GB 51160-2016 纖維增強(qiáng)塑料設(shè)備和管道工程技術(shù)規(guī)范_第1頁
GB 51160-2016 纖維增強(qiáng)塑料設(shè)備和管道工程技術(shù)規(guī)范_第2頁
GB 51160-2016 纖維增強(qiáng)塑料設(shè)備和管道工程技術(shù)規(guī)范_第3頁
GB 51160-2016 纖維增強(qiáng)塑料設(shè)備和管道工程技術(shù)規(guī)范_第4頁
GB 51160-2016 纖維增強(qiáng)塑料設(shè)備和管道工程技術(shù)規(guī)范_第5頁
已閱讀5頁,還剩163頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)閱讀全文

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

水印

人人文庫

NATIONALSTANDARD

OFTHEPEOPLE'SREPUBLICOFCHINA

TECHNICALCODEFORFIBREREINFORCEDPLASTICS

EQUIPMENTANDPIPINGENGINEERING

GB51160-2016

DevelopedbyBranchofChemicalIndustry,ChinaAssociationforEngineering

ConstructionStandardization

ApprovedbyTheMinistryofHousingandUrbanRuralDevelopmentof

-

thePeople'sRepublicofChina

ImplementationDateAugust1,2016水印

人人文庫

ChinaPlanningPress

Beijing2021

ChineseeditionfirstpublishedinthePeoplesRepublicofChinain2016

EnglisheditionfirstpublishedinthePeoplesRepublicofChinain2021

byChinaPlanningPress

rd

,,水印

3FloorCTowerGuohongBuilding

No.A11,Muxidi-Beili,XichengDistrict

Beijing,100038

PrintedinChinabyBeijingJingyintangGraphicPrintingCenter

?2016bytheMinistryofHousingandUrban-RuralDevelopmentof

thePeoplesRepublicofChina

Allrightsreserved.Nopartofthispublicationmaybereproducedortransmittedinanyformor

byanymeans人人文庫,graphic,electronic,ormechanical,includingphotocopying,recording,

oranyinformationstorageandretrievalsystems,withoutwrittenpermissionofthepublisher.

Thisbookissoldsubjecttotheconditionthatitshallnot,bywayoftradeorotherwise,belent,

resold,hiredoutorotherwisecirculatedwithoutthepublisherspriorconsentinanyformof

blindingorcoverotherthanthatinwhichthisispublishedandwithoutasimilarcondition

includingthisconditionbeingimposedonthesubsequentpurchaser.

ISBN978-7-5182-1270-5

中華人民共和國住房和城鄉(xiāng)建設(shè)部公告

2021年第11號

住房和城鄉(xiāng)建設(shè)部關(guān)于發(fā)布《纖維增強(qiáng)

塑料設(shè)備和管道工程技術(shù)規(guī)范》

等7項(xiàng)工程建設(shè)標(biāo)準(zhǔn)英文版的公告

現(xiàn)批準(zhǔn)《纖維增強(qiáng)塑料設(shè)備和管道工程技術(shù)規(guī)范》(GB51160-2016)、《工業(yè)企業(yè)電氣設(shè)備

抗震鑒定標(biāo)準(zhǔn)》(GB50994-2014)、《石油庫設(shè)計文件編制標(biāo)準(zhǔn)》(GB/T51026-2014)、《石油化

工工程地震破壞鑒定標(biāo)準(zhǔn)》(GB50992-2014)、《鋼鐵工業(yè)環(huán)境保護(hù)設(shè)計規(guī)范水印》(GB50406-

2017)、《鋼鐵工業(yè)資源綜合利用設(shè)計規(guī)范》(GB50405-2017)、《尾礦設(shè)施設(shè)計規(guī)范》

(GB50863-2013)英文版。工程建設(shè)標(biāo)準(zhǔn)英文版與中文版出現(xiàn)異議時,以中文版為準(zhǔn)。

以上7項(xiàng)工程建設(shè)標(biāo)準(zhǔn)英文版由住房和城鄉(xiāng)建設(shè)部組織中國計劃出版社有限公司出版發(fā)行。

中華人民共和國住房和城鄉(xiāng)建設(shè)部

2021年1月25日

人人文庫

AnnouncementoftheMinistryofHousingandUrban-Rural

DevelopmentofthePeople'sRepublicofChina

No.1026

AnnouncementoftheMinistryofHousingandUrbanRural

-

DevelopmentonPublishingNationalStandardofTechnical

CodeforFibreReinforcedPlasticsEquipmentand

PipingEngineering

TechnicalCodeforFibreReinforcedPlasticsEquipmentandPipingEngineeringhasbeen

approvedasanationalstandardwithaserialnumberofGB51160-2016,andwillbeimplementedon

August1,2016.Inthiscode,Articles(oritem)3.4.2,3.4.3(1)and7.1.3(3)aremandatoryonesandmust

beimplementedstrictly.水印

AuthorizedbytheResearchInstituteofStandardsandNormsofMinistryofHousingandUrban

-

RuralDevelopmentofthePeople'sRepublicofChina,thiscodeispublishedanddistributedbyChina

PlanningPress.

MinistryofHousingandUrbanRuralDevelopmentofthePeople'sRepublicofChina

-

January1,2016

人人文庫

Foreword

ThiscodeispreparedbyChinaPetroleumandChemicalEngineeringSurveyandDesign

AssociationandShanghaiFuchenChemicalCo.,Ltd.togetherwithotherinvolvedorganizations.

accordingtotherequirementsofDocumentJIANBIAO[2013]No.6issuedbytheMinistryofHousing

andUrbanRuralDevelopment(MOHURD)

-"NoticeonPrintingandDistributing'theDevelopment

.

andRevisionPlanofNationalEngineeringConstructionStandardsin2013'"

Inpreparingthiscode,thedevelopmentteamcarriedoutinvestigationandresearch,testsand

verification,summarizedtheapplicationexperienceofChinesefibrereinforcedplasticsequipmentand

pipingengineeringtechnology,madereferencetotheadvancedcodesandstandardsinChinaand

abroad,basedonextensiveconsultation,reviewedandfinalizedthiscode.

Thiscodeconsistsof11chaptersand11appendixes,covering:generalprovisions,terms,basic

requirements,materials,equipmentdesign,pipingdesign,manufacture,qualitycontrolandinspection,

marking,packing,transporting,storing,installation,projectacceptance.

Theprovisionsprintedinboldtypearemandatoryonesandmustbeimplementedstrictly.

Thiscodeisunderthejurisdictionof,anditsmandatoryprovisions水印areinterpretedbytheMinistry

ofHousingandUrbanRuralDevelopmentofthePeoplesRepublicofChina.TheBranchofChemical

-'

Industry,ChinaAssociationforEngineeringConstructionStandardizationisresponsibleforitsroutine

management,andShanghaiFuchenChemicalCo.,Ltd.isinchargeofexplanationoftechnical

specification.Duringtheimplementationofthiscode,anycommentsandadvicescanbepostedor

passedontoShanghaiFuchenChemicalCo.,Ltd.(Address:521B,No.251CaoxiRoad,Xuhui

-

District,Shanghai;Postcode:200235).

ChiefDevelopmentOrganizations,CoDevelopmentOrganizations,ParticipatingOrganizations,

-

ChiefDraffters,ChiefReviewersandChiefTranslatersofthiscode:

ChiefDevelopmentOrganizations:

ChinaPetroleumandChemicalEngineeringSurveyandDesignAssociation

ShanghaiFuchenChemicalCo.,Ltd.

Co-DevelopmentOrganizations:

ShijiazhuangDevelopmentZoneJiyuanTechnologyCo.,Ltd.

人人文庫XinjiangPengyuanNewMaterialCo.,Ltd.

EastChinaUniversityofScienceandTechnology

ChinaWuhuanEngineeringCo.,Ltd.

SinopecNanjingEngineeringCo.,Ltd.

ChinaEnfiEngineeringTechnologyCo.,Ltd.

JizhouZhongyiCompositeMaterialCo.,Ltd.

JiangxiCopperGroupCompanyGuixiSmeltingPlant

ChangzhouHuakePolymerCo.,Ltd.

JinchuanGroupEngineeringConstructionCo.,Ltd.

JilinDesignInstituteofCNPCNortheastRefiningandChemicalEngineeringCo.,Ltd.

·1·

Ashland(China)InvestmentCo.,Ltd.

ChinaPowerEngineeringConsultingGroupEastChinaPowerDesignInstitute

Co.,Ltd.

ChinaMetallurgicalOrientEngineeringTechnologyCo.,Ltd.

HebeiHengxingEnvironmentalProtectionEquipmentEngineeringCo.,Ltd.

NationalChemicalConstructionStandardizationManagementCenter

ParticipatingOrganizations:

TaishanFibreglassCo.,Ltd.

ChongqingInternationalCompositeMaterialsCo.,Ltd.

GuangdongXianliFibreReinforcedPlasticCo.,Ltd.

DeyangShuangquanFRPProductsCo.,Ltd.

ChiefDrafters:

LUShipingLIGuoshuWANGLeiHOURuigangTANGWenyong

WANGZhengzhuYUQunZHAOAijunLANLiqinLIUSu

JIANGXianlongLUYuechiWANGTiantangZENGShaoJUYuanqin

JIANGGuoxianZHANGWeixiuYUANYeLAIXiaodongLIDasheng

NIUChunliangGUOQuanguoLUTianZHAOGuiqinGAOShangwen

LIYe

ChiefReviewers:水印

CHENBoNILizhongZHUSirongGUOWenqiangSHAYuan

ZHANGShiguangWANGQianghuaZHANGLinwenLVHuimin

WANGJiandongJILi

ChiefTranslaters:

ZHUSirongLUQi'aoLIGuoshuWANGLeiLUShiping

人人文庫

·2·

Contents

1Generalprovisions……………(1)

2Terms…………………………(2)

3Basicrequirements……………(3)

3.1Generalrequirements……………(3)

3.2Functionalrequirements…………(3)

3.3Designconditionsanddocuments…………………(4)

3.4Overpressureprotection…………(4)

4Materials………………………(6)

4.1Generalrequirements……………(6)

4.2Rawmaterials…………………(6)

4.3Materialpropertiesoflaminaandlaminate…………(8)

5Equipmentdesign………………(19)

5.1Generalrequirements……………(19)

5.2Loadandaction………………(20)

5.3Structuralcalculation……………水?。?1)

5.4Structuraldesign………………(43)

6Pipingdesign……………………(53)

6.1Generalrequirements……………(53)

6.2Configurationdesign……………(54)

6.3Structurecalculation……………(65)

6.4Pipingstresscalculationandflexibilityanalysis……………………(76)

7Manufacture……………………(87)

7.1Generalrequirements……………(87)

7.2Manufactureforequipmentandpiping……………(88)

7.3Qualitycontrolofmanufactureprocess……………(89)

7.4Faultandrepair…………………(90)

7.5Secondarybonding………………(91)

8Qualitycontrolandinspection…………………(93)

8.1Generalrequirements……………(93)

8.2Qualityinspection人人文庫documents……………………(93)

8.3Rawmaterialtestingandinspection………………(94)

8.4Productmeasurement,inspectionanddetermination………………(97)

9Marking,packing,transporting,storing………(106)

9.1Equipment……………………(106)

9.2Piping…………………………(107)

10Installation……………………(108)

10.1Generalrequirements…………(108)

10.2Equipmentinstallation…………(108)

10.3Pipinginstallation………………(109)

·1·

10.4Usageandmaintenance…………(112)

11Projectacceptance……………(114)

AppendixASubitemdesignfactorK'sdeterminationforcorrosionresistant

-2-

innerlinerlayeroffibrereinforcedplasticsequipment……………(116)

AppendixBCorrosionmediumclassification……………………(121)

AppendixCHorizontalvesseldesign……………(122)

AppendixDFlangedesign………………………(130)

AppendixEGroundanchordesign………………(138)

AppendixFReinforcedflange'sspecificationforopeningholetanktop………(148)

AppendixGCalculatingprocessforpipelinestructuredesign…………………(149)

AppendixHCalculatingofpipingpressureloss…………………(150)

AppendixJSecondarybondingfabricationevaluation…………(152)

AppendixKMeasurementandtestforinterlaminarshearstrengthoflaminates………………(154)

AppendixLMeasurementandtestforlapshearstrengthofbondbetweenlaminates…………(155)

Explanationofwordinginthiscode………………(156)

Listofquotedstandards……………(157)

水印

人人文庫

·2·

1Generalprovisions

1.0.1Thiscodeispreparedwithaviewtoimprovetheapplicationleveloffibrereinforcedplastics

equipmentandpipingengineering,andtoachieveadvancedtechnology,safetyandusability,economy

andrationality,andqualityassurance.

1.0.2Thiscodeisapplicabletothedesign,manufacture,installationandengineeringquality

acceptanceofintegralfibrereinforcedplasticsequipmentandpipingformedbywinding,sprayingand

handlayup.

-

1.0.3Thiscodeisnotapplicabletothefollowingdesignoffibrereinforcedplasticsequipmentand

piping:

1Transporttank,buriedcontainer,storagetanksanddoublewalledtanks;

Irregularshape(nogyrating)containers,tanksandtowers;

2-

3Equipmentandpipingforhighlytoxicorradioactivechemicals;

4Buriedwatersupplyanddrainagepipes;

5Chimneysandflues;

6Oilandgasgatheringandtransportationpipes.水印

1.0.4Inengineeringapplicationsoffibrereinforcedplasticsequipmentandpiping,inadditiontothe

requirementsstipulatedinthiscode,thosestipulatedinthecurrentrelevantstandardsofthenationshall

becompliedwith.

人人文庫

·1·

2Terms

2.0.1Unit

Thereciprocaloftheunitareamassoffibrereinforcedmaterial(kg/m2)andunitwidth(mm)ofa

lamina,withunitof1/(mm·kg/m2);orthereciprocaloftheunitwidth(mm)ofalaminate,withunitof1/mm.

2.0.2Unittensilestrength

Ultimatetensileloadperunitwidthandunitareamassoffibrereinforcedmaterialofalamina,with

unitofN/(mm·kg/m2).

2.0.3Unittensilemodulus

Theratioofthetensileloadtothecorrespondingstrainperunitwidthandunitareamassoffibre

reinforcedmaterialofalamina,withunitofN/(mm·kg/m2).

2.0.4Tensileloadcarryingcapacityofalaminate

Ultimatetensileloadofunitwidthlaminate,withunitofN/mm.

2.0.5Laminateunittensilestiffness

Ratiooftensileloadtocorrespondingstrainofunitwidthlaminate,withunitofN/mm.

2.0.6Designthicknessofstructurallayer

Thicknessofstructuralcalculationformainloadinlayer,whichdoes水印notincludethethicknessof

liningandoutersurface.

2.0.7Designthickness

Theentirelayerthicknessincludingthethicknessofthestructurallayer,thethicknessofthelining

andtheoutersurface.

2.0.8Simplifiedfailureenvelope

Asimplifiedpolygonallineforthebiaxialstressfailurecurvesofanisotropicmaterials.

2.0.9Airbubble

Acavityformedbyairretentioninalayer.

2.0.10Chip

Asmallpieceofdamageontheedgeorsurfaceofalayer.

2.0.11Crazing

Irregularminorcrackonthesurfaceofalayer.

2.0.12Dryspot

Areaswherefibres人人文庫arenotadequatelysaturatedwithresin.

2.0.13Exposedfibre

Thesurfaceoredgefibresareexposed.

2.0.14Pit

Acraterareaofalayer.

2.0.15Scratch

Scoringorshallowmarkonthesurfaceofalayer.

2.0.16Wrinkle

Wavysurfaceofthelayerduetoirregularshapeoroverlappingofthestructure.

·2·

3Basicrequirements

3.1Generalrequirements

3.1.1Thedesignpressurerangeoffibrereinforcedplasticsequipmentshallbeinaccordancewiththe

followingrequirements:

1Wherethediameterislessthanorequalto4m,thedesigninternalpressureshallnotbelarger

than1.0MPa,andtheproductofthedesigninternalpressureanddiametershallnotbelargerthan

2.4MPa·m,andthedesignexternalpressureshallnotbelargerthan0.1MPa;

2Wherethediameterislargerthan4m,thedesigninternalpressureshallnotbelargerthan

2.0kPa,andthedesignexternalpressureshallnotbelargerthan0.5kPa.

3.1.2Thedesignpressurerangeoffibrereinforcedplasticpipingshallbeinaccordancewiththe

followingrequirements:

1Wherethediameterislessthanorequalto600mm,thedesigninternalpressureshallnotbe

largerthan1.0MPa;

2Wherethediameterislargerthan600mmandlessthanorequalto1200mm,thedesigninternal

pressureshallnotbelargerthan0.6MPa;水印

3Externalpressureshallnotbelargerthan0.1MPa.

3.1.3Whenthedesignpressureanddiameteroffibrereinforcedplasticsequipmentandpipingdonot

conformtothescopestipulatedinArticles3.1.1and3.1.2ofthiscode,thematerialpropertiesshallbe

determinedbytesting.

3.1.4Thedesigntemperaturerangeoffibrereinforcedplasticequipmentshouldbe-40℃to+120℃,

andthedesigntemperaturerangeofpipingshouldbe-30℃to+110℃.Whenthetemperaturerangeis

notsatisfied,theperformanceofthematerialshallbedeterminedbytesting.

3.2Functionalrequirements

3.2.1Flameretardantresinsoradditivesshallbeusedwhenflameretardantperformanceoffibre

reinforcedplasticsequipmentandpipingisrequired.

3.2.2Conductivecarbonfibresorconductivefillersshallbeusedwhenfibrereinforcedplastics

equipmentandpipingarerequiredtohaveantistaticproperties,andthecontinuoussurfaceresistivity

-

shallnotbelarger人人文庫than1.0×106Ωorthevolumeresistivityshallnotbelargerthan1.0×106Ω·m.The

electrostaticgroundingshallmeettherequirementsoftherelevantprovisionsofSH3097Codeforthe

DesignofStaticElectricityGroundingforPetrochemicalIndustry,thecurrentindustrystandard.

3.2.3Whenwearresistanceoffibrereinforcedplasticequipmentandpipingarerequired,wear

resistantfillersshallbeaddedtotheresinorothertechnicalmeasuresshouldbetaken.

3.2.4Whenthereisfoodhygienerequirementforfibrereinforcedplasticsequipmentandpiping,it

shallmeettherequirementsofthecurrentnationalstandardsGB/T14354FoodContainersofGlass

FibreReinforcedUnsaturatedPolyesterResinandGB/T5009.98MethodforAnalysisofHygienic

StandardofUnsaturatedPolyesterResinandGlassFibreReinforcedPlasticsUsedasFood

ContainersandPackagingMaterials.

·3·

3.3Designconditionsanddocuments

3.3.1Thedesignconditionsofthefibrereinforcedplasticequipmentandpipingprovidedbytheclient

shallincludethefollowingcontents:

1Componentsandcharacteristicsofmedium;

2Operatingparameterssuchasworkingpressure,workingtemperature,liquidlevel,velocityand

branchload;

3Processdescription;

4Geometricparameters,nozzleorientationandsupporttype;

5Naturalconditionssuchasambienttemperature,seismicfortificationintensity,windandsnow

loads,etc.;

6Otherconditions.

3.3.2Beforemanufacturingfibrereinforcedplasticsequipmentandpiping,themanufacturershall

havedesigndocumentssuchasdesigntasksheets,calculationsheets,designdrawings,design

specifications,etc.

3.3.3Thefollowingcontentsshallbeincludedinthedesigndrawingandthedesignspecifications:

1Nameandclassificationofproject,majorregulations,specificationsandproductstandardsfor

designandmanufacture;

2Workingpressure,workingtemperature,composition,characteristics水印,velocity,toxicityand

explosionhazardofthemedium;

3Designtemperature,designpressureandwind,snowandearthquakeloads;

4Types,gradesandspecificationsofmainrawmaterials;

5Maincharacteristicparametersanddeviationcontrolrangeofequipmentdiameter,height,

volume,pipediameter,lengthandsoon;

6Layersequence,numberoflayers,thicknessanddeviationcontrolrangeoffibrereinforced

plasticsequipmentandpiping;

7Accessoriessuchasliftinglug,strutandladder;

8Locationofnameplatesforfibrereinforcedplasticsequipmentandpiping;

9Packaging,transportationandinstallationrequirements;

10Testingrequirements.

3.4Overpressureprotection

3.4.1Allequipment人人文庫inthiscodeshallbeprotectedbyovervoltage.

3.4.2Theovervoltageprotectionoftheequipmentconnectedwiththeatmospheremustbein

accordancewiththefollowingrequirements.

1Shallbeopenatthetop,andshouldbecommunicateddirectlywiththeair;

2Thesectionalareaoftheventshallnotbelessthanthelargervaluebetweentheinletand

outletdimensionsoftheequipment(netcirculationarea);

3Airtightventmustnotbeprohibited;

4Theoverflowportshallbeinstalled,andthesectionareaoftheoverflowportshallnotbe

lessthantheinletdimension.

3.4.3Overvoltageprotectionforequipmentthatdoesnotinterconnectwiththeatmosphereshallbein

·4·

accordancewiththefollowingrequirements:

1Overpressurereliefdevicesshallbeinstalledforequipmentwithoverpressureduring

operation;

2Theinstallationofoverpressurereliefdeviceshallconformtotherelevantprovisionsof

GB150.1:.

PressureVessels-Part1GeneralRequirements

水印

人人文庫

·5·

4Materials

4.1Generalrequirements

4.1.1Thematerialselectionoffibrereinforcedplasticequipmentandpipingshallbebasedon

calculating,evaluating,testingandverifyingofthemechanicalproperties,chemicalresistance,physical

propertiesandprocessingpropertiesofthematerials.

4.1.2ThematerialsusedinfibrereinforcedplasticequipmentandpipingshallhaveaMaterialSafety

DataSheet.

4.2Rawmaterials

4.2.1Unsaturatedpolyesterresin,vinylesterresinandepoxyresinshouldbeselectedforfibre

reinforcedplasticequipmentandpiping.Whenothertypesofresinsareselected,theirpropertiesshallbe

determinedbytesting.

4.2.2Resinsusedforfibrereinforcedplasticsequipmentandpipingshallbeinaccordancewiththe

followingrequirements:

1Resinshallmeettheworkingconditionsandformingprocessrequirements水??;

2Resinshallbematchedwithreinforcementmaterial;

3Thesameresinshouldbechosenforliningandstructurallayer;

4Unsaturatedpolyesterresinandvinylesterresinshallbematchedwiththeinitiatorand

acceleratorselected;

5Epoxyresinshallbematchwiththeselectedcuringagent.

4.2.3Thequalityoftheresinshallbeinaccordancewiththefollowingrequirements:

1Thequalityofunsaturatedpolyesterresinshallmeettherelevantrequirementsofcurrent

nationalstandardGB/T8237LiquidUnsaturatedPolyesterResinforFibreReinforcedPlastics;

2Thequalityofvinylesterresinshallmeettherelevantrequirementsofcurrentnationalstandard

GB/T50590TechnicalCodeforAnticorrosionEngineeringofVinylEsterResins;

3Thequalityofepoxyresinshallmeettherelevantrequirementsofcurrentnationalstandard

GB/T13657;

Bisphenol-AEpoxyResin

4ThepropertiesofresincastingbodyshouldbeinaccordancewiththosespecifiedinTable

4.2.3:人人文庫

Table4.2.3Propertiesofresincastingbody

MechanicalpropertyLiningresinStructurallayerresin

Tensilestrength(MPa)≥60.0≥60.0

Tensilemodulus(×103MPa)≥2.5≥3.0

Fractureelongation(%)≥3.5≥2.5

HeatdeflectiontemperatureHDT℃1.80MPa≥T+20

(,,)d

Noterepresentingdesigntemperature.

:Td

·6·

5Thecorrosionresistanceoftheresinmaybedeterminedbythecorrosionresistancedataofthe

resin,existingapplicationexperience,couponorlaboratorytestandverification,etc.Theevaluation

methodshallmeettherequirementsofAppendixAofthiscode.

4.2.4Glassfibreanditsproducts,carbonfibreanditsproducts,syntheticfibreanditsproductsshould

beselectedasreinforcementmaterialsforfibrereinforcedplasticequipmentandpiping.Whenother

typesofreinforcementmaterialsareselected,theirpropertiesshallbedeterminedbytests.

4.2.5Reinforcementmaterialsforfibrereinforcedplasticequipmentandpipingshallbeinaccordance

withthefollowingrequirements:

1Reinforcementmaterialsshallmeettherequirementsofworkingconditionsandmolding

process;

2Thecouplingagentusedinfibresurfacetreatmentshallbematchedwithresin;

3Thetypeoffibrereinforcedmaterialusedfortheconnectionbetweentheequipmentcylinder

andpipelineshallbethesameasthereinforcementmaterialsoftheequipmentcylinderandpipeline.

4.2.6Glassfibreanditsproductsshouldbechosenchoppedstrandsmat,wovenroving,winding

filament,gunroving,wovenfabrics,surfaceveil,andthequalityofwhichshallbeinaccordancewiththe

followingrequirements:

1Thequalityofchoppedstrandmatshallmeettherequirementsofthecurrentnationalstandard

GB/T17470;

GlassFibreMats-ChoppedStrandandContinuousFilamentMats

2Thequalityofwovenrovingshallmeettherequirementsofcurrent水印nationalstandardGB/T18370

GlassFibreWovenRoving;

3Thequalityofwindingfilamentandgunrovingshallmeetthetherequirementsofcurrent

nationalstandardGB/T18369GlassFibreRoving;

4Thequalityofwovenfabricsshallbeinaccordancewiththetherequirementsofcurrent

nationalstandardGB/T25040GlassFibreStitchedFabrics;

5Thepercentmoisturecontentofsurfaceveilshallnotbelargerthan0.2%,andthemassper

unitareashouldbe(30—50)g/m2.

4.2.7Thequalityofcarbonfibreanditsproductsshallmeettherelevantrequirementsofcurrent

nationalstandardGB/T26752,andGB/T30021

PAN-BasedCarbonFibreWarpKnittingCarbon

FibreReinforcements.

4.2.8Undertheconditionofdifferentcorrosivemedium,thereinforcingmaterialsofliningandouter

surfaceoffibrereinforcedplasticsequipmentandpipingshouldbeselectedaccordingtoTable4.2.8.

Table4.2.8Selectionformofreinforcedmaterialforliningandoutersurface

No.人人文庫CorrosivemediumTypeofsurfaceveilTypeofchoppedstrandmat

Alkalineinorganicsubstanceandhydrolysable

1SEorECR

saltofalkalineinorganicsubstance-

2HydrolyzablesaltofoxidizingalkalineinorganicsubstanceSEorECR

-

Acidinorganicsubstanceandhydrolysablesalt

3CorECRECR

ofacidinorganicsubstance--

4InorganicoxidizingacidCorECRECR

--

5AlkalineorganicsCorEEorECR

-

·7·

Table4.2.8(continued)

No.CorrosivemediumTypeofsurfaceveilTypeofchoppedstrandmat

6AcidicorganicsCorECRECR

--

7SurfaceactiveagentCorEorSEorECR

-

8OrganicsolventCorEEorECR

-

9StrongoxidizerCorEorSEorECR

-

10OthersCorEorSEorECR

-

Notes:1Sstandsforsyntheticfibreorcarbonfibre,Cforchemicalresistantglassfibre,Eforalkalifreeglassfibre,andECRforacid

----

resistantglassfibre;

2TheclassificationofcorrosivemediumshallmeettherequirementsoftheprovisionsofAppendixBofthiscode.

4.3Materialpropertiesoflaminaandlaminate

4.3.1Themechanicalpropertiesoffibrereinforcedplasticlaminaforequipmentandpipesshouldbe

determinedbytesting.Whenusingthelayeringcalculationmethod,themechanicalpropertiesofthe

glassfibrereinforcedplasticlaminashallbeinaccordancewiththefollowingrequirements:

ThemechanicalpropertiesofthelaminashallbeinaccordancewithTable4.3.11;

1-

2Thewindingangleandtheunittensilemodulusofthecircumferentialandaxialdirectionofthe

filamentwoundlayershouldbeinaccordancewithTable4.3.12;

-水印

3Thewindingangleandthepoissonratioofthefilamentwoundlayershouldbeinaccordance

withTable4.3.13;

-

4Theglassfibrecontentbymassofthelaminashallbeinaccordancewiththefollowing

requirements:

1)Forchoppedstrandmat,itshouldbe25%to35%;

2)Forwovenroving,itshouldbe45%to55%;

3)Forwindingroving,itshouldbe60%to75%.

Table4.3.1-1Mechanicalpropertiesofglassfibrereinforcedplasticlaminamaterials

UnittensilestrengthUUnittensilemodulusXInterlaminarorlapshear

ReinforcementApplicableii

Direction

materialtypesconditions[N/mmkg/m2][N/mmkg/m2]strengthτMPa

(·)(·)lap()

ChoppedstrandmatAll200140007.0

ξ≥1/6500×ξ4000+24000×ξ

Warp

ξ<1/6604000

Wovenroving

ξ≤5/6500×(1-ξ)4000+24000×(1-ξ)

Weft6.0

人人文庫ξ>5/6604000

Fibre

Filamentwound85°<θ<90°50028000

direction

Notes:1Inthetable,ξistheratioofthewarpdirectionofthetotalfibremassofglasswovenroving;

2Inthetable,θisthewindingangle,representingtheanglebetweenthedirectionofwindingandtheaxisxofthecylinderorpipe.

Table4.3.1-2Windingangle,circumferentialunitandaxialunittensilemodulusofthefilamentwoundlayer

TheangleθbetweenthewindingdirectionCircumferentialunittensilemodulusAxialunittensilemodulus

andtheaxisxofthecylinderorpipe(°)[N/(mm·kg/m2)][N/(mm·kg/m2)]

0—28000

5—27400

10—26000

·8·

Table4.3.1-2(continued)

TheangleθbetweenthewindingdirectionCircumferentialunittensilemodulusAxialunittensilemodulus

andtheaxisxofthecylinderorpipe(°)[N/(mm·kg/m2)][N/(mm·kg/m2)]

15—23800

20460019800

25455016000

30455012800

3546009800

4050007500

4558005800

5075005000

5598004600

60128004550

65160004550

70198004600

7523800—

8026000—

8527400—

9028000—

'

Table4.3.1-3WindingangleandPoissonsratiooffilament水印woundlayer

Angleθbetweenfibrewindingdirectionandaxisofthecylinderorpipe°Poisson'sratioPoisson'sratio

x()vyxvxy

00.0750.26

50.0750.27

100.100.32

150.140.38

200.180.47

250.240.56

300.310.59

350.370.61

400.450.59

450.540.54

500.590.45

550.610.37

人人文庫600.590.31

650.560.24

700.470.18

750.380.14

800.320.10

850.270.075

900.260.075

Notes:1xistheaxisofthecylinderorpipe;yisthecircumferentialdirectionofthecylinderorpipe;

2ThePoisson′sratiovisthexdirectionstraincausedbythestressintheydirectionandthePoisson′sratiovistheydirection

yx,xy

straincausedbythestressinthexdirection.

9··

4.3.2Themechanicalpropertiesofthefibrereinforcedplasticlaminatesmaybecalculatedaccording

tothelayeringcalculationbasedonthelaminatetheoryorthetestingresults,andshallbeinaccordance

withthefollowingrequirements:

1Whentestedparametersorhistoricaldataaremissing,thefollowinglayeringcalculation

methodshallbeused;

1)Theunittensilestiffnessandunittensilestrengthofthelaminateshallbecalculatedaccording

tothefollowingformulas:

X=nWX+nWX+…+nWX(4.3.21)

lam111222iii-

U=nWU+nWU+…+nWU(4.3.22)

lam111222iii-

where

UnittensilestiffnessoflaminateN/mm

Xlam—();

UnittensilestrengthoflaminateN/mm

Ulam—();

n—Numberoflayersoftheithlamina;

i-

W—Fibremassperunitareaoftheithlamina(kg/m2);

i-

X—Unittensilemodulusoftheithlamina[N/(mm·kg/m2)];forafilamentwoundlayer,when

i-

thewindingangleislessthan15°andthecircumferentialtensilemodulusiscalculated,the

valueshallbe0;whenthewindingangleisgreaterthan75°andtheaxialtensilemodulusis

calculated,thevalueshallbe0;

U—Unittensilestrengthoftheithlamina[N/(mm·kg/m2)].

i水印

-

2)Thetensilemodulusofthelaminateshallbecalculatedaccordingtothefollowingformulas:

E=X/t(4.3.23)

lamlamd-

n

t=∑t(4.3.24)

di-

i=1

■(100-)■

1mg

t=■+■×W×103(4.3.25)

i■ρm×ρ■i-

■ggr■

where

TensilemodulusoflaminateMPa

Elam—();

Calculatedthicknessofstructurallayeroflaminatemm

td—();

t—Structurecalculationthicknessoftheithlamina(mm);

i-

m—Fibremasspercentageoftheithlamina;

g-

W—Fibremassperunitareaoftheithlamina(kg/m2);

i-

Densityofcuredresinkg/m3

ρr—();

Densityoffibrekg/m3.

ρg—人人文庫()

3)Theflexuralmodulusofthelaminateshallbecalculatedaccordingtothefollowingformulas:

1n2

E=∑WX■12(h-h)+t2■(4.3.26)

bt3ii■i0i■-

di=1

∑n

WiXihi

=i=14.3.27

h0()

∑n-

WiXi

i=1

where

FlexuralmodulusoflaminateMPa

Eb—();

·10·

W—Fibremassperunitareaoftheithlamina(kg/m2);

i-

X—Unittensilemodulusoftheithlamina[N/(mm·kg/m2)];

i-

h—Distancebetweenthecenteroftheithlaminaandthecenterofthelaminate(mm)(Figure4.3.2);

i-

Distancebetweentheneutralplaneofthelaminateandthecenterofthelaminatemm.

h0—()

Figure4.3.2Schematicdiagramofthedistancehbetweenthecenteroftheithlaminaandthecenterofthelaminate

i-

2Whentestingisusedtodeterminetheperformanceoflaminaandlaminate,itshallbein

accordancewiththefollowingrequirements:

1)Thetestspecimensshallbemadeaccordingtothedesignedlayers,andthenumberof

processedspecimensforeachtestitemshallnotbelessthan15;

2)Laminaandlaminateperformancetestingitemsshallbeinaccordancewiththosespecifiedin

Table4.3.21;

-

Table4.3.2-1Laminaandlaminateperformancetestingitem

TestitemsLaminaLaminate

Unittensilestrength√水印—

Unittensilemodulus√—

Tensileproperties

Unittensilestrength—√

Unittensilestiffness—√

Tensilemodulus—√

Elasticmodulus

Flexuralmodulus—√

Interlaminarshearstrength○○

Shearstrength

Lapshearstrength√√

Shearstrength—√

Note:“√”meanstheitemshalltobeinspected;“○”meanstheitemshouldtobeinspected;“—”meansnoitemtobeinspected.

3)Theconfidenceofthespecimendatashallbecalculatedaccordingtothefollowingformulas:

ˉ

J=J-t×s(4.3.28)

lam-

人人文庫ˉ

∑(J-J)2

s=(4.3.29)

N-1-

where

Typicalvaluesforpresetlayersperformance

Jlam—;

ˉ

J—Averagetestresultsofmeasuredperformanceofpresetlayup;

—distributionthreshold,whichmaybevaluedaccordingtoTable4.3.22;

tt--

s—Standarddeviation;

J—Actualtestresult;

N—Numberofspecimens.

·11·

t

Table4.3.2-2-distributionthreshold

NtNt

152.160242.074

162.145252.069

172.131262.064

182.120272.060

192.110282.056

202.101292.052

212.093302.048

222.086312.045

232.080322.042

ⅠEquipmentdesignfactorandallowablestrain

4.3.3Thedesignfactorofthemechanicalpropertiesoftheequipmentshallbedeterminedin

accordancewiththefollowingrequirements:

1Thedesignfactorshallbecalculatedaccordingtofollowingformulas:

K=2×K×K×K×K(4.3.31)

1234-

F=2×K×K×K×K(4.3.32)

1234水印-

where

K—Designfactor,shallnotlessthan6.0;

F—Bucklingfactor,shallnotlessthan4.0;

Partialdesignfactorrelatingtotestandverificationofmaterialproperties

K1—;

Partialdesignfactorrelatingtochemicalenvironment

K2—;

Partialdesignfactorrelatingtotheinfluenceofthedesigntemperatureandresin

K3—HDT;

K—Partialdesignfactorrelatingtolongtermperformanceoflaminate.

4-

2Whenthepartialdesignfactorcannotbedetermined,thedesignfactorshallnotbelessthan

10.0andthebucklingfactorshallnotbelessthan5.0.

Thetestandverificationpartialdesignfactorshallbeinaccordancewiththefollowing

4.3.4K1

requirements:

1Whenthemechanicalpropertiesofthelaminateusedinthedesignaredeterminedbythe

layeringcalculationmethodandtheperformancevaluesofeachlaminainTable4.3.1ofthiscodeare

adopted,Kshallbeinaccordancewiththefollowingrequirements:

1人人文庫

1)Whenthereisaproductperformanceofthesamelaminatesmanufacturedwithin18

monthsandthereisacceptablehistoricaltestdataofperformanceoftheproductshall

,K1

betakenas2.0;

2)Whenthereisaproductperformanceofthesamelaminatesmanufacturedwithin12

monthsandthereisacceptablehistoricaltestdataofperformanceoftheproductshall

,K1

betakenas1.5;

3)Whenthereisaproductperformanceofthesamelaminatesmanufacturedwithin12months,

andtheperformanceofthelaminaisverifiedby5datasets,gettheaverageof5dataandthe

averageof3dataexcludingthemaximumandminimumones.Thesmallerofthetwoaverage

·12·

valuesshallbegreaterthantheperformancevalueinTable4.3.1ofthiscodeshallbe

,K1

takenas1.3;

4)Whenthereisaproductperformanceofthesamelaminatesmanufacturedwithin12months,

andthemechanicalpropertiesofthelaminatesusedinthedesignareverifiedbyatestof5data

sets,gettheaverageof5dataandtheaverageof3dataexcludingthemaximumandminimum

ones.Thesmallerofthetwoaveragevaluesshallbegreaterthanthemechanicalpropertiesof

thelaminateusedinthedesignshallbetakenas1.2.

,K1

2Whenthemechanicalpropertiesofthelaminateusedinthedesignaredeterminedbythe

layeringcalculation,theperformanceofthelaminaisdeterminedbytestingorbytheoriginaltest

results,andtheperformanceofthelaminaisverifiedby5datasets,gettheaverageof5dataandthe

averageof3dataexcludingthemaximumandminimumones,thesmallerofthetwoaveragevalues

shallbegreaterthantheperformancevalueofthelaminashallbetakenas1.1.

,K1

3Whenthemechanicalpropertiesofthelaminatesusedinthedesignaremeasuredandsampled

fromthesimulatedspecimensofthelaboratory,theperformancetestdatashallnotbelessthan15for

thetestverificationshallbetakenas1.1.

,K1

4Whenthemechanicalpropertiesofthelaminateusedinthedesignaremeasuredandsampled

fromtheequipmentspecimen,theperformancetestdatashallnotbelessthan15forthetestverification,

andshallbetakenas1.0.

K1

4.3.5ThevalueKofthepartialdesignfactorrelatingtothechemicalenvironmentshallmeetthe

2水印

requirementsofAppendixAofthiscode.

4.3.6Thepartialdesignfactorrelatingtothedesigntemperatureandthethermaldeflection

temperatureoftheresinshallbecalculatedasfollowsandthevalueshallbeintherangeof

(HDT),K3

1.0—1.4.

T-20

K=1.0+0.4d(4.3.6)

3HDT-40

where

Designtemperature

Td—;

HDT—Heatdeflectiontemperatureofresin.

4.3.7ThepartialdesignfactorKrelatingtothelongtermperformanceofthelaminateshallbein

4-

accordancewithTable4.3.7andthefollowingrequirements:

1Wherecombinationlaminatesofchoppedstrandmat,wovenrovingorwindingroving,the

valueofshallbetakenforthemajorconstituent

K4;

2ForthecalculationofthebucklingfactorF,onlytheKvalueforflexuralshallbeused;

人人文庫4

3ForthecalculationoftheoveralldesignfactorK,wheretheloadingisacombinationofboth

tensionandflexuralthevaluefortensionshallbeused.

,K4

Table4.3.7PartialdesignfactorKrelatingtolongtermperformanceoflaminate

4-

TensionBending

Reinforcementtype

ShorttermloadLongtermloadLongtermload

---

Wovenroving1.001.301.90

Choppedstrandmat1.002.402.40

Filamentwound(circumferential)1.001.301.40

Filamentwound(axial)1.001.601.70

·13·

4.3.8Theallowablestrainoflaminatesforequipmentandtheallowableunitloadshallbein

accordancewiththefollowingrequirements:

Theallowablestrainvalueoftheresinshallbecalculatedaccordingtothefollowingformula

1εar,

andshallnotbegreaterthanthevaluespecifiedinTable4.3.81;

-

ε=0.1×ε(4.3.81)

arr-

where

Allowablestrainvalueofresin%

εar—();

Fractureelongationofresincastingbody%.

εr—()

Table4.3.8-1Allowablestrainvalueofresin

ResintypeAllowablestrainvalue(%)

Vinylesterresin0.27

Unsaturatedpolyesterresin0.23

2Theallowablestrainvalueofthelaminateshallbecalculatedaccordingtothefollowing

formula:

U

ε=lam(4.3.82)

lam×-

KXlam

where

Allowablestrainvalueoflaminate

εlam—;

X—Unittensilestiffness(N/mm)ofthelaminate,determinedinaccordance水印withFormula(4.3.21);

lam-

—Designfactor,determinedinaccordancewithFormula(4.3.31);

K-

U—Unittensilestrength(N/mm)ofthelaminate,determinedinaccordancewithFormula(4.3.22).

lam-

Theallowablestrainofthelaminateforequipmentshallbeasmallvalueinthecalculated

3εd

valuesofFormula(4.3.81)andFormula(4.3.82).WhenthecalculatedvaluesofFormula(4.3.81)

---

andFormula(4.3.82)cannotbedetermined,theallowablestrainshallbe0.001.

-

Themaximumstrainintheitemwhentestedoftheequipmentshallnotexceedthevalue

4εtest

specifiedinTable4.3.82.

-

Table4.3.8-2Maximumtestedstrain

ResintypeMaximumstrain(%)

Vinylesterresin0.35

Unsaturatedpolyesterresin0.30

5Theallowableunitloadoftheequipmentlaminatesshallbecalculatedaccordingtothe

followingformula:人人文庫

[q]=ε×X(4.3.83)

dlam-

where

[q]—Allowableunitloadforequipmentlaminates(N/mm).

6Theallowableshearstressoftheequipmentlaminatesshallbecalculatedaccordingtothe

followingformula:

τ

[τ]=(4.3.84)

K-

where

[τ]—Allowableshearstressofequipmentlaminates(MPa);

·14·

τ—Theshearstrength(MPa)oftheequipmentlaminates,canbemeasuredaccordingtothe

currentnationalstandardGB/T1450.2

Fibre-ReinforcedPlasticComposites-Detemination

;whennodetectedvalueisavailable,50MPaispreferred;

ofthePunch-TypeShearStrength

K—Thedesignfactor,shallbeinaccordancewiththerequirementsofArticle4.3.3ofthiscode.

ⅡAllowablestressandallowablestrainofpipe

4.3.9Theallowablestressofthepipelaminatesshallbetheelasticitymodulusmultipliedbythe

allowablestrain.Theelasticitymodulusshallbedeterminedinaccordancewiththerequirementsof

Article4.3.2ofthiscode.Theallowablestrainshallbedeterminedbyspecifiedvaluemethodorlong

-

termperformancetestmethod.Theallowablestressshallbedeterminedinaccordancewiththe

followingrequirements:

1WhentheallowablestrainisdeterminedbySpecifiedValuemethod,andtheloadconditionsare

occasionalshorttermloadsnotincludingthehydrostatictestloadandSustainedloadsincludingthe

-

thermalexpansionload,theallowablestressshallbetakenthevaluecalculatedinthisarticle;

WhentheallowablestrainisdeterminedbyLongtermPerformanceTestmethod,andtheload

2-

conditionsareSustainedloadsnotincludingthethermalexpansionload,theallowablestressshallbe

takenthevaluecalculatedinthisarticle;

WhentheallowablestrainisdeterminedbyLongtermPerformanceTestmethod,andtheload

3-

conditionsareSustainedloadsincludingthethermalexpansionload,theallowablestressshallbethe

valuecalculatedinthisarticletimes125%;水印

WhentheallowablestrainisdeterminedbyLongtermPerformanceTestmethod,andtheload

4-

conditionsareOccasionalshorttermloadsandSustainedloadsnotincludingthethermalexpansion

-

load,theallowablestressshallbethevaluecalculatedinthisarticletimes133%.

4.3.10WhenusingSpecifiedValuemethod,theallowablestrainofthelaminateunderchemical

conditionsandtemperatureconditionsshallbedeterminedinaccordancewiththefollowing

requirements:

1Theclassificationofchemicalconditionsshallbedeterminedaccordingtothelossinflexural

strengthoftheimmersednonstressedspecimenunderthesetchemicalenvironment,andshallbein

-

accordancewiththefollowingrequirements:

1)Thethicknessofthespecimenshallbe4mm—6mm,itshallbesubjectedtoacureschedule

simulatingthattobeusedforthefinishedpipe,andshallbeimmersedfor6monthsatthe

designtemperature;

2)ChemicalconditionsⅠ:thisconditionapplieswhenthelossinflexuralstrengthislessthan

20%ofthe人人文庫originalvalue;

3)ChemicalconditionsⅡ:thisconditionapplieswhenthelossinflexuralstrengthismorethan

20%butlessthan50%oftheoriginalvalue;

4)Ifthelossofflexuralstrengthisgreaterthan50%oftheoriginalvalue,thenthematrixfibre

systemshallbedeemedunsuitableandnotused.

2Theclassificationoftemperatureconditionsshallbedeterminedbythedifferencebetweenthe

heatdistortiontemperatureHDToftheresinandthedesigntemperatureandshallbeinaccordancewith

thefollowingrequirements:

1)TemperatureconditionⅠ,thedesigntemperatureshallbeatleast40℃belowHDT;

2)TemperatureconditionⅡ,thedesigntemperatureshallbeatleast20℃belowbutnotmore

·15·

than40℃belowHDT.

3Whenthechemicalenvironmentandtemperatureconditionsaredetermined,intermsof

temperatureandchemicalconditionclassifications,strainclassratingsshallbeselectedaccordingto

thosespecifiedinTable4.3.101.

-

Table4.3.10-1Temperatureandchemicalconditionclassificationscorrespondingstrainclassratings

Temperaturecondition

Chemicalcondition

ⅠⅡ

ⅠLevel1Level2

ⅡLevel3Level4

4Whenstrainclassratingsaredetermined,allowablestrainshallbeselectedaccordingtothose

specifiedinTable4.3.102.

-

Table4.3.10-2Strainclassratingsandallowablestrain

StrainclassratingsAllowablestrain

Class10.0018

Class20.0015

Class30.0012

Class40.0009

5Forpipesmanufacturedusingfilamentwoundatanyanglebetween±15°and±75°,the

anisotropicelasticanalysisshallbecarriedouttoconfirmthattheallowable水印strainisnotexceeded.

Withoutsuchananalysistheallowablestrainshallbenogreaterthan0.0009.

WhenusingtheLongtermPerformanceTestmethod,thetestshallcomplywiththerelevant

4.3.11-

requirementofthecurrentnationalstandardGB/T21238GlassFibreReinforcedPlasticsMortar

Pipes,theendofthespecimenshallbeafreeendclosure,andtheallowablestrainincircumferential

directionshallbecalculatedaccordingtothefollowingformula:

pD

ε=97.5i(4.3.11)

d2·

KXlam

where

Allowablestrainvaluesatdesignlife

εd—;

D—Pipespecimeninternaldiameterforlongtermperformancetesting(mm);

i-

The97.5%lowerconfidencelimitoftheinternalpressuretoproducefailureatthedesignlife

p97.5—

(MPa);

Laminateunittensilestiffnessofthespecimen.Whenthereisnosuchvaluethespecimencan

Xlam—,

beablated人人文庫accordingtothecurrentnationalstandardGB/T2577TestMethodforResin

ContentofGlassFibreReinforcedPlastics,andthefibremassperunitareaandtheplyscheme

ofeachspecimenareobtained.TheaveragevalueisthencalculatedaccordingtotheFormula

(4.3.21)ofthiscode;

-

K—Designfactor,whichshallnotbelessthan1.5.

4.3.12Whenthenumberofcyclesoffatigueloadisgreaterthan1000orthestressrangeofstress

cyclesisgreaterthan20%oftheallowablestress,theallowablestrainvalueeitherselectedinTable

4.3.102orcalculatedaccordingtoFormula(4.3.11)ofthiscodeshallalsobedividedbythefatigue

-

correctionfactorshallbecalculatedaccordingtothefollowingformula

Kn,Kn:

=1+0.25()[Log()-3]4.3.12

KnAσσn10n()

·16·

where

Fatiguecorrectionfactor

Kn—;

n—Numberofstresscyclesduringdesignlife;

Stressrangeduringafatiguecycle

Aσ—;

Maximumstressduringafatiguecycle.

σn—

4.3.13Theallowablestrainofthepipelaminateshalllessthan10%oftheresinfracturestrain.

Whenthelongtermperformancetestmethodisusedtodeterminetheallowablestrainvalueof

4.3.14-

thelaminate,andthentheallowablestressvalueiscalculated,thesimplifiedfailureenvelopecalculation

andfailuredeterminationofthepipelineandfittingsshallbeinaccordancewiththefollowing

requirements:

1TheshorttermcircumferentialfailurestressσandlongtermregressionratioRcanbe

-sh-

obtainedbythelongtermperformancetestmethod,andtheaxialtensilestrengthvalueσcanbe

-sa

obtainedaccordingtothecurrentnationalstandardGB/T5349

Fibre-ReinforcedThermosettingPlastic

,andthebiaxialstressratioshall

CompositesPipe-DeterminationofLongitudinalTensilePropertiesR

becalculatedaccordingtothefollowingformulas:

pD

σ=6,97.5%LCLi(4.3.141)

sh2t-

R=p/p(4.3.142)

L,97.5%LCL6,97.5%LCL-

r=2σ/σ(4.3.143)

sash水印-

where

σ—Shorttermcircumferentialfailurestressobtainedbythelongtermperformancetestmethod

sh--

(MPa);

σ—Shorttermaxialtensilestrengthvalue(MPa),whichcanbemeasuredaccordingtothe

sa-

currentnationalstandardGB/T5349

Fibre-ReinforcedThermosettingPlasticComposites

;

Pipe-DeterminationofLongitudinalTensileProperties

—Pipespecimenstructuralwallthicknessforthelongtermperformancetesting(mm);

t-

—Longtermregressionratio(%);

R-

97.5%lowerconfidencelimitoftheinternalpressuretoproducefailureatthedesignlife

pL,97.5%LCL—

(MPa);

—97.5%lowerconfidencelimitoftheinternalpressuretoproducefailureat6minbythe

p6,97.5%LCL

extrapolationcurve(MPa);

—Biaxialstressratio,whichmaybecalculatedaccordingtoFormula(4.3.143).Whennodata,

r-

thedefault人人文庫biaxialstressratioofthecomponentcanbeselectedaccordingtothosespecified

inTable4.3.14.

Table4.3.14Thedefaultbiaxialstressratio

ComponentDefaultbiaxialstressratio

55°filamentwoundpipe0.50

Filamentwoundfittings,primarilyhoopwinding0.45

Laminatedfittingswithbidirectionalreinforcement1.90

Adhesivebondedjoints1.00

Laminatedjointswithbidirectionalreinforcement2.00

·17·

2Thecalculationofthesimplifiedfailureenvelopeshallincludethecircumferentialallowable

stressandtheallowableaxialstressofthepureinternalpressurestate(2∶1),theallowableaxialstressof

thepureaxialtensilestate(0∶1),andtheyshallbecalculatedaccordingtothefollowingformulas:

σ=R×σ/K(4.3.144)

ah(2:1)sh-

σ=σ/2(4.3.145)

al(2:1)ah(2:1)-

σ=r×σ/2(4.3.146)

al(0:1)ah(2:1)-

where

Circumferentialallowablestressofthepureinternalpressurestate21MPa

σah(2:1)—(∶)();

(2:1)Allowableaxialstressofthepureinternalpressurestate21MPa

σal—(∶)();

(0:1)Allowableaxialstressofthepureaxialtensilestate01MPa

σal—(∶)();

K—Designfactor,shallnotbelessthan1.5.

ThethreestressvaluescalculatedbytheFormula(4.3.144)toFormula(4.3.146)shallbe

3--

connectedtothefoldlinewhichisthesimplifythefailureenvelope(Figure4.3.14).Thesafetyofthe

pipelineshallbedeterminedbywhetherthecalculatedvaluesofaxialandcircumferentialstressare

withinthesimplifiedfailureenvelope.

水印

Figure4.3.14Simplifieddiagram

1—Failureenvelope

人人文庫

·18·

5Equipmentdesign

5.1Generalrequirements

5.1.1Designpressureofequipmentshallbedeterminedinaccordancewiththefollowing

requirements:

1Thedesignpressureoftheequipmentsubjectedtointernalpressureshallbethemaximumset

pressureatthetopoftheequipment,consideringcorrespondingdesigntemperature,andthevalueshall

notbelowerthantheworkingpressure;

2Thedesignpressureoftheexternalpressureequipmentshallbenotlessthanthemaximum

internalandexternalpressuredifferencegeneratedatanytimeduringnormalworking,andshallnot

exceed0.1MPa;

3Thedesignpressureofthevacuumequipmentshallbe0.1MPa.

5.1.2Thedesignpressureusedinthecalculationsfortheequipmentshallbethepressureusedto

determinethethicknessoftheequipmentcomponentsatthecorrespondingdesigntemperatureandshall

includeadditionalloadssuchasliquidcolumnpressure.

5.1.3Theequipmentdesigntemperatureshallbethehighestorlowest水印operatingtemperatureofthe

equipmentsetundernormalworkingconditions.

5.1.4Theequipmentdesignshallincludethecalculationofthestrengthofcylindersandheads,the

secondarybonding,cutoutsandcompensation,theconnectionstructureofbranchesandother

-

components,boltconnection,saddleandthesupportstructures.

5.1.5Theequipmentdesigncanadoptruledesignmethod,analysisdesignmethod,andtest

verificationdesignmethod.Forruledesignmethodandanalyticaldesignmethod,thedesignfactorshall

notbelessthan6.0,andthebucklingfactorshallnotbelessthan4.0.Fortestverificationdesign

method,thefailurepressureshallnotbelessthan6timesthedesignpressure.

5.1.6Thelayeringdesignoftheequipmentshallincludethetypeoffibreandproduct,theresinsystem

andmixratio,theorder,directionandnumberoflayers,theformingandcuringprocess,theresinorfibre

contentandtolerance.

5.1.7Thewalloftheequipmentconsistsofalining,astructurallayerandanoutersurface,andshallbe

inaccordancewiththefollowingrequirements:

1Thelining人人文庫shallbecomposedoftheinnersurfacelayerandthebarrierlayer,andthethickness

shallnotbelessthan2.5mm,andshallbeinaccordancewiththefollowingrequirements:

1)Theinnersurfacelayershallbemadeofsurfaceveil,theresincontentshallbegreaterthan

85%,andthethicknessshallnotbelessthan0.3mm;

2)Thebarrierlayershouldbechoppedstrandmat,wovenfabrics,andgunroving.Theresin

contentshallnotbelowerthan65%.

2Thestructurallayermaybeacombinationofsingleorseveralreinforcingmaterialssuchas

windingfilament,choppedstrandmat,wovenfabrics,gunroving,wovenroving,etc.,whichmaybe

formedbywinding,sprayingandhandlayup,andshallbeinaccordancewiththefollowing

-

requirements:

·19·

1)Thethicknessofthestructurallayershallbedeterminedbycalculation;

2)Whenthestructurallayerismadeofglassfibre,itscontentshallmeettherequirementof

Article4.3.1(4)ofthiscode.

3Thedesignoftheoutersurfaceshallbeinaccordancewiththefollowingrequirements:

1)Incorrosiveenvironment,thesurfaceveilshallbeusedandtheresincontentshallnotbelower

than85%;

2)WhenrequiredtopreventUV,theresinusedshallbeaddedwithUVabsorbent;

)Theoutermostlayeroftheoutersurfacelayershallbeairresistantresinorgelcoatresin;

3-

4)Thethicknessoftheoutersurfacelayershouldnotbelessthan0.3mm.

5.1.8Thethicknessoftheliningandtheoutersurfaceshallnotbeincludedinstrengthcalculation;the

totalthicknessshallbeusedincalculatingtheexternalpressurestabilityandtheselfweightload.

-

5.1.9Whenthesteelannularsupportisbondedtothehousingtoformarigidsupport,theoperating

temperatureoftheequipmentshouldnotbemorethan60℃.

5.2Loadandaction

5.2.1Thedesignloadoftheequipmentshallincludethefollowingcontents:

1Internalpressure,externalpressureormaximumpressuredifference;

2Hydrostaticpressureunderworkingandtestingconditions;

3Theweightoftheinternals,packingandequipment,thegravity水印loadoftheinternalmedium

undernormalworkingconditionsorpressuretest;

4Auxiliaryequipmentandthermalinsulationmaterials,linings,pipes,escalators,platform

gravityloads;

5Windload,seismicloadandsnowload;

6Eccentricload;

7Partialload;

8Impactload;

9Forcecausedbytemperaturegradientorthermalexpansion;

10Theloadgeneratedduringtheinstallationandoperationofpersonnelcanbecalculated

accordingtotheuniformlydistributedloadof1.5kN/m2;

Othershorttermloads.

11-

5.2.2Windloads,seismicloadsandsnowloadsshallbeinaccordancewiththefollowing

requirements:

1Thebasic人人文庫windpressurevalueofeachregionmaybedeterminedaccordingtotheNational

BasicWindPressureDistributionMaporthelocalmeteorologicaldepartmentdata,andshallnotbe

lowerthantherelevantprovisionsofthecurrentnationalstandardGB50009LoadCodefortheDesign

ofBuildingStructures,andshallnotbelessthan300N/m2;

2Seismicfortificationintensityshallincludedesignseismicgroupingandseismicacceleration,

andshallbedeterminedaccordingtolocalmeteorologicaldata,andshallnotbelowerthantherelevant

provisionsofthecurrentnationalstandardGB50011CodeforSeismicDesignofBuildings;

3ThesnowloadshallmeettherelevantrequirementsofthecurrentnationalstandardGB50009

LoadCodefortheDesignofBuildingStructures.

5.2.3Thelocalloadshallincludethereactionforceofthesupport,thelugsandotheraccessorieson

·20·

thelocalareaoftheequipmenthousing,andtheconnectionloadsgeneratedbythepipes,valvesand

othercontainercomponents.

5.2.4Theimpactloadshallincludetheimpactloadcausedbythesuddenfluctuationofthepressure,

thereactionforcecausedbythefluidimpact,andtheadditionalloadgeneratedduringtransportationand

lifting.

Shorttermloadsshallincludewindloads,snowloads,seismicloads,personnelloads,and

5.2.5-

installationloads.

5.2.6Thevariousloadsontheequipmentshallbethemostunfavorablecombinationofinstallation,

hydrostatictest,normalworkingconditionsandabnormalworkingconditions.Thecombinationofloads

canbedeterminedaccordingtospecifiedinTable5.2.6.

Table5.2.6Combinationofloads

EquipmentstatusDesignload①

Weightofemptyequipment

Liftingload

Installation

Accessorygravity

Loadgeneratedduringinstallationandoperation

Weightofemptyequipment

Testpressure

Hydrostaticpressureduringtesting水印

PressuretestWindload

Partialload

Eccentricload

Attachmentgravityload

Internalpressure,externalpressureormaximumpressuredifference

Gravityloadofthemedium

Equipmentemptyweight

Snowload

Eccentricload

Localloadsactingonsupports,lugsandotheraccessories

NormalworkImpactload

Loadcausedbytemperaturegradientordifferentamountofthermal

expansion

Loadgeneratedbytheoperatorduringinstallationandoperation

Attachmentgravityload

人人文庫Windload②

Seismicload+25%windload②

Loadduringnormaloperation,atypeofoverloadthatmayoccurwhen

Abnormalwork

workisstarted,stopped,orinterrupted

Notes:①Accordingtothespecificstateoftheequipment,theloadcombinationinthetablecanbeaddedordeletedduringthedesign.

②Takethelargerof"windload"and"seismicload+25%windload".

5.3Structuralcalculation

5.3.1Forfibrereinforcedplasticequipment,structuralcalculationsshallbemadeforcylinders,conical

shells,conicalheads,convexheads,flatplates,flangesandgroundanchorelements.

·21·

5.3.2Theloadcalculationofthecylinderunderinternalpressureshallbeinaccordancewiththe

followingrequirements:

1Themaximumcircumferentialunitloadshallbecalculatedaccordingtothefollowing

formulas:

D

q=p×(5.3.21)

ΦD2-

p=PS+PH(5.3.22)

D-

where

MaximumcircumferentialunitloadN/mm

qΦ—();

DesignpressureusedinthecalculationsMPa

pD—();

D—Insidediameterofequipment(mm);

PS—Maximumallowablepressure(MPa);

PH—Staticpressureoftheliquidcolumn(MPa).

Thecircumferentialloadbearingcapacityofcylindricallaminatesshallsatisfythefollowing

formula:

q≤[q](5.3.23)

ΦΦ-

where

[]CircumferentialallowableunitloadoflaminatesofthecylinderunderinternalpressureN/

qΦ—(

mm).水印

2Combinedaxialloadsshallbecalculatedinaccordancewiththefollowingrequirements:

1)Theaxialunitloadcausedbyinternalpressureshallbecalculatedaccordingtothefollowing

formulas:

D

q=p×(5.3.24)

x,pD4-

P

p=PS+e(5.3.25)

D-

K4

P

p=PS+e(5.3.26)

D-

K4

where

AxialunitloadcausedbyinternalpressureN/mm

qx,p—();

DesignpressureusedinthecalculationsMPawhenthecylinderisundercompressionit

pD—();,

shallbecalculatedaccordingtoFormula(5.3.25);whenthecylinderisundertension,itshall

-

becalculatedaccordingtoFormula(5.3.26);

人人文庫-

P—Shorttermpressureload(MPa);

e-

K—Thepartialdesignfactorrelatingtothelongtermperformanceoflaminatesshallbein

4-

accordancewithTable4.3.7.

2)Theaxialunitloadresultingfromthebendingmomentcausedbywind,snoworseismicload

shallbecalculatedaccordingtothefollowingformulas:

4M

q=D(5.3.27)

x,mπ×D2-

M

M=M+e(5.3.28)

D-

K4

·22·

M

M=M+e(5.3.29)

D-

K4

where

AxialunitloadduetobendingmomentscausedbywindsnowloadsorseismicloadsN/mm

qx,m—,();

BendingmomentincalculationNmmwhenthecylinderisundercompressionitshallbe

MD—(·);,

calculatedaccordingtoFormula(5.3.25);whenthecylinderisundertension,itshallbe

-

calculatedaccordingtoFormula(5.3.26);

-

M—Bendingmoment(N·mm);

M—Shorttermmomentload(N·mm).

e-

3)Axialunitloadcausedbydeadweightofequipment,mediumweightandadditionalload

generatedbymaintenanceshouldbecalculatedaccordingtothefollowingformulas:

W

q=D(5.3.210)

x,wπ×D-

W

W=W+e(5.3.211)

D-

K4

W

W=W+e(5.3.212)

D-

K4

where

q—Axialunitloadcausedbydeadweightofequipment,mediumweightandadditionalload

x,w水印

generatedbymaintenance(N/mm);

WeightusedincalculationsNwhenthecylinderisundercompressionitshallbe

WD—():,

calculatedaccordingtotheFormula(5.3.211);whenthecylinderisundertension,itshallbe

-

calculatedaccordingtotheFormula(5.3.212);

-

W—Weight(N);

W—Shorttermweight(N).

e-

ThecombinedaxialunitloadshallbethesumofthevaluesofFormula(5.3.24),F(xiàn)ormula(5.3.27)

--

andFormula(5.3.210),consideringdirectionofload.

-

4)Theaxialloadoftheshellshallbecalculatedaccordingtothefollowingformula:

q=q+q-q(5.3.213)

x,cx,Mx,wx,p-

where

AxialunitloadofcylinderundercompressionN/mm

qx,c—();

AxialunitloadduetobendingmomentN/mm

qx,M—();

q—Axialunitloadduetopressure(N/mm);

x,p人人文庫

Axialunitloadabovethepointcausedbytheweightoftheequipmentandmediumand

qx,w—,

additionalloadofmaintenance(N/mm).

5)Axialunitload(N/mm)ofcylinderundertensionshallbecalculatedaccordingtothe

followingformula:

q=q+q+q(5.3.214)

xx,px,Mx,w-

where

AxialunitloadofcylinderundertensionN/mm

qx—();

Axialunitloadbelowthepointcausedbytheweightoftheequipmentandmediumand

qx,w—,

additionalloadofmaintenance(N/mm);

·23·

Theaxialcompressiveloadoflaminatesofthecylindeshallsatisfytherequirementsof

6)qx,c

Article5.3.3ofthiscode,andtheaxialtensileloadbearingcapacityofthelaminateshall

satisfythefollowingformula:

[q]≤[q](5.3.215)

xx-

where

[]Theaxialtensileallowableunitloadofthelaminateofthecylinderunderinternalpressure

qx—

(N/mm).

5.3.3Theloadcalculationforthecylinderunderexternalpressureshallbeinaccordancewiththe

followingrequirements;

1Theaxialcompressioncriticalbucklingloadofthecylindershallbecalculatedaccordingtothe

followingformulas:

t2

u=k×E×E×(5.3.31)

cφbxD-

0.84

=(5.3.32)

k-

D

1+

200×t

d

co≤3.5(5.3.33)

-

D×t

2水印

0.78

=(5.3.34)

k-

D

1+

200×t

d

co>3.5(5.3.35)

-

D×t

2

0.54

=(5.3.36)

k-

D

1+

200×t

where

AxialcompressivebucklingunitloadforthecylindricalshellN/mm

uc—();

FlexuralmodulusincircumferentialdirectionMPa

Eφb—();

FlexuralmodulusinaxialdirectionMPa

Ex—();

t—Shellthickness(mm);

D—Innerdiameter人人文庫oftheequipment(mm);

—Factorincalculations:forshellswithoutcutouts,iscalculatedaccordingtoFormula(5.3.32);

k-k-

forshellswithwithcutoutsorskirtsupports,whentheFormula(5.3.33)issatisfied,is

--k

calculatedaccordingtoFormula(5.3.34);whentheFormula(5.3.35)issatisfied,shallbe

--k

calculatedaccordingtoFormula(5.3.36);

-

d—Diameterofthecutout(mm).

co-

Theaxialbearingcapacityofthelaminateofthecylindershouldmeetthefollowingformula:

u

c≥(5.3.37)

F-

qx,c

where

·24·

F—Bucklingsafetyfactor;

AxialcompressionunitloadofthecylinderN/mm.

qx,c—()

2Thecriticalcircumferentialbucklingpressureofcylindersubjecttoexternalpressureshallbe

calculatedaccordingtothefollowingformulas:

Whenusingtheshortcylinderwith≤6itshallbecalculatedaccordingtothefollowing

1)LsD,

formula:

Dt2.5

=2.4×(3×)0.25××()5.3.38

pcEφbEx(-)

LsD

Whenusingthelongcylinderwith>6itshallbecalculatedaccordingtothefollowing

2)LsD,

formula:

=2.1××(/)35.3.39

pcEφbtD(-)

where

CriticalcircumferentialbucklingpressureofcylindersubjecttoexternalpressureMPa

pc—();

Calculatedlengthmmwhichshallbethedistancebetweentwoadjacentsupportlinesonthe

Ls—(),

cylinder.Whenthereisnostiffeningringonthecylinder,thetotallengthofthecylindershall

betakenplus1/3ofthedepthofeachconvexheadsurface(Figure5.3.31);whenthereisa

-

stiffeningringonthecylinder,themaximumdistancebetweenthecenterlinesoftwoadjacent

stiffeningringsshallbetaken(Figure5.3.32);whenthereisastiffeningringonthecylinder,

-

takethecenterofthefirststiffeningringofthecylinder.Thedistance水印betweenthelineandthe

tangentoftheconvexheadis1/3oftheconvexsurfaceoftheconvexhead(Figure5.3.32);

-

whenthecylinderisconnectedtotheconeshellandthejointcanbeusedasthesupportline,

themaximumdistancebetweenthejointandtheadjacentsupportlineisthecalculatedlength

oftheconesection(Figure5.3.33).

-

Thecircumferentialcompressionbearingcapacityoflaminateofthecylindershouldmeetthe

followingformula:

p

c≥F(5.3.3-10)

pD

人人文庫

Figure5.3.31ThecalculatedlengthoftheFigure5.3.32Thecalculatedlengthofthe

--

cylinderwithoutstiffeningringcylinderwithstiffeningring

1—Tangentpoint1—Tangentpoint;2—Centerlineofstiffeningring

3Thecombinedaxialandradialloadsshallsatisfythefollowingformula:

×1.25×1.25

?qx,cF??pDF?

?÷+?÷≤1(5.3.3-11)

èuc?èpc?

where

TheaxialunitloadN/mmofthecylinderundercompressionshallbecalculatedaccording

qx,c—()

totheFormula(5.3.213);

-

·25·

Figure5.3.33Calculatedlengthoftheconeshellwhenthecylinderisconnectedtothecone

-

1—Tangentpoint;2—Centerlineofstiffeningring

ThebucklingloadN/mmoftheaxialcompressionunitofthecylindershallbecalculated

uc—()

accordingtotheFormula(5.3.31);

-

CriticalcircumferentialbucklingpressureofcylinderssubjecttoexternalpressureMPa.

pc—()

4Whenusingamethodwithinternalorexternalstiffeningringstoshortenthecalculatedlength

ofthecylindertoathinnercylinderthicknessthanthatofthesecondparagraphofthisarticle,the

calculationofthecriticalbucklingpressureshallbeinaccordancewiththefollowingrequirements:

1)Thetotalcriticalbucklingpressureshallbecalculatedaccordingtothefollowingformulas:

42

0.252×tλ8×(m-1)×E×I

=(3×)×c×+ss5.3.312

pcEφbEx()

2×3-

D?λ?2LsDs

222

?m-1+÷×(m+λ)

è2?水印

π×D

λ=(5.3.313)

2-

2×(L+h)

s3

where

TotalcriticalbucklingpressureMPatheminimumvalueshallbefoundafterthetrial

pc—(),

calculationwithm=2,3,etc.;

CircumferentialflexuralmodulusofcylinderMPa

Eφb—();

AxialflexuralmodulusofcylinderMPa

Ex—();

m—Circumferentialbucklingwavenumber;

CircumferentialbendingmodulusofthestiffeningringMPa

Es—();

Momentofinertiaofthestiffeningringmm4

Is—();

Distancebetweenthetwostiffeningringsmmwhenthedistancebetweenthestiffeningrings

Ls—();

isnotequidistant,theaveragevalueofthestiffeningringspacingshallbetaken;

t—Minimumshellthicknesst(Figure5.4.34)ort(Figure5.3.35)ofthecylinderinareaofthe

c人人文庫c1c2

--

stiffeningring;

λ—Parameteroftheshell.

Thecircumferentialbearingcapacityofacylindricalshellwithinternalorexternalstiffeningrings

shallsatisfythefollowingformula:

p

c≥F(5.3.3-14)

pD

Whenisgreaterthan20orthecontributionfromtheshellisignoredthestiffeningring

2)LsD,

stiffnessshallmeetthefollowingformula:

·26·

p×L×D3×F

E×I≥Dss(5.3.315)

ss24-

where

Neutralaxisdiameterofstiffeningringmm.

Ds—()

3)ThesizeofthesolidstiffeningringmaybedeterminedaccordingtothosespecifiedinFigure

5.3.34.Theeffectivewidthofthecylinderusedinthecalculationshallsatisfythefollowing

-L

formulas:

L=b+1.15×D×t(5.3.316)

sc-

5t≤b≤20t(5.3.317)

css-

1.5t≤t≤4b(5.3.318)

css-

b≤300mm(5.3.319)

s-

where

StiffeningringouteredgewidthmmthevalueshallmeettherequirementsofFormula

bs—(),

(5.3.317),F(xiàn)ormula(5.3.318),andFormula(5.3.319).

---

Figure5.3.34Solidstiffeningring水印

-

4)Holloworcoveredstiffeningringconfiguration,whencalculatedaccordingtoFormula

(5.3.312),itsbasicsizeshallbedeterminedaccordingtoFigure5.3.35:

--

Figure5.3.35Holloworcoveredstiffeningring

-

1FillerfoamoropenAveragethickness

—();tc—

5Thestiffeningringshallbecircledaroundthecircumferenceofthecylinderandshouldbe

tightlybonded.

Thedesignoftheconicalshellandconicalhead(Figure5.3.41,F(xiàn)igure5.3.42)shallbein

5.3.4--

accordancewiththefollowingrequirements:

1Theknuckleradiusshallnotbelessthan0.06timesthediameterofthecylinderatthejoint;

2Whenthe人人文庫pressureis-600Pa—+6500Pa,thenonfoldingstructuremaybeadopted;

-

Figure5.3.41ConicalshellwithknuckleFigure5.3.42Conicalshellwithoutknuckle

--

·27·

3Whenthepressureisgreaterthan+6500Paorlessthanorequalto-600Pa,theflanged

structureshallbeadopted,andtheconeapexangleshallnotbegreaterthan150°;

4Conicalheadswithaconeanglegreaterthan150°shallbedesignedinaccordancewiththeflat

coverandshallbecalculatedinaccordancewiththeprovisionsofArticle5.3.20andArticle5.3.22to

Article5.3.24ofthiscode;

5Thelengthofstressconcentrationattenuationonthecylindricalandconicalshellsinthe

knuckleareashallbecalculatedasfollows:

D×t

L=k(5.3.4)

ccosφ

where

Lengthofstressconcentrationattenuationmm

Lc—();

Thicknessontheconicalshellmm

tk—();

φ—Halfconeangle.

5.3.5Theconicalshellloaddesignsubjecttointernalpressureshallbeinaccordancewiththe

followingrequirements:

1Thecircumferentialunitloadofconesubjecttointernalpressureshallbecalculatedaccording

tothefollowingformula:

p×D

φDk水印

q=(5.3.51)

2cosφ-

where

qφ—Maximumcircumferentialunitloads(N/mm);

φ—Halftheangleattheapexofthecone;

Calculatethediameterofthecirclemm.

Dk—()

Thecircumferentialloadbearingcapacityoftheconesubjectedtointernalpressureshallsatisfythe

followingformula:

φ≤[φ](5.3.52)

qq-

where

[qφ]—Circumferentialallowableunitloadofthecone(N/mm).

2Attheknuckearea,theaxialunitloadoftheconesubjecttointernalpressureshallbecalculated

accordingtothefollowingformulas:

)Axialunitloadofaconicalshellwithknuckle(Figure5.3.41)underinternalpressureshallbe

1人人文庫-

calculatedaccordingtothefollowingformula:

p×D×K

q=Dkc1(5.3.53)

x12-

where

AxialunitloadofconicalshellwithknuckleN/mm

qx1—();

Thestressconcentrationfactorforconicalshellwithknuckleshallbeaccordingtothose

Kc1—

specifiedinTable5.3.51.

-

Theaxialunitloadoftheconicalshellwithknuckleshallsatisfythefollowingformula:

q≤[q](5.3.54)

x1x-

·28·

Table5.3.51StressconcentrationfactorKofconicalshellwithknuckle

-c1

Angle

D10°20°30°45°60°75°

0.061.572.182.553.224.16.28

0.081.522.022.342.743.515.53

0.101.461.862.132.262.934.79

0.151.331.461.461.531.933.59

0.201.061.201.201.261.532.79

0.301.001.061.131.201.331.86

where

[]Axialallowableunitloadofthelaminateformingthewallthicknessoftheconicalshellwith

qx—

knuckle(N/mm).

2)Theaxialunitloadoftheconicalshellwallthicknesssubjecttointernalpressurewithout

knuckle(Figure5.3.42)shallbecalculatedaccordingtothefollowingformula:

-

p×D×K

q=Dkc2(5.3.55)

x22-

where

AxialunitloadofconicalshellwithoutknuckleN/mm

qx2—();

Stressconcentrationfactorofconicalshellswithoutknuckle水印shallbetakenasspecifiedin

Kc2—

Table5.3.52.

-

Table5.3.52StressconcentrationfactorKofconeshellwithoutknuckle

-c2

Angleφ

tk

D15°30°45°60°

0.0022.945.628.9013.6

0.0052.053.705.808.70

0.0101.602.754.126.30

0.0201.242.003.004.40

0.0401.001.552.203.20

0.0501.001.452.002.75

Theaxialelementloadofthewallthicknessoftheconicalshellwithoutknuckleshallsatisfythe

followingformula:

q≤[q](5.3.56)

人人文庫x2x-

where

[]AxialunitloadofaconicalshellwithoutknuckleN/mm.

qx—()

5.3.6Theconicalshellloaddesignsubjecttoexternalpressureshallbeinaccordancewiththe

followingrequirements:

1Thestrengthoftheconesubjecttoexternalpressureshallmeetthecircumferentialunitload

bearingcapacityrequiredbyFormula(5.3.52).

-

2Theradialstabilityoftheconesubjecttoexternalpressureshallbecalculatedaccordingtothe

followingformulas:

When≤6thecriticalradialbucklingpressureshallbecalculatedaccordingtothe

1)LDm,

·29·

followingformula:

×cos2.5

4Dm?tφ?

p=2.40×E3×E××?÷(5.3.61)

cφbx×cos-

LsφèDm?

H

L=(5.3.62)

scosφ-

D+D

D=12(5.3.63)

m2-

When>6thecriticalradialbucklingpressureshallbecalculatedaccordingtothe

2)LDm,

followingformula:

3

?t×cosφ?

p=2.1E×?÷(5.3.64)

cφb-

èDm?

where

CriticalradialbucklingpressureMPa

pc—();

L—Effectivelengthofconicalshellordistancebetweenribs(mm)(Figure5.3.33);

s-

Averagediameterofthetapermm.

Dm—()

Theradialstabilityoftheconicalshellsubjecttoexternalpressureshallsatisfythefollowing

formula:

p

c≥F(5.3.65)

p-

D水印

3Theaxialcriticalcompressiveloadoftheconicalsubjecttoexternalpressure(Figure5.3.6)

shallbecalculatedaccordingtothefollowingformulas:

t2×cosφ

u=k×E×E×(5.3.66)

cφbx-

Dm

0.84

=(5.3.67)

k-

D

1+m

200×t×cosφ

NN

q=x1q=x2(5.3.68)

1π×2π×-

D1D2

where

CriticalaxialunitcompressionloadN/mm

uc—();

k—Coefficient;

ThegeometricalchangeoftheconicalshellunderexternalpressureFigure5.3.6andtheaxial

q1,q2—()

pressureoftheelementundertheactionofaxialforceNandN(N/mm).

人人文庫x1x2

Figure5.3.6Conicalshellunderexternalpressure

Theaxialcompressionloadoftheconicalshellsubjecttoexternalpressureshallsatisfythe

followingformula:

·30·

u

c≥(5.3.69)

F-

qx

where

AxialunitcompressionloadofconeshellsubjecttoexternalpressureN/mm.

qx—()

4Thecombinedaxialandradialunitcompressiveloadsshallsatisfythefollowingformula:

1.251.25

?q×F??p×F?

x+D≤1(5.3.610)

?÷?÷-

èuc?èpc?

where

CriticalradialunitbucklingpressureN/mm

pc—();

AxialunitcompressionloadN/mm.

uc—()

5.3.7Theaxialunitloadcalculationsubjecttointernalpressureconicalhead(Figure5.3.7)shallbein

accordancewiththefollowingrequirements:

Figure5.3.7Conicalhead

r

1Whentheapexangleofthehalfconeis60°—75°,and0≤≤水印0.1,theaxialelementloadof

D

thelaminateatthecornershallbecalculatedaccordingtothefollowingformulas:

1+

1?D?βb

q=α×p××?÷×t(5.3.71)

xbDsin×cosk-

φφètk?

r2r

α=-64×()+7.6×()+0.13(5.3.72)

bDD-

r2r

β=51.6×()-8.18×()+0.52(5.3.73)

bDD-

where

AxialunitloadoflaminateatcornerN/mm

qx—();

Structuralfeaturecoefficient

αb—;

Structuralfeaturecoefficient.

βb—

Theaxialunitloadofthelaminatesubjecttointernalpressureconicalheadatthecornershallmeet

thefollowingformula人人文庫:

q≤[q](5.3.74)

xx-

where

[]Forminganaxiallypermittedunitloadofthelaminateatthecornersubjecttointernalpressure

qx—

conicalhead(N/mm).

r

2Whenthehalfconeangleisnotintherangeof60°—75°,andshallbeintherangeof0≤≤

D

0.1,itshallbedesignedaccordingtotheflatcover.

5.3.8Thecriticalradialbucklingpressureoftheconicalheadsubjecttoexternalpressureshallbe

calculatedaccordingtothefollowingformula:

·31·

t2.5

p=13.58×E×sinφ×(cosφ)1.5×()(5.3.81)

cbD-

where

CriticalradialbucklingpressureMPa

pc—();

FlexuralmodulusofconicalheadstructureMPa.

Eb—()

Thestabilitychecksubjecttoexternalpressureconicalheadshallmeetthefollowingformula:

p

c≥(5.3.82)

F-

pD

Theconvexheadshallincludeahemisphericalhead(Figure5.3.91)andanellipticalordished

5.3.9-

head(Figure5.3.92).Whenanellipticalordishshapedheadisused,theinnerradiusofthespherical

--

portionoftheheadshallbe0.8D≤R<D,andtheinnerradiusofthecorneroftheheadshallbe

0.1D≤r<0.25D.

Figure5.3.91HemisphericalheadFigure5.3.92水印Ovalheadanddishshapedhead

---

5.3.10Theunitloadcalculationoftheconvexheadsubjecttointernalpressureshallbeinaccordance

withthefollowingrequirements:

1Theunitloadoftheovalheadandthecornerofthedishheadshallbecalculatedaccordingto

thefollowingformula:

p×D×K

q=Dd(5.3.101)

k,p2-

where

UnitloadinthecornerareaoftheovalheadandthedishheadN/mm

qk,p—();

K—Concentrationfactoratthecornersoftheellipticalheadandthebutterflyheadshallbe

d

checkedinaccordancewithTable5.3.10.

2Thesphericalareaunitloadofthetorisphericalheadandthehemisphericalheadshallbe

calculatedaccordingtothefollowingformula:

q=0.6×p×R(5.3.102)

pD-

where人人文庫

SphericalareaunitloadofdishheadandhemisphericalheadN/mm

qp—();

R—Sphericalarearadius(mm).

3Whenthethicknessofthelaminateinthecornerareaofthedishheadisgreaterthanthe

thicknessofthelaminateinthesphericalarea,theuppercornerareaoftheheadandthelengthofthe

reinforcingsectiononthecasingshallbecalculatedaccordingtothefollowingformula:

L=D×t(5.3.103)

ck-

where

Lengthoflocalthickeningontheheadknuckleareaorontheshellmm

Lc—();

Thicknessofcylinderknuckleareamm.

tk—()

·32·

4Theloadbearingcapacityoftheconvexheadsubjecttointernalpressureshallmeetthe

followingformula:

q≤[q](5.3.104)

k,pp-

where

[]AllowableunitloadsforellipticheadandtorisphericalheadN/mm.

qp—()

K

Table5.3.10Theconcentrationfactoroftheknuckleareaofellipticheadandtorisphericalheadd

Kd

=<

hitRDRD

DD

rr

0.1≤≤0.150.15≤≤0.25

DD

0.0052.95

0.0102.85

0.200.0202.65Notallowed

0.0402.35

0.0502.25

0.0052.351.90

0.0102.251.80

0.250.0202.101.75

0.0401.85水印1.70

0.0501.751.70

0.0051.951.45

0.0101.851.45

0.300.0201.601.40

0.0401.401.35

0.0501.301.30

5.3.11Thestabilityoftheconvexheadsubjecttoexternalpressureshallbechecked,andthecritical

bucklingpressureshallbecalculatedaccordingtothefollowingformula:

t2

p=0.242×E×()(5.3.111)

cbR-

Thestabilityoftheconvexheadsubjecttoexternalpressureshallmeetthefollowingformula:

p

c≥(5.3.112)

F-

pD

Whendesigning人人文庫flatbottomequipmentthefoundationshall

5.3.12-

beflat,andtheallowablesupportclearanceoftheattachmentonthe

bottomplateshouldmeettherequirementsofsettingthesupportplate.

5.3.13Whentheknuckleradiusr>30mmorr/D>0.05ofthe

knuckleregion(Figure5.3.13)oftheflatbottomequipment,the

calculationofthemaximumaxialunitloadofknuckleregionshallbe

inaccordancewiththefollowingrequirement:

Figure5.3.13Flatbottomequipment

1Theunitloadintheknuckleregionfrominternalpressure

knucklearea

(hydrostaticplusoverpressure)shallbecalculatedaccordingtothe

1—Filledarea;2—Slope

·33·

followingformulas:

q=3×k×p×D(5.3.131)

xk,1pD-

?D?■2×rt1.15■

=0.22+0.6+0.0566××■-4.44×(k)-0.04■5.3.132

kp?÷■()

t■DD-

èk?■■

where

Maximumaxialunitloadintheknuckleregionfrominternalpressurehydrostaticplus

qxk,1—(

overpressure)(N/mm);

Structuralcharacteristiccoefficientshallnotbelessthan0.22.

kp—

2Theaxialunitloadofthecylindershallbecalculatedaccordingtothefollowingformulas:

q=6×k×∑q(5.3.133)

xk,2nx,i-

|1.152|

r?D??r?

=|1.38+0.41××-0.077×|5.3.134

kn|?÷?÷|()

|Dtt|-

|èk?èk?|

where

AxialunitloadofthecylinderN/mm

qxk,2—();

∑—Axialunitloadcombination(N/mm)causedbystaticload,windload,gravityload,etc.;

qx,i

Structuralfeaturecoefficienttakingtheabsolutevalue.

kn—,

3Thecombinationqbetweenloadsshallbecalculatedaccordingtothefollowingformulasand

xk水印

shalltakealargervalue.

q=q+0.3×q(5.3.135)

xkxk,1xk,2-

q=q+0.3×q(5.3.136)

xkxk,2xk,1-

4Thelaminateintheknuckleregionoftheflatbottomequipmentfullysupportedshallbe

calculatedaccordingtothefollowingformulasandshallalsocomplywiththerequirementsofthiscode

(5.3.23):

-

W4×M

q=-D±D±q(5.3.137)

xkmaxπ×Dπ×D2xk-

q≤[q](5.3.138)

xkmaxxk-

where

ThemaximumaxialunitloadN/mmintheknuckleregion

qxkmax—();

[]AxialallowableunitloadintheknuckleregionN/mm.

qxk—()

Whentheknuckleradius≤30mmor/≤0.05intheknuckleregionoftheflatbottom

5.3.14rrD-

equipment(Figure5.3.13),thecalculationofthemaximumaxialunitloadoftheknuckleregionshallbe

inaccordancewith人人文庫thefollowingrequirement.

1Themaximumaxialunitloadintheknuckleregionfrominternalpressure(hydrostaticplus

overpressure)shallbecalculatedaccordingtothefollowingformulas:

q=0.72×p×D(5.3.141)

xk,1D-

q=0.90×p×D(5.3.142)

xk,1D-

W4×M

q=-D±D±q(5.3.143)

xkmaxπ×Dπ×D2xk,1-

where

AxialunitloadN/mmintheknuckleregionfrominternalpressurehydrostaticplus

qxk,1—()(

overpressure),whent≤t,shallbecalculatedaccordingtoFormula(5.3.141);whent>

b1k-b1

·34·

t,itshallbecalculatedaccordingtoFormula(5.3.142);

k-

MaximumaxialunitloadintheknuckleregionN/mm.

qxkmax—()

2Thebearingcapacityofthelaminateintheknuckleregionshallmeettherequirementsofthis

code(5.3.23)inadditiontothefollowingformula:

-

q≤[q](5.3.144)

xkmaxxk-

where

[]AxialallowableunitloadN/mmintheknuckleregion.

qxk—()

ThelengthoflocalthickeningatthebottomoftheshellFigure5.3.13shallbecalculated

3Lc()

accordingtothefollowingformula:

L=D×t(5.3.145)

ck-

ThelengthoflocalthickeningatthebottomoftheflatbottomFigure5.3.13shallbecalculated

Lc()

accordingtothefollowingformula:

L=D×t(5.3.146)

cb1-

Thecutoutofequipmentsshallbecompensated,andadiscshapedcompensationplateshould

5.3.15--

beplacedaroundthecutout.Thecalculationofbranchesandcutoutcompensationshallbein

--

accordancewiththefollowingrequirements:

Branchstructureforcompensationatthecutoutsoftheequipmentshallbeflushbranch(Figure

1-

5.3.151)orthroughbranch(Figure5.3.152).

--水印

Figure5.3.151Flushbranch

-

Figure5.3.152Throughbranch

-

Themaximum人人文庫unitloadintheregionofthecutoutshallbecalculatedaccordingtothe

2

-

followingformulas:

q=q×ν(5.3.151)

maxA-

?d?

=1.5×?1+c÷5.3.152

νA?÷()

2××-

èDtc?

where

q—Maximumunitload(N/mm)intheregionofthecutout;

max-

—Maximumunitload(N/mm)oftheshellwithoutcutout;

q-

Loadconcentrationfactor

νA—;

·35·

d—Diameter(mm)ofthecutoutontheshell/head;

c-

Thicknessoftheshellatthebranchmm.

tc—()

Themaximumunitloadintheregionofthecutoutshallsatisfythefollowingformula:

3-

q≤[q]+[q](5.3.153)

maxlamc-

where

[]AllowableunitloadN/mmoftheshelllaminate

qlam—();

[]AllowableunitloadN/mmforcompensationlaminate.

qc—()

4Thewidthofthecompensationlaminatecanbecalculatedasfollowsandshallbegreaterthan

100mm:

l=D×t(5.3.154)

aa-

where

Widthofthecompensationlaminatemm

la—();

Totalcompensationthicknessrequiredatthebranch.

ta—

5Theminimuminnercompensationshallbeinaccordancewiththefollowingrequirement:

)Whenthediameterofthecutoutislessthanorequalto50mm,theinnercompensationshall

1-

bealiningandnolessthanalayerof300g/m2choppedstrandmat;

)Whenthediameterofcutoutisgreaterthan50mmandlessthanorequalto150mm,theinner

2-

compensationshallbealiningandtwolayersof450g/m2chopped水印strandmat;

)Whenthediameterofthecutoutisgreaterthan150mm,theinnercompensationshallbea

3-

liningandatleast3layersof450g/m2choppedstrandmat.

Theminimumreinforcementoverlayatbranchposition(Figure5.3.153)shallbe3layersof

6-

450g/m2choppedstrandmat,andthelengthshallnotbelessthan75mm.

人人文庫

Figure5.3.153Thereinforcementoverlayatbranchposition

-

1—Filledarea;2—Compensationlayer;3-Reinforcementoverlay

5.3.16Thetensileandshearloadsofthecompensationlayershallbeverifiedaccordingtothe

followingformulas.

p×d

q=Dc(5.3.161)

b4-

τ′=b≤lap(5.3.162)

lap20×-

toverK

where

TensileunitloadofthecompensationlayerN/mm

qb—();

·36·

′ShearstressofthecompensationlayerMPa

τlap—();

ThelapshearstrengthofthelaminatecompensationlayerMPawhenusingglassfibre

τlap—(),

reinforcedmaterials,maybemeasuredaccordingtotheprovisionsofTable4.3.1ofthiscode

oraccordingtotheprovisionsofAppendixLofthiscode;

K—Designfactor,whichcanbevaluedinaccordancewiththeprovisionsofArticle4.3.3ofthis

code;

Compensationthicknessmm.

tover—()

5.3.17Thejointbetweentheequipmentheadandthecylinderand

thecylinder(Figure5.3.17)shallbeinaccordancewiththefollowing

requirement:

1Thebearingcapacityofthejointoverlayshallnotbeless

thantheloadoftheconnectedcylinderinboththecircumferential

directionandtheaxialdirection;

2TheslopeofthejointzoneofthejointoverlayshallnotbeFigure5.3.17Seamjointdiagram

1Inneroverlay2Resinputtyfiller

greaterthan1∶6;—;—;

3Outeroverlay4Mainlaminate

Thelengthofthejointoverlayshallbecalculatedas—;—

3Lj

follows:

K×q

L=(5.3.17)

lap水印

where

Jointoverlaylengthmm

Lj—();

K—Designfactor,accordingtotheprovisionsofArticle4.3.3ofthiscode;

q—Maximumunitloadinthecircumferentialoraxialdirectionintheenclosure(N/mm);

LapshearstrengthMPaofthesecondarybondedlaminateoverlay.Whenglassfibre

τlap—()

reinforcedmaterialsareused,thevaluesmaybespecifiedinTable4.3.1ofthiscode.

4Thelengthoftheoverlayshallbeinaccordancewiththefollowingrequirement;

1)Whenthethicknessoftheoverlayislessthanorequalto6mm,theminimumlengthshallbe

100mm;

2)Whenthethicknessoftheoverlayisgreaterthan6mm,theminimumlengthshallbe150mm;

3)Thelengthoftheoverlayshouldnotbelessthan20timesthethicknessoftheoverlay.

5.3.18Theplatesoftheequipmentcomponentsshallberectangular,circular,sector,andtriangular.

Theboundaryclassificationofrectangularplatesshallbeinaccordancewiththefollowingrequirements:

1Fouredges人人文庫simplysupportedshallbeClassA;

2FouredgesfixedshallbeClassB;

3Onelongedgesimplysupported,theotherthreeedgesfixedshouldbeClassC;

4Oneshortedgesimplysupported,theotherthreeedgesfixedshouldbeClassD.

5.3.19Thebendingmomentcalculationofrectangularflatplatesshallbeinaccordancewiththe

followingrequirements.

1Bendingmomentofrectangularplatesunderuniformlydistributedloadshallbecalculated

accordingtothefollowingformula:

M=β×p×b2(5.3.191)

p1-

·37·

where

BendingmomentofrectangularplateunderuniformlydistributedloadNmm/mm

Mp—(·);

β—ConstantsofrectangularflatplatessubjectedtouniformlydistributedloadsarefoundinTable

1

5.3.191;

-

p—Uniformlydistributedloadonarectangularplate(MPa);

—Lengthoftheshortsideofarectangularplate(mm).

b

Table5.3.19-1Constantsofrectangularflatplatessubjectedtouniformlydistributedloads

BoundaryBoundaryAspectratio(a/b)

Constant

typeclassification1.001.251.501.752.002.503.004.005.00>5.00

β0.0480.0670.0810.0930.1020.1130.1190.1250.1250.125

1

bA

α0.0440.0600.0840.0990.1110.1260.1340.1400.1420.142

a1

β0.0510.0670.0750.0800.0830.0830.0830.0830.0830.083

B1

α0.0140.0200.0240.0260.0280.02810.02820.02840.02840.0284

1

β0.0600.0770.0940.1070.1140.1210.1240.1240.1240.124

C1

α0.0170.0280.0370.0440.0490.0550.0570.0580.0580.058

1

β0.0600.0730.0790.0820.0830.0830.0830.0830.0830.083

1

D

α0.0170.0220.0250.0270.0280.02840.02840.02840.02840.0284

1

Note:Indicatesthattheboundaryissimplysupported;Indicatesthatthe水印boundaryisafixed.

2Thebendingmomentoftherectangularplatesubjectedtothehydrostaticloadvaryinglinearly

from0toshouldbecalculatedaccordingtothefollowingformula

p1:

M=β×p×b2(5.3.192)

p11-

where

MomentofrectangularplatesubjectedtohydrostaticloadNmm/mm

Mp—(·);

ConstantsforrectangularplatessubjectedtohydrostaticloadwhichcanbefoundinTable

β1—,

5.3.192;

-

MaximumvalueoflinearlyvaryingloadonarectangularplateMPa

p1—();

b—Lengthoftheshortsideofarectangularplate(mm).

Table5.3.192Constantsofarectangularflatplatewithhydrostaticloadvaryinglinearlyfrom0to

-p1

BoundaryAspectratio(a/b)

Constant

classification1/21/1.751/1.51/1.251.001.251.501.75≥2.00

β0.01150.01450.01870.02450.03340.03930.04620.04810.0500

1

A、C、D

α0.00090.00150.00240.00410.00690.00940.01200.01310.0142

1人人文庫

β0.03480.03390.03240.02980.02640.03550.04290.04860.0529

1

B

α0.05530.04950.04220.03290.02220.03290.04220.04950.0553

1

ThebendingmomentofaAclassrectangularplatewithaconcentratedloadatitscentershall

3-

becalculatedaccordingtothefollowingformula:

W?2b?

M=×?1.3×ln+β÷(5.3.193)

p4×ππ×2-

èr1?

where

M—BendingmomentofaAclassrectangularplatewithaconcentratedloadatitscenter

p-

(N·mm/mm);

·38·

β—ConstantsofrectangularflatplatessubjectedtocentrallocalloadarefoundinTable5.3.193;

2-

Radiusoftheareaofthelocalloadonarectangularplatemm

r1—();

—Lengthoftheshortsideofarectangularplate(mm);

b

—Localloadonarectangularplate(N).

W

ThebendingmomentofaBclassrectangularplatewithcentrallocalloadshallbecalculated

4-

accordingtothefollowingformula:

M=β×W(5.3.194)

p3-

where

M—BendingmomentofaBclassrectangularplatewithcentrallocalload(N·mm/mm);

p-

β—Constantsofrectangularflatplatessubjectedtocentrallocalloadarefoundintable5.3.193;

3-

W—Localloadonarectangularplate(N).

Table5.3.19-3Constantsofrectangularflatplatessubjectedtocentrallocalload

BoundaryAspectratio(a/b)

Constant

classification1.001.251.501.752.002.503.004.005.00>5.00

α0.12670.15180.16710.17630.18050.18210.18310.18420.18490.1851

2

A

β0.4350.6910.8380.9170.9580.9760.9860.9971.0001.000

2

α0.06110.07200.07680.07850.07880.07900.07910.07910.07910.0791

2

Bβ-0.238-0.0520.0360.0670.0670.0670.0670.0670.0670.067

2

β0.12570.15300.16320.16650.16740.1677水印0.16790.16800.16800.1680

3

5.3.20Thebendingmomentcalculationofthecircularplateshallbeinaccordancewiththefollowing

requirement.

1Thebendingmomentofacircularplatewithperipheralsimplysupportsunderauniformly

distributedloadshallbecalculatedaccordingtothefollowingformula:

M=0.0516×p×d2(5.3.201)

pDp-

where

MomentofacircularflatplatesubjectedtouniformlydistributedloadNmm/mm

Mp—(·);

UniformlydistributedloadonacircularplateMPa

pD—();

Calculateddiameterofacircularplatemm.

dp—()

2Thebendingmomentofacircularplatewithperipheralfixedsupportsunderauniformly

distributedloadshallbecalculatedaccordingtothefollowingformula:

M=0.03125×p×d2(5.3.202)

pDp-

where人人文庫

MomentofacircularflatplatesubjectedtouniformlydistributedloadNmm/mm

Mp—(·);

UniformlydistributedloadonacircularplateMPa

pD—();

Calculateddiameterofacircularplatemm.

dp—()

3Thebendingmomentofacircularplatewithperipheralsimplysupportsundercentrallocalload

shallbecalculatedaccordingtothefollowingformula:

W■d■

M=1.3×lnp+1■(5.3.203)

p4×π■2×-

■r1■

where

Bendingmomentofaperipheralsimplysupportedcircularplateundercentrallocalload

Mp—

·39·

(N·mm/mm);

W—Localloadonacircularplate(MPa);

Radiusoftheareaoflocalloadonacircularplatemm

r1—();

Calculateddiameterofacircularplatemm.

dp—()

4Thebendingmomentofacircularplatewithperipheralfixedsupportsunderconcentratedload

atcentershallbecalculatedaccordingtothefollowingformulas,andshouldbetakentoalargevalue:

Wd

M=0.325××lnp+1(5.3.204)

pπ2×-

r1

W

M=(5.3.205)

p4×π-

where

Thebendingmomentofacircularplatewithfixedsupportsunderconcentratedloadatcenter

Mp—

(N·mm/mm);

W—Concentratedloadonacircularplate(MPa);

Radiusoftheareaofconcentratedloadonacircularplatemm

r1—();

Calculateddiameterofacircularplatemm.

dp—()

5.3.21Thebendingmomentofasectorortriangularplatesubjectedtoauniformlydistributedload

shallbecalculatedaccordingtothefollowingformula:

M=β×p×r2(5.3.21)

pDp水印

where

MomentofasectorortriangularplatesubjectedtoauniformlydistributedloadNmm/mm

Mp—(·);

β—Constantsofsectorortriangularflatplatessubjectedtouniformlydistributedloadsarefound

inTable5.3.21;

UniformlydistributedloadonasectorortriangularplateMPa

pD—();

Radiusofthesectorplateorthelengthofthesideofthetriangularplatemm.

rp—()

Table5.3.21Constantsofsectorortriangleplatecalculationsubjectedtouniformlydistributedload

Angleππ/2π/3π/4

Peripheralsimplysupports

α0.03680.01440.00620.0031

β0.07560.04880.03400.0250

Peripheralfixedsupports

α0.08860.02460.01000.0054

β人人文庫0.08680.03810.02550.0183

5.3.22Whentheplateissubjectedtobendingmomentloadsincludinginternalpressure,vacuum,

liquidcolumnstaticpressure,windload,snowload,locallyconcentratedloadandthemostsevere

combinationofvariousloads,thedesignbendingmomentoftheplateshouldbecalculatedaccordingto

thefollowingformula:

M+M

=++sw5.3.22

MDMpMl()

K4

where

DesignbendingmomentoftheplateNmm/mm

MD—(·);

M—AccordingtotheFormula(5.3.191),F(xiàn)ormula(5.3.194),F(xiàn)ormula(5.3.201),

p---

·40·

Formula(5.3.205)andFormula(5.3.21),bendingmomentcausedbyuniformor

-

concentratedload(N·mm/mm);

PartialbendingmomentactingontheplateNmm/mm

Ml—(·);

SnowloadactingontheplateNmm/mm

Ms—(·);

WindloadactingontheplateNmm/mm

Mw—(·);

K—Partialdesignfactorrelatingtolongtermperformanceoflaminateshallbeinaccordance

4-

withTable4.3.7ofthiscode.

5.3.23Themasscalculationoftheunitareareinforcingmaterialoftheplateunderloadshallbein

accordancewiththefollowingrequirements:

1Whenchoppedstrandmatisusedasthereinforcingmaterialfortheflatplate,themassofthe

choppedstrandmatperunitareashallbecalculatedaccordingtothefollowingformula:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論