




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
河南平頂山舞鋼一高2024屆高一上數(shù)學期末復習檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在去年的足球聯(lián)賽上,一隊每場比賽平均失球個數(shù)是1.5,全年比賽失球個數(shù)的標準差是1.1;二隊每場比賽平均失球個數(shù)是2.1,全年比賽失球個數(shù)的標準差是0.4.則下列說法錯誤的是()A.平均來說一隊比二隊防守技術好 B.二隊很少失球C.一隊有時表現(xiàn)差,有時表現(xiàn)又非常好 D.二隊比一隊技術水平更不穩(wěn)定2.如圖所示,已知全集,集合,則圖中陰影部分表示的集合為()A. B.C. D.3.已知,都是正數(shù),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件4.已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當x≥0時,,則當x<0時,f(x)的表達式是A. B.C. D.5.天文學中為了衡量星星的明暗程度,古希臘天文學家喜帕恰斯(,又名依巴谷)在公元前二世紀首先提出了星等這個概念.星等的數(shù)值越小,星星就越亮;星等的數(shù)值越大,它的光就越暗.到了1850年,由于光度計在天體光度測量中的應用,英國天文學家普森()又提出了衡量天體明暗程度的亮度的概念.天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足.其中星等為的星的亮度為.已知“心宿二”的星等是1.00.“天津四”的星等是1.25.“心宿二”的亮度是“天津四”的倍,則與最接近的是(當較小時,)A.1.24 B.1.25C.1.26 D.1.276.若,,,則()A. B.C. D.7.當時,在同一坐標系中,函數(shù)與的圖像是()A. B.C. D.8.設a>0,b>0,化簡的結果是()A. B.C. D.-3a9.下列四個函數(shù)中,與函數(shù)相等的是A. B.C. D.10.若冪函數(shù)的圖像經(jīng)過點,則A.1 B.2C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.給出下列五個論斷:①;②;③;④;⑤.以其中的兩個論斷作為條件,一個論斷作為結論,寫出一個正確的命題:___________.12.函數(shù),若為偶函數(shù),則最小的正數(shù)的值為______13.已知函數(shù),,若關于x的方程()恰好有6個不同的實數(shù)根,則實數(shù)λ的取值范圍為_______.14.在中,三個內(nèi)角所對的邊分別為,,,,且,則的取值范圍為__________15.已知tanα=3,則sinα(cosα-sinα)=______16.已知,則的值為________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.中學階段是學生身體發(fā)育重要的階段,長時間熬夜學習嚴重影響學生的身體健康.某校為了解甲、乙兩個班的學生每周熬夜學習的總時長(單位:小時),從這兩個班中各隨機抽取名同學進行調(diào)查,將他們最近一周熬夜學習的總時長作為樣本數(shù)據(jù),如下表所示.如果學生一周熬夜學習的總時長超過小時,則稱為“過度熬夜”.甲班乙班(1)分別計算出甲、乙兩班樣本的平均值;(2)為了解學生過度熬夜的原因,從甲、乙兩班符合“過度熬夜”的樣本數(shù)據(jù)中,抽取個數(shù)據(jù),求抽到的數(shù)據(jù)來自同一個班級的概率;(3)從甲班的樣本數(shù)據(jù)中有放回地抽取個數(shù)據(jù),求恰有個數(shù)據(jù)為“過度熬夜”的概率18.解關于的不等式.19.如圖所示,在三棱柱ABC-A1B1C1中,E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點,求證:(1)B,C,H,G四點共面;(2)平面EFA1∥平面BCHG.20.已知是定義在上的奇函數(shù),且,若,時,有成立.(1)判斷在上的單調(diào)性,并證明;(2)解不等式;(3)若對所有的恒成立,求實數(shù)的取值范圍.21.在國家大力發(fā)展新能源汽車產(chǎn)業(yè)政策下,我國新能源汽車的產(chǎn)銷量高速增長.某地區(qū)年底新能源汽車保有量為輛,年底新能源汽車保有量為輛,年底新能源汽車保有量為輛(1)根據(jù)以上數(shù)據(jù),試從(,且),,(,且),三種函數(shù)模型中選擇一個最恰當?shù)哪P蛠砜坍嬓履茉雌嚤S辛康脑鲩L趨勢(不必說明理由),設從年底起經(jīng)過年后新能源汽車保有量為輛,求出新能源汽車保有量關于的函數(shù)關系式;(2)假設每年新能源汽車保有量按(1)中求得的函數(shù)模型增長,且傳統(tǒng)能源汽車保有量每年下降的百分比相同,年底該地區(qū)傳統(tǒng)能源汽車保有量為輛,預計到年底傳統(tǒng)能源汽車保有量將下降.試估計到哪一年底新能源汽車保有量將超過傳統(tǒng)能源汽車保有量.(參考數(shù)據(jù):,)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】利用平均數(shù)和標準差的定義及意義即可求解.【題目詳解】對于A,因為一隊每場比賽平均失球數(shù)是1.5,二隊每場比賽平均失球數(shù)是2.1,所以平均說來一隊比二隊防守技術好,故A正確;對于B,因為二隊每場比賽平均失球數(shù)是2.1,全年比賽失球個數(shù)的標準差為0.4,所以二隊經(jīng)常失球,故B錯誤;對于C,因為一隊全年比賽失球個數(shù)的標準差為1.1,二隊全年比賽失球個數(shù)的標準差為0.4,所以一隊有時表現(xiàn)很差,有時表現(xiàn)又非常好,故C正確;對于D,因為一隊全年比賽失球個數(shù)的標準差為1.1,二隊全年比賽失球個數(shù)的標準差為0.4,所以二隊比一隊技術水平更穩(wěn)定,故D正確;故選:B.2、A【解題分析】根據(jù)文氏圖表示的集合求得正確答案.【題目詳解】文氏圖表示集合為,所以.故選:A3、B【解題分析】利用特殊值法、基本不等式結合充分條件、必要條件的定義判斷可得出結論.【題目詳解】充分性:由于,,且,取,則,充分性不成立;必要性:由于,,且,解得,必要性成立.所以,當,時,“”“”必要不充分條件.故選:B.4、A【解題分析】由題意得,當時,則,當時,,所以,又因為函數(shù)是定義在上的奇函數(shù),所以,故選A考點:函數(shù)的奇偶性的應用;函數(shù)的表達式5、C【解題分析】根據(jù)題意,代值計算,即可得,再結合參考公式,即可估算出結果.【題目詳解】根據(jù)題意可得:可得,解得,根據(jù)參考公式可得,故與最接近的是.故選:C.【題目點撥】本題考查對數(shù)運算,以及數(shù)據(jù)的估算,屬基礎題.6、A【解題分析】先變形,然后利用指數(shù)函數(shù)的性質(zhì)比較大小即可【題目詳解】,因為在上為減函數(shù),且,所以,所以,故選:A7、D【解題分析】根據(jù)指數(shù)型函數(shù)和對數(shù)型函數(shù)單調(diào)性,判斷出正確選項.【題目詳解】由于,所以為上的遞減函數(shù),且過;為上的單調(diào)遞減函數(shù),且過,故只有D選項符合.故選:D.【題目點撥】本小題主要考查指數(shù)型函數(shù)、對數(shù)型函數(shù)單調(diào)性判斷,考查函數(shù)圖像的識別,屬于基礎題.8、D【解題分析】由分數(shù)指數(shù)冪的運算性質(zhì)可得結果.【題目詳解】因為,,所以.故選:D.9、D【解題分析】分別化簡每個選項的解析式并求出定義域,再判斷是否與相等.【題目詳解】A選項:解析式為,定義域為R,解析式不相同;B選項:解析式為,定義域為,定義域不相同;C選項:解析式為,定義域為,定義域不相同;D選項:解析式為,定義域為R,符合條件,答案為D.【題目點撥】函數(shù)相等主要看:(1)解析式相同;(2)定義域相同.屬于基礎題.10、B【解題分析】由題意可設,將點代入可得,則,故選B.二、填空題:本大題共6小題,每小題5分,共30分。11、②③?⑤;③④?⑤;②④?⑤【解題分析】利用不等式的性質(zhì)和做差比較即可得到答案.【題目詳解】由②③?⑤,因為,,則.由③④?⑤,由于,,則,所以.由②④?⑤,由于,且,則,所以.故答案為:②③?⑤;③④?⑤;②④?⑤12、【解題分析】根據(jù)三角函數(shù)的奇偶性知應可用誘導公式化為余弦函數(shù)【題目詳解】,其為偶函數(shù),則,,,其中最小的正數(shù)為故答案【題目點撥】本題考查三角函數(shù)的奇偶性,解題時直接利用誘導公式分析即可13、【解題分析】令,則方程轉化為,可知可能有個不同解,二次函數(shù)可能有個不同解,由恰好有6個不同的實數(shù)根,可得有2個不同的實數(shù)根,有3個不同的實數(shù)根,則,然后根據(jù),,分3種情況討論即可得答案.【題目詳解】解:令,則方程轉化為,畫出的圖象,如圖可知可能有個不同解,二次函數(shù)可能有個不同解,因為恰好有6個不同的實數(shù)根,所以有2個不同的實數(shù)根,有3個不同的實數(shù)根,則,因為,解得,,解得,所以,,每個方程有且僅有兩個不相等的實數(shù)解,所以由,可得,即,解得;由,可得,即,解得;由,可得,即,而在上恒成立,綜上,實數(shù)λ的取值范圍為.故答案為:.14、【解題分析】∵,,且,∴,∴,∴在中,由正弦定理得,∴,∴,∵,∴∴∴的取值范圍為答案:15、【解題分析】利用同角三角函數(shù)基本關系式化簡所求,得到正切函數(shù)的表達式,根據(jù)已知即可計算得解【題目詳解】解:∵tanα=3,∴sinα(cosα﹣sinα)故答案為【題目點撥】本題主要考查了同角三角函數(shù)基本關系式在三角函數(shù)化簡求值中的應用,考查了轉化思想,屬于基本知識的考查16、【解題分析】利用正弦、余弦、正切之間的商關系,分式的分子、分母同時除以即可求出分式的值.【題目詳解】【題目點撥】本題考查了同角三角函數(shù)的平方和關系和商關系,考查了數(shù)學運算能力.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2);(3)【解題分析】(1)利用平均數(shù)公式代入求解;(2)由題意得甲班和乙班各有“過度熬夜”的人數(shù)為,計算得基本事件總數(shù)和個數(shù)據(jù)來自同一個班級的基本事件的個數(shù),然后利用古典概型的公式代入計算取個數(shù)據(jù)來自同一個班級的概率;(3)甲班共有個數(shù)據(jù),其中“過度熬夜”的數(shù)據(jù)有個,計算得基本事件總數(shù)和恰有個數(shù)據(jù)為“過度熬夜”的基本事件的個數(shù),利用古典概型的公式代入計算恰有個數(shù)據(jù)為“過度熬夜”的概率.【題目詳解】(1)甲的平均值:;乙的平均值:;(2)由題意,甲班和乙班各有“過度熬夜”的人數(shù)為,抽取個數(shù)據(jù),基本事件的總數(shù)為個,抽到來自同一個班級的基本事件的個數(shù)為,則抽取個數(shù)據(jù)來自同一個班級的概率為;(3)甲班共有個數(shù)據(jù),其中“過度熬夜”的數(shù)據(jù)有個,從甲班的樣本數(shù)據(jù)中有放回地抽取個數(shù)據(jù),基本事件的總數(shù)為個,恰有個數(shù)據(jù)為“過度熬夜”包含的基本事件的個數(shù)為個,則恰有個數(shù)據(jù)為“過度熬夜”的概率為.18、答案見解析【解題分析】不等式等價于,再分,和三種情況討論解不等式.【題目詳解】原不等式可化為,即,①當,即時,;②當,即時,原不等式的解集為;③當,即時,.綜上知:當時,原不等式的解集為;當時,原不等式的解集為;當時原不等式的解集為.19、(1)證明見解析;(2)證明見解析.【解題分析】(1)證明,再由,由平行公理證明,證得四點共面;(2)證明,證得面,再證得,證得面,從而證得平面EFA1∥平面BCHG.【題目詳解】(1)∵G,H分別是A1B1,A1C1的中點,∴GH是△A1B1C1的中位線,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四點共面(2)∵E,F(xiàn)分別是AB,AC的中點,∴EF∥BC.∵EF?平面BCHG,BC?平面BCHG,∴EF∥平面BCHG.∵A1GEB且,∴四邊形A1EBG是平行四邊形,∴A1E∥GB.∵A1E?平面BCHG,GB?平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EFA1∥平面BCHG.【題目點撥】本題考查了四點共面的證明,面面平行的判定,考查對基本定理的掌握與應用,空間想象能力,要注意線線平行、線面平行、面面平行之間的相互轉化,屬于中檔題.20、(1)見解析(2)(3)或或【解題分析】(1)根據(jù)條件賦值得,根據(jù)奇函數(shù)性質(zhì)得,再根據(jù)單調(diào)性定義得減函數(shù),(2)利用單調(diào)性化簡得,結合定義區(qū)間得,解方程組得結果,(3)即,再根據(jù)單調(diào)性得,化簡得關于a恒成立的不等式,根據(jù)一次函數(shù)圖像得,解得實數(shù)的取值范圍.試題解析:證明:(1)在上是減函數(shù)任取且,則,為奇函數(shù)由題知,,即在上單調(diào)遞減在上單調(diào)遞減解得不等式的解集為(3),在上單調(diào)遞減在上,問題轉化為,即,對任意的恒成立令,即,對任意恒成立則由題知,解得或或點睛:解函數(shù)不等式:首先根據(jù)函數(shù)的性質(zhì)把不等式轉化為的形式,然后根據(jù)函數(shù)的單調(diào)性去掉“”,轉化為具體的不等式(組),此時要注意與的取值應在外層函數(shù)的定義域內(nèi).21、(1)應選擇的函數(shù)模型是(,且),函數(shù)關系式為;(2)年底.【解題分析】(1)根據(jù)題中的數(shù)據(jù)可得出所選的函數(shù)模型,然后將對應點的坐標代入函數(shù)解析式,求出參數(shù)的值,即可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 民間工具捐贈協(xié)議書
- 學校專業(yè)共建協(xié)議書
- 員工車輛安全協(xié)議書
- 空調(diào)火災免責協(xié)議書
- 無故辭退調(diào)解協(xié)議書
- 加盟和解協(xié)議書模板
- 租地建房辦學協(xié)議書
- 技術期權入股協(xié)議書
- 浸水事件賠償協(xié)議書
- 教師簽約協(xié)議書范文
- 危險性較大的分部分項工程專項施工方案嚴重缺陷清單(試行)
- 2025年遼寧省建筑安全員《B證》考試題庫
- 2023-2024學年華東師大版八年級數(shù)學上冊期末復習綜合練習題
- 慢性腎病5期護理查房
- 常務副總經(jīng)理職責
- 2024年云南省中考物理真題含解析
- 后勤崗位招聘面試題及回答建議
- 完整初一歷史上學期記憶時間軸
- 《農(nóng)村普惠金融發(fā)展研究的國內(nèi)外文獻綜述》4500字
- 漁光互補光伏發(fā)電項目反事故及預防措施
- 農(nóng)業(yè)昆蟲學-形考測試四-國開(ZJ)-參考資料
評論
0/150
提交評論