




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
問題提出1函數(shù)是研究兩個變量之間的依存關(guān)系的一種數(shù)量形式對于兩個變量,如果當一個變量的取值一定時,另一個變量的取值被惟一確定,則這兩個變量之間的關(guān)系就是一個函數(shù)關(guān)系確定關(guān)系)2在中學校園里,有這樣一種說法:“如果你的數(shù)學成績好,那么你的物理學習就不會有什么大問題”按照這種說法,似乎學生的物理成績與數(shù)學成績之間存在著某種關(guān)系,我們把數(shù)學成績和物理成績看成是兩個變量,那么這兩個變量之間的關(guān)系是函數(shù)關(guān)系嗎?
23變量間的相關(guān)關(guān)系231變量之間的相關(guān)關(guān)系232兩個變量的線性相關(guān)知識探究(一):變量之間的相關(guān)關(guān)系思考1:考察下列問題中兩個變量之間的關(guān)系:(1)商品銷售收入與廣告支出經(jīng)費;(2)糧食產(chǎn)量與施肥量;(3)人體內(nèi)的脂肪含量與年齡這些問題中兩個變量之間的關(guān)系是函數(shù)關(guān)系嗎?思考2:“名師出高徒”可以解釋為教師的水平越高,學生的水平就越高,那么學生的學業(yè)成績與教師的教學水平之間的關(guān)系是函數(shù)關(guān)系嗎?你能舉出類似的描述生活中兩個變量之間的這種關(guān)系的成語嗎?思考3:上述兩個變量之間的關(guān)系是一種非確定性關(guān)系,稱之為相關(guān)關(guān)系,那么相關(guān)關(guān)系的含義如何?自變量取值一定時,因變量的取值帶有一定隨機性的兩個變量之間的關(guān)系,叫做相關(guān)關(guān)系知識探究(二):散點圖【問題】在一次對人體脂肪含量和年齡關(guān)系的研究中,研究人員獲得了一組樣本數(shù)據(jù):
年齡23273941454950脂肪9.517.821.225.927.526.328.2年齡53545657586061脂肪29.630.231.430.833.535.234.6思考1:對某一個人來說,他的體內(nèi)脂肪含量不一定隨年齡增長而增加或減少,但是如果把很多個體放在一起,就可能表現(xiàn)出一定的規(guī)律性觀察上表中的數(shù)據(jù),大體上看,隨著年齡的增加,人體脂肪含量怎樣變化?年齡23273941454950脂肪9.517.821.225.927.526.328.2年齡53545657586061脂肪29.630.231.430.833.535.234.6思考2:為了確定年齡和人體脂肪含量之間的更明確的關(guān)系,我們需要對數(shù)據(jù)進行分析,軸表示年齡,y軸表示脂肪含量,你能在直角坐標系中描出樣本數(shù)據(jù)對應的圖形嗎?年齡23273941454950脂肪9.517.821.225.927.526.328.2年齡53545657586061脂肪29.630.231.430.833.535.234.6思考3:上圖叫做散點圖在平面直角坐標系中,表示具有相關(guān)關(guān)系的兩個變量的一組數(shù)據(jù)圖形,稱為散點圖思考4:觀察散點圖的大致趨勢,人的年齡的與人體脂肪含量具有什么相關(guān)關(guān)系?知識探究(一):回歸直線思考1:一組樣本數(shù)據(jù)的平均數(shù)是樣本數(shù)據(jù)的中心,那么散點圖中樣本點的中心如何確定?它一定是散點圖中的點嗎?思考2:在各種各樣的散點圖中,有些散點圖中的點是雜亂分布的,有些散點圖中的點的分布有一定的規(guī)律性,年齡和人體脂肪含量的樣本數(shù)據(jù)的散點圖中的點的分布有什么特點?這些點大致分布在一條直線附近思考5:在樣本數(shù)據(jù)的散點圖中,能否求出回歸直線?知識探究(二):回歸方程在直角坐標系中,任何一條直線都有相應的方程,回歸直線的方程稱為回歸方程對一組具有線性相關(guān)關(guān)系的樣本數(shù)據(jù),如果能夠求出它的回歸方程,那么我們就可以比較具體、清楚地了解兩個相關(guān)變量的內(nèi)在聯(lián)系,并根據(jù)回歸方程對總體進行估計(x1,y1)(x2,y2)(xi,yi)(xn,yn)可以用或,其中思考3:對一組具有線性相關(guān)關(guān)系的樣本數(shù)據(jù):1,y1,2,y2,…,n,yn,設(shè)其回歸方程為可以用哪些數(shù)量關(guān)系來刻畫各樣本點與回歸直線的接近程度?思考4:為了從整體上反映n個樣本數(shù)據(jù)與回歸直線的接近程度,你認為選用哪個數(shù)量關(guān)系來刻畫比較合適?(x1,y1)(x2,y2)(xi,yi)(xn,yn)
根據(jù)有關(guān)數(shù)學原理分析,當上述條件成立時,總體偏差為最小,這樣就得到了回歸方程,這種求回歸方程的方法叫最小二乘法,思考6:利用計算器或計算機可求得年齡和人體脂肪含量的樣本數(shù)據(jù)的回歸方程為,由此我們可以根據(jù)一個人個年齡預測其體內(nèi)脂肪含量的百分比的回歸值若某人37歲,則其體內(nèi)脂肪含量的百分比約為多少?209%理論遷移例1有一個同學家開了一個小賣部,他為了研究氣溫對熱飲銷售的影響,經(jīng)過統(tǒng)計,得到一個賣出的飲料杯數(shù)與當天氣溫的對比表:攝氏溫度(℃)
-504712熱飲杯數(shù)
15615013212813015192327313611610489937654攝氏溫度(℃)
-504712熱飲杯數(shù)
15615013212813015192327313611610489937654(1)畫出散點圖;(2)從散點圖中發(fā)現(xiàn)氣溫與熱飲杯數(shù)之間關(guān)系的一般規(guī)律;(3)求回歸方程;(4)如果某天的氣溫是2℃,預測這天賣出的熱飲杯數(shù)當=2時,y=143063小結(jié)作業(yè)1求樣本數(shù)據(jù)的線性回歸方程,可按下列步驟進行:第一步,計算平均數(shù),第二步,計算b和a第三步,寫出回歸方程注意:1、回歸方程被樣本數(shù)據(jù)惟一確定,各樣本點大致分布在回歸直線附近對同一個總體,不同的樣本數(shù)據(jù)對應不同的回歸直線,所以回歸直線也具有隨機性2對于任意一組樣本數(shù)據(jù),利用上述公式都可以求得“回歸方程”,如果這組數(shù)據(jù)不具有線性相關(guān)關(guān)系,即不存在回歸直線,那么所得的“回歸方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專題22 能源與可持續(xù)發(fā)展-2025年中考《物理》一輪復習知識清單與解題方法
- 二零二五年度藥品研發(fā)成果許可與銷售分成合同范本
- 2025年度勞動合同法企業(yè)勞動爭議調(diào)解中心設(shè)立合同
- 河道整治砂石運輸合同模板
- 2025年度生物科技行業(yè)勞動合同解除協(xié)議范本
- 2025年度供應鏈金融應收賬款回款合作協(xié)議
- 家具銷售居間合同文件資料
- 2025年度品牌連鎖店鋪授權(quán)經(jīng)營合同
- 2025年度山林資源承包與生態(tài)補償金支付合同書
- 二零二五年度企業(yè)員工績效對賭合作框架協(xié)議
- 民政局離婚協(xié)議書模板(8篇)
- 氣管鏡科室講課ppt課件(PPT 69頁)
- 對于二氧化碳傳感器的現(xiàn)狀及發(fā)展趨勢的淺分析
- 麥語言函數(shù)手冊參考模板
- 冷庫噴涂施工工藝(詳細)
- 電機學辜承林(第三版)第1章
- 知情同意書-北京大學腫瘤醫(yī)院
- 建筑材料碳排放因子查詢表
- 觀音神課三十二卦
- 醫(yī)療機構(gòu)停業(yè)(歇業(yè))申請書
- 發(fā)票(商業(yè)發(fā)票)格式
評論
0/150
提交評論