版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
初等函數(shù)的圖形冪函數(shù)的圖形指數(shù)函數(shù)的圖形對(duì)數(shù)函數(shù)的圖形三角函數(shù)的圖形各三角函數(shù)值在各象限的符號(hào)sinα·cscαcosα·secαtanα·cotα三角函數(shù)的性質(zhì)函數(shù)y=sinxy=cosxy=tanxy=cotx定義域RR{x|x∈R且x≠kπ+,k∈Z}{x|x∈R且x≠kπ,k∈Z}值域[-1,1]x=2kπ+時(shí)ymax=1x=2kπ-時(shí)ymin=-1[-1,1]x=2kπ時(shí)ymax=1x=2kπ+π時(shí)ymin=-1R無最大值無最小值R無最大值無最小值周期性周期為2π周期為2π周期為π周期為π奇偶性奇函數(shù)偶函數(shù)奇函數(shù)奇函數(shù)單調(diào)性在[2kπ-,2kπ+]上都是增函數(shù);在[2kπ+,2kπ+π]上都是減函數(shù)(k∈Z)在[2kπ-π,2kπ]上都是增函數(shù);在[2kπ,2kπ+π]上都是減函數(shù)(k∈Z)在(kπ-,kπ+)內(nèi)都是增函數(shù)(k∈Z)在(kπ,kπ+π)內(nèi)都是減函數(shù)(k∈Z)反三角函數(shù)的圖形反三角函數(shù)的性質(zhì)名稱反正弦函數(shù)反余弦函數(shù)反正切函數(shù)反余切函數(shù)定義y=sinx(x∈〔-,〕的反函數(shù),叫做反正弦函數(shù),記作x=arsinyy=cosx(x∈〔0,π〕)的反函數(shù),叫做反余弦函數(shù),記作x=arccosyy=tanx(x∈(-,)的反函數(shù),叫做反正切函數(shù),記作x=arctanyy=cotx(x∈(0,π))的反函數(shù),叫做反余切函數(shù),記作x=arccoty理解arcsinx表示屬于[-,]且正弦值等于x的角arccosx表示屬于[0,π],且余弦值等于x的角arctanx表示屬于(-,),且正切值等于x的角arccotx表示屬于(0,π)且余切值等于x的角性質(zhì)定義域[-1,1][-1,1](-∞,+∞)(-∞,+∞)值域[-,][0,π](-,)(0,π)單調(diào)性在〔-1,1〕上是增函數(shù)在[-1,1]上是減函數(shù)在(-∞,+∞)上是增數(shù)在(-∞,+∞)上是減函數(shù)奇偶性arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotx周期性都不是同期函數(shù)恒等式sin(arcsinx)=x(x∈[-1,1])arcsin(sinx)=x(x∈[-,])cos(arccosx)=x(x∈[-1,1])arccos(cosx)=x(x∈[0,π])tan(arctanx)=x(x∈R)arctan(tanx)=x〔x∈(-,)〕cot(arccotx)=x(x∈R)arccot(cotx)=x(x∈(0,π))互余恒等式arcsinx+arccosx=(x∈[-1,1])arctanx+arccotx=(X∈R)三角函數(shù)公式兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tan(A-B)=cot(A+B)=cot(A-B)=倍角公式tan2A=Sin2A=2SinA?CosACos2A=Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式sin3A=3sinA-4(sinA)3cos3A=4(cosA)3-3cosAtan3a=tana·tan(+a)·tan(-a)半角公式sin()=cos()=tan()=cot()=tan()==和差化積sina+sinb=2sincossina-sinb=2cossincosa+cosb=2coscoscosa-cosb=-2sinsintana+tanb=積化和差sinasinb=-[cos(a+b)-cos(a-b)]cosacosb=[cos(a+b)+cos(a-b)]sinacosb=[sin(a+b)+sin(a-b)]cosasinb=[sin(a+b)-sin(a-b)]誘導(dǎo)公式sin(-a)=-sinacos(-a)=cosasin(-a)=cosacos(-a)=sinasin(+a)=cosacos(+a)=-sinasin(π-a)=sinacos(π-a)=-cosasin(π+a)=-sinacos(π+a)=-cosatgA=tanA=萬能公式sina=cosa=tana=其它公式a?sina+b?cosa=×sin(a+c)[其中tanc=]a?sin(a)-b?cos(a)=×cos(a-c)[其中tan(c)=]1+sin(a)=(sin+cos)21-sin(a)=(sin-cos)2其他非重點(diǎn)三角函數(shù)csc(a)=sec(a)=雙曲函數(shù)sinh(a)=cosh(a)=tgh(a)=公式一設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:sin〔2kπ+α〕=sinαcos〔2kπ+α〕=cosαtan〔2kπ+α〕=tanαcot〔2kπ+α〕=cotα公式二設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:sin〔π+α〕=-sinαcos〔π+α〕=-cosαtan〔π+α〕=tanαcot〔π+α〕=cotα公式三任意角α與-α的三角函數(shù)值之間的關(guān)系:sin〔-α〕=-sinαcos〔-α〕=cosαtan〔-α〕=-tanαcot〔-α〕=-cotα公式四利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:sin〔π-α〕=sinαcos〔π-α〕=-cosαtan〔π-α〕=-tanαcot〔π-α〕=-cotα公式五利用公式-和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:sin〔2π-α〕=-sinαcos〔2π-α〕=cosαtan〔2π-α〕=-tanαcot〔2π-α〕=-cotα公式六±α及±α與α的三角函數(shù)值之間的關(guān)系:sin〔+α〕=cosαcos〔+α〕=-sinαtan〔+α〕=-cotαcot〔+α〕=-tanαsin〔-α〕=cosαcos〔-α〕=sinαtan〔-α〕=cotαcot〔-α〕=tanαsin〔+α〕=-cosαcos〔+α〕=sinαtan〔+α〕=-cotαcot〔+α〕=-tanαsin〔-α〕=-cosαcos〔-α〕=-sinαtan〔-α〕=cotαcot〔-α〕=tanα(以上k∈Z)這個(gè)物理常用公式我費(fèi)了半天的勁才輸進(jìn)來,希望對(duì)大家有用A?sin(ωt+θ)+B?sin(ωt+φ)=×sin三角函數(shù)公式證明〔全部〕公式表達(dá)式乘法與因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a根與系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理判別式b2-4a=0注:方程有相等的兩實(shí)根b2-4ac>0注:方程有一個(gè)實(shí)根b2-4ac<0注:方程有共軛復(fù)數(shù)根三角函數(shù)公式兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化積2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB某些數(shù)列前n項(xiàng)和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:〔a,b〕是圓心坐標(biāo)圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0拋物線標(biāo)準(zhǔn)方程y2=2pxy2=-2pxx2=2pyx2=-2py直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c'*h正棱錐側(cè)面積S=1/2c*h'正棱臺(tái)側(cè)面積S=1/2(c+c')h'圓臺(tái)側(cè)面積S=1/2(c+c')l=pi(R+r)l球的外表積S=4pi*r2圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長柱體體積公式V=s*h圓柱體V=pi*r2h--------------------------------------------------------------------------------------------三角函數(shù)
積化和差和差化積公式記不住就自己推,用兩角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB這兩式相加或相減,可以得到2組積化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相減:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA這兩式相加或相減,可以得到2組積化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相減:sinBcosA=[sin(A+B)-sin(A-B)]/2這樣一共4組積化和差,然后倒過來就是和差化積了不知道這樣你可以記住伐,實(shí)在記不住考試的時(shí)候也可以臨時(shí)推導(dǎo)一下正加正正在前正減正余在前余加余都是余余減余沒有余還負(fù)正余正加余正正減余余余加正正余減還負(fù).3.三角形中的一些結(jié)論:(不要求記憶)
(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)
(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1
(4)sin2A+sin2B+sin2C=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度智能家居音響系統(tǒng)與家裝室內(nèi)裝修合同9篇
- 二零二五版大理石瓷磚研發(fā)與銷售合作合同范本3篇
- 二零二五版民營企業(yè)股權(quán)激勵(lì)合同書3篇
- 教育局教師幼兒園專項(xiàng)2025年度勞動(dòng)合同規(guī)范文本3篇
- 二零二五年銷售代理合同:汽車銷售代理及區(qū)域獨(dú)家合作協(xié)議2篇
- 2025年科技孵化器場地租賃保證金合同范本2篇
- 二零二五版39上公司兜底協(xié)議:綠色環(huán)保項(xiàng)目投資風(fēng)險(xiǎn)控制合同3篇
- 二零二五年度鋼箱梁橋工程施工廢棄物處理與回收利用合同3篇
- 二零二五版綠色建筑項(xiàng)目基礎(chǔ)勞務(wù)分包合同2篇
- 二零二五年度高速公路隧道防雷安全防護(hù)合同3篇
- Android移動(dòng)開發(fā)基礎(chǔ)案例教程(第2版)完整全套教學(xué)課件
- 醫(yī)保DRGDIP付費(fèi)基礎(chǔ)知識(shí)醫(yī)院內(nèi)培訓(xùn)課件
- 專題12 工藝流程綜合題- 三年(2022-2024)高考化學(xué)真題分類匯編(全國版)
- DB32T-經(jīng)成人中心靜脈通路裝置采血技術(shù)規(guī)范
- 【高空拋物侵權(quán)責(zé)任規(guī)定存在的問題及優(yōu)化建議7100字(論文)】
- TDALN 033-2024 學(xué)生飲用奶安全規(guī)范入校管理標(biāo)準(zhǔn)
- 物流無人機(jī)垂直起降場選址與建設(shè)規(guī)范
- 冷庫存儲(chǔ)合同協(xié)議書范本
- AQ/T 4131-2023 煙花爆竹重大危險(xiǎn)源辨識(shí)(正式版)
- 武術(shù)體育運(yùn)動(dòng)文案范文
- 設(shè)計(jì)服務(wù)合同范本百度網(wǎng)盤
評(píng)論
0/150
提交評(píng)論