎn)O,若動(dòng)點(diǎn)P滿足,則點(diǎn)P的軌跡經(jīng)過三角形ABC的()A、內(nèi)心B、外心C、垂心D、重心7.已知△ABC的三個(gè)頂點(diǎn)A、B、C及△ABC所在平面內(nèi)的一點(diǎn)P,且eq\o(PA,\s\up12(→))+eq\o(PB,\s\up12(→))+eq\o(PC,\s\up12(→))=0,若實(shí)數(shù)λ滿足eq\o(AB,\s\up12(→))+eq\o(AC,\s\up12(→))=λeq\o(AP,\s\up12(→)),則實(shí)數(shù)λ等于________.8.設(shè)點(diǎn)M是線段BC的中點(diǎn),點(diǎn)A在直線BC外,2=16,|+|=|-|,則||=________.9.O為四邊形ABCD所在平面內(nèi)一點(diǎn),向量,,,滿足等式+=+,則四邊形ABCD的形狀為________.10.設(shè)D,E分別是△ABC的邊AB,BC上的點(diǎn),AD=eq\f(1,2)AB,BE=eq\f(2,3)BC.若eq\o(DE,\s\up6(→))=λ1eq\o(AB,\s\up6(→))+λ2eq\o(AC,\s\up6(→))(λ1,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 東莞正規(guī)購房合同范本
- 公司用車租賃合同范本
- 加入合作社合同范本
- 儲(chǔ)蓄存款合同范本
- 關(guān)于旅游合作合同范本
- 分包價(jià)格合同范本
- 養(yǎng)雞養(yǎng)殖服務(wù)合同范本
- 書寫墻體大字合同范本
- 勞務(wù)合同范本工人
- 保時(shí)捷卡宴保護(hù)膜施工方案
- 2024-2025學(xué)年初中信息技術(shù)(信息科技)七年級下冊蘇科版(2023)教學(xué)設(shè)計(jì)合集
- 中華小廚神(教學(xué)設(shè)計(jì))-五年級下冊勞動(dòng)人教版1
- 世界建筑史學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 公路橋梁工程施工安全風(fēng)險(xiǎn)評估指南
- 重度哮喘診斷與處理中國專家共識(shí)(2024版)解讀
- 《齊桓晉文之事》+課件+2023-2024學(xué)年統(tǒng)編版必修下冊+
- 社會(huì)變革中的民事訴訟讀書筆記
- 《創(chuàng)傷失血性休克中國急診專家共識(shí)(2023)》解讀課件
- 八年級美術(shù)下冊第1課文明之光省公開課一等獎(jiǎng)新名師課獲獎(jiǎng)?wù)n件
- 2024年全國體育單招英語考卷和答案
- 食品安全管理制度可打印【7】
評論
0/150
提交評論