




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
函數(shù)的單調(diào)性一、課題引入:x11-1-1yx11-1-1yx11-1-1y1、觀察下列各個(gè)函數(shù)的圖象,并說(shuō)說(shuō)它們分別反映了相應(yīng)函數(shù)的哪些變化規(guī)律:
①隨x的增大,y的值有什么變化?②能否看出函數(shù)的最大、最小值?③函數(shù)圖象是否具有某種對(duì)稱(chēng)性?
2、畫(huà)出下列函數(shù)的圖象,觀察其變化規(guī)律:(1)f(x)=x
①?gòu)淖笾劣覉D象上升還是下降______?②在區(qū)間__上,隨著x的增大,f(x)的值隨著____.x1y1-1-1(2)f(x)=x2x1y1-1-13、從上面的觀察分析,能得出什么結(jié)論?
①不同的函數(shù),其圖象的變化趨勢(shì)不同
②同一函數(shù)在不同區(qū)間上變化趨勢(shì)也不同
函數(shù)圖象的這種變化規(guī)律就是函數(shù)性質(zhì)的反映,這就是我們今天所要研究的函數(shù)的一個(gè)重要性質(zhì)——函數(shù)的單調(diào)性
探索:y=x2的圖象在y軸右側(cè)是上升的,如何用數(shù)學(xué)符號(hào)語(yǔ)言來(lái)描述這種“上升”?
二、研探新知:對(duì)于(0,+∞)上的任意的x1,x2,當(dāng)x1<x2時(shí),都有x12<x22.即函數(shù)值隨著自變量的增大而增大,具有這種性質(zhì)的函數(shù)叫增函數(shù)。
結(jié)論1:如果對(duì)于定義域I內(nèi)某個(gè)區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1<x2時(shí),都有f(x1)<f(x2)
.
那么就說(shuō)函數(shù)f(x)在區(qū)間D上是增函數(shù)。x1y1-1-1類(lèi)比增函數(shù)的定義,請(qǐng)概括出減函數(shù)的定義?
如果對(duì)于定義域I內(nèi)某個(gè)區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1<x2時(shí),都有f(x1)>f(x2)
.
那么就說(shuō)函數(shù)f(x)在區(qū)間D上是減函數(shù)。
注意:函數(shù)的單調(diào)性是在定義域內(nèi)的某個(gè)區(qū)間上的性質(zhì),是函數(shù)的局部性質(zhì);(2)必須是對(duì)于區(qū)間D內(nèi)的任意兩個(gè)自變量x1,
x2;當(dāng)x1<x2時(shí),總有f(x1)<f(x2)或f(x1)>f(x2)
函數(shù)的單調(diào)性定義
如果函數(shù)y=f(x)在某個(gè)區(qū)間上是增函數(shù)或減函數(shù),那么就說(shuō)函數(shù)y=f(x)在這一區(qū)間具有(嚴(yán)格的)單調(diào)性,區(qū)間D叫做y=f(x)的單調(diào)區(qū)間.三、思維發(fā)展:例1:如圖是定義在區(qū)間[-5,5]上的函數(shù)y=f(x),根據(jù)圖象說(shuō)出函數(shù)的單調(diào)區(qū)間,以及在每一單調(diào)區(qū)間上,它是增函數(shù)還是減函數(shù)?例2:物理學(xué)中的玻意耳定律P=(k為正常數(shù))告訴我們,對(duì)于一定量的氣體,當(dāng)其體積V減少時(shí),壓強(qiáng)P將增大。試用函數(shù)的單調(diào)性證明之??偨Y(jié)判斷函數(shù)單調(diào)性的方法步驟
利用定義證明函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性的一般步驟:①任取x1,x2∈D,且x1<x2;②作差f(x1)-f(x2);③變形(通常是因式分解和配方);④定號(hào)(即判斷差f(x1)-f(x2)的正負(fù));⑤下結(jié)論(即指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).1、課本P32練習(xí)第1、2、3題;四、鞏固練習(xí):2、畫(huà)出反比例函數(shù)y=1/x的圖象.
(1)這個(gè)函數(shù)的定義域是什么?
(2)它在定義域I上的單調(diào)性怎樣?證明你的結(jié)論.3、證明函數(shù)在(1,+∞)上為增函數(shù).五、歸納小結(jié):
函數(shù)的單調(diào)性一般是
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)藥店合作合同范本
- 丹麥工作合同范本
- 辦理消防驗(yàn)收合同范本
- 個(gè)人工資合同范本
- 入股公司項(xiàng)目合同范本
- 2024年云浮聯(lián)通招聘考試真題
- 東莞代理記賬合同范本
- 2025東風(fēng)公司全球校園招聘筆試參考題庫(kù)附帶答案詳解
- 買(mǎi)賣(mài)車(chē)訂金合同范本
- 2024年河南濮陽(yáng)工學(xué)院籌建處 引進(jìn)考試真題
- 退役軍人優(yōu)待證申領(lǐng)表
- Q∕SY 19001-2017 風(fēng)險(xiǎn)分類(lèi)分級(jí)規(guī)范
- 勞務(wù)分包項(xiàng)目經(jīng)理崗位職責(zé)
- 幼兒繪本故事:奇怪的雨傘店
- 鋼琴基礎(chǔ)教程教案
- 糖基轉(zhuǎn)移酶和糖苷酶課件(PPT 111頁(yè))
- 屋面網(wǎng)架結(jié)構(gòu)液壓提升施工方案(50頁(yè))
- (語(yǔ)文A版)四年級(jí)語(yǔ)文下冊(cè)課件跳水 (2)
- 第6章向量空間ppt課件
- 醫(yī)療機(jī)構(gòu)聘用(返聘)證明
- 【單元設(shè)計(jì)】第七章《萬(wàn)有引力與宇宙航行》單元教學(xué)設(shè)計(jì)及教材分析課件高一物理人教版(2019)必修第二冊(cè)
評(píng)論
0/150
提交評(píng)論