




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
水印
人人文庫
NATIONALSTANDARD
OFTHEPEOPLE'SREPUBLICOFCHINA
TECHNICALCODEFORFIBREREINFORCEDPLASTICS
EQUIPMENTANDPIPINGENGINEERING
GB51160-2016
DevelopedbyBranchofChemicalIndustry,ChinaAssociationforEngineering
ConstructionStandardization
ApprovedbyTheMinistryofHousingandUrbanRuralDevelopmentof
-
thePeople'sRepublicofChina
ImplementationDateAugust1,2016水印
人人文庫
ChinaPlanningPress
Beijing2021
ChineseeditionfirstpublishedinthePeoplesRepublicofChinain2016
EnglisheditionfirstpublishedinthePeoplesRepublicofChinain2021
byChinaPlanningPress
rd
,,水印
3FloorCTowerGuohongBuilding
No.A11,Muxidi-Beili,XichengDistrict
Beijing,100038
PrintedinChinabyBeijingJingyintangGraphicPrintingCenter
?2016bytheMinistryofHousingandUrban-RuralDevelopmentof
thePeoplesRepublicofChina
Allrightsreserved.Nopartofthispublicationmaybereproducedortransmittedinanyformor
byanymeans人人文庫,graphic,electronic,ormechanical,includingphotocopying,recording,
oranyinformationstorageandretrievalsystems,withoutwrittenpermissionofthepublisher.
Thisbookissoldsubjecttotheconditionthatitshallnot,bywayoftradeorotherwise,belent,
resold,hiredoutorotherwisecirculatedwithoutthepublisherspriorconsentinanyformof
blindingorcoverotherthanthatinwhichthisispublishedandwithoutasimilarcondition
includingthisconditionbeingimposedonthesubsequentpurchaser.
ISBN978-7-5182-1270-5
中華人民共和國住房和城鄉(xiāng)建設(shè)部公告
2021年第11號
住房和城鄉(xiāng)建設(shè)部關(guān)于發(fā)布《纖維增強(qiáng)
塑料設(shè)備和管道工程技術(shù)規(guī)范》
等7項(xiàng)工程建設(shè)標(biāo)準(zhǔn)英文版的公告
現(xiàn)批準(zhǔn)《纖維增強(qiáng)塑料設(shè)備和管道工程技術(shù)規(guī)范》(GB51160-2016)、《工業(yè)企業(yè)電氣設(shè)備
抗震鑒定標(biāo)準(zhǔn)》(GB50994-2014)、《石油庫設(shè)計文件編制標(biāo)準(zhǔn)》(GB/T51026-2014)、《石油化
工工程地震破壞鑒定標(biāo)準(zhǔn)》(GB50992-2014)、《鋼鐵工業(yè)環(huán)境保護(hù)設(shè)計規(guī)范水印》(GB50406-
2017)、《鋼鐵工業(yè)資源綜合利用設(shè)計規(guī)范》(GB50405-2017)、《尾礦設(shè)施設(shè)計規(guī)范》
(GB50863-2013)英文版。工程建設(shè)標(biāo)準(zhǔn)英文版與中文版出現(xiàn)異議時,以中文版為準(zhǔn)。
以上7項(xiàng)工程建設(shè)標(biāo)準(zhǔn)英文版由住房和城鄉(xiāng)建設(shè)部組織中國計劃出版社有限公司出版發(fā)行。
中華人民共和國住房和城鄉(xiāng)建設(shè)部
2021年1月25日
人人文庫
AnnouncementoftheMinistryofHousingandUrban-Rural
DevelopmentofthePeople'sRepublicofChina
No.1026
AnnouncementoftheMinistryofHousingandUrbanRural
-
DevelopmentonPublishingNationalStandardofTechnical
CodeforFibreReinforcedPlasticsEquipmentand
PipingEngineering
TechnicalCodeforFibreReinforcedPlasticsEquipmentandPipingEngineeringhasbeen
approvedasanationalstandardwithaserialnumberofGB51160-2016,andwillbeimplementedon
August1,2016.Inthiscode,Articles(oritem)3.4.2,3.4.3(1)and7.1.3(3)aremandatoryonesandmust
beimplementedstrictly.水印
AuthorizedbytheResearchInstituteofStandardsandNormsofMinistryofHousingandUrban
-
RuralDevelopmentofthePeople'sRepublicofChina,thiscodeispublishedanddistributedbyChina
PlanningPress.
MinistryofHousingandUrbanRuralDevelopmentofthePeople'sRepublicofChina
-
January1,2016
人人文庫
Foreword
ThiscodeispreparedbyChinaPetroleumandChemicalEngineeringSurveyandDesign
AssociationandShanghaiFuchenChemicalCo.,Ltd.togetherwithotherinvolvedorganizations.
accordingtotherequirementsofDocumentJIANBIAO[2013]No.6issuedbytheMinistryofHousing
andUrbanRuralDevelopment(MOHURD)
-"NoticeonPrintingandDistributing'theDevelopment
.
andRevisionPlanofNationalEngineeringConstructionStandardsin2013'"
Inpreparingthiscode,thedevelopmentteamcarriedoutinvestigationandresearch,testsand
verification,summarizedtheapplicationexperienceofChinesefibrereinforcedplasticsequipmentand
pipingengineeringtechnology,madereferencetotheadvancedcodesandstandardsinChinaand
abroad,basedonextensiveconsultation,reviewedandfinalizedthiscode.
Thiscodeconsistsof11chaptersand11appendixes,covering:generalprovisions,terms,basic
requirements,materials,equipmentdesign,pipingdesign,manufacture,qualitycontrolandinspection,
marking,packing,transporting,storing,installation,projectacceptance.
Theprovisionsprintedinboldtypearemandatoryonesandmustbeimplementedstrictly.
Thiscodeisunderthejurisdictionof,anditsmandatoryprovisions水印areinterpretedbytheMinistry
ofHousingandUrbanRuralDevelopmentofthePeoplesRepublicofChina.TheBranchofChemical
-'
Industry,ChinaAssociationforEngineeringConstructionStandardizationisresponsibleforitsroutine
management,andShanghaiFuchenChemicalCo.,Ltd.isinchargeofexplanationoftechnical
specification.Duringtheimplementationofthiscode,anycommentsandadvicescanbepostedor
passedontoShanghaiFuchenChemicalCo.,Ltd.(Address:521B,No.251CaoxiRoad,Xuhui
-
District,Shanghai;Postcode:200235).
ChiefDevelopmentOrganizations,CoDevelopmentOrganizations,ParticipatingOrganizations,
-
ChiefDraffters,ChiefReviewersandChiefTranslatersofthiscode:
ChiefDevelopmentOrganizations:
ChinaPetroleumandChemicalEngineeringSurveyandDesignAssociation
ShanghaiFuchenChemicalCo.,Ltd.
Co-DevelopmentOrganizations:
ShijiazhuangDevelopmentZoneJiyuanTechnologyCo.,Ltd.
人人文庫XinjiangPengyuanNewMaterialCo.,Ltd.
EastChinaUniversityofScienceandTechnology
ChinaWuhuanEngineeringCo.,Ltd.
SinopecNanjingEngineeringCo.,Ltd.
ChinaEnfiEngineeringTechnologyCo.,Ltd.
JizhouZhongyiCompositeMaterialCo.,Ltd.
JiangxiCopperGroupCompanyGuixiSmeltingPlant
ChangzhouHuakePolymerCo.,Ltd.
JinchuanGroupEngineeringConstructionCo.,Ltd.
JilinDesignInstituteofCNPCNortheastRefiningandChemicalEngineeringCo.,Ltd.
·1·
Ashland(China)InvestmentCo.,Ltd.
ChinaPowerEngineeringConsultingGroupEastChinaPowerDesignInstitute
Co.,Ltd.
ChinaMetallurgicalOrientEngineeringTechnologyCo.,Ltd.
HebeiHengxingEnvironmentalProtectionEquipmentEngineeringCo.,Ltd.
NationalChemicalConstructionStandardizationManagementCenter
ParticipatingOrganizations:
TaishanFibreglassCo.,Ltd.
ChongqingInternationalCompositeMaterialsCo.,Ltd.
GuangdongXianliFibreReinforcedPlasticCo.,Ltd.
DeyangShuangquanFRPProductsCo.,Ltd.
ChiefDrafters:
LUShipingLIGuoshuWANGLeiHOURuigangTANGWenyong
WANGZhengzhuYUQunZHAOAijunLANLiqinLIUSu
JIANGXianlongLUYuechiWANGTiantangZENGShaoJUYuanqin
JIANGGuoxianZHANGWeixiuYUANYeLAIXiaodongLIDasheng
NIUChunliangGUOQuanguoLUTianZHAOGuiqinGAOShangwen
LIYe
ChiefReviewers:水印
CHENBoNILizhongZHUSirongGUOWenqiangSHAYuan
ZHANGShiguangWANGQianghuaZHANGLinwenLVHuimin
WANGJiandongJILi
ChiefTranslaters:
ZHUSirongLUQi'aoLIGuoshuWANGLeiLUShiping
人人文庫
·2·
Contents
1Generalprovisions……………(1)
2Terms…………………………(2)
3Basicrequirements……………(3)
3.1Generalrequirements……………(3)
3.2Functionalrequirements…………(3)
3.3Designconditionsanddocuments…………………(4)
3.4Overpressureprotection…………(4)
4Materials………………………(6)
4.1Generalrequirements……………(6)
4.2Rawmaterials…………………(6)
4.3Materialpropertiesoflaminaandlaminate…………(8)
5Equipmentdesign………………(19)
5.1Generalrequirements……………(19)
5.2Loadandaction………………(20)
5.3Structuralcalculation……………水?。?1)
5.4Structuraldesign………………(43)
6Pipingdesign……………………(53)
6.1Generalrequirements……………(53)
6.2Configurationdesign……………(54)
6.3Structurecalculation……………(65)
6.4Pipingstresscalculationandflexibilityanalysis……………………(76)
7Manufacture……………………(87)
7.1Generalrequirements……………(87)
7.2Manufactureforequipmentandpiping……………(88)
7.3Qualitycontrolofmanufactureprocess……………(89)
7.4Faultandrepair…………………(90)
7.5Secondarybonding………………(91)
8Qualitycontrolandinspection…………………(93)
8.1Generalrequirements……………(93)
8.2Qualityinspection人人文庫documents……………………(93)
8.3Rawmaterialtestingandinspection………………(94)
8.4Productmeasurement,inspectionanddetermination………………(97)
9Marking,packing,transporting,storing………(106)
9.1Equipment……………………(106)
9.2Piping…………………………(107)
10Installation……………………(108)
10.1Generalrequirements…………(108)
10.2Equipmentinstallation…………(108)
10.3Pipinginstallation………………(109)
·1·
10.4Usageandmaintenance…………(112)
11Projectacceptance……………(114)
AppendixASubitemdesignfactorK'sdeterminationforcorrosionresistant
-2-
innerlinerlayeroffibrereinforcedplasticsequipment……………(116)
AppendixBCorrosionmediumclassification……………………(121)
AppendixCHorizontalvesseldesign……………(122)
AppendixDFlangedesign………………………(130)
AppendixEGroundanchordesign………………(138)
AppendixFReinforcedflange'sspecificationforopeningholetanktop………(148)
AppendixGCalculatingprocessforpipelinestructuredesign…………………(149)
AppendixHCalculatingofpipingpressureloss…………………(150)
AppendixJSecondarybondingfabricationevaluation…………(152)
AppendixKMeasurementandtestforinterlaminarshearstrengthoflaminates………………(154)
AppendixLMeasurementandtestforlapshearstrengthofbondbetweenlaminates…………(155)
Explanationofwordinginthiscode………………(156)
Listofquotedstandards……………(157)
水印
人人文庫
·2·
1Generalprovisions
1.0.1Thiscodeispreparedwithaviewtoimprovetheapplicationleveloffibrereinforcedplastics
equipmentandpipingengineering,andtoachieveadvancedtechnology,safetyandusability,economy
andrationality,andqualityassurance.
1.0.2Thiscodeisapplicabletothedesign,manufacture,installationandengineeringquality
acceptanceofintegralfibrereinforcedplasticsequipmentandpipingformedbywinding,sprayingand
handlayup.
-
1.0.3Thiscodeisnotapplicabletothefollowingdesignoffibrereinforcedplasticsequipmentand
piping:
1Transporttank,buriedcontainer,storagetanksanddoublewalledtanks;
Irregularshape(nogyrating)containers,tanksandtowers;
2-
3Equipmentandpipingforhighlytoxicorradioactivechemicals;
4Buriedwatersupplyanddrainagepipes;
5Chimneysandflues;
6Oilandgasgatheringandtransportationpipes.水印
1.0.4Inengineeringapplicationsoffibrereinforcedplasticsequipmentandpiping,inadditiontothe
requirementsstipulatedinthiscode,thosestipulatedinthecurrentrelevantstandardsofthenationshall
becompliedwith.
人人文庫
·1·
2Terms
2.0.1Unit
Thereciprocaloftheunitareamassoffibrereinforcedmaterial(kg/m2)andunitwidth(mm)ofa
lamina,withunitof1/(mm·kg/m2);orthereciprocaloftheunitwidth(mm)ofalaminate,withunitof1/mm.
2.0.2Unittensilestrength
Ultimatetensileloadperunitwidthandunitareamassoffibrereinforcedmaterialofalamina,with
unitofN/(mm·kg/m2).
2.0.3Unittensilemodulus
Theratioofthetensileloadtothecorrespondingstrainperunitwidthandunitareamassoffibre
reinforcedmaterialofalamina,withunitofN/(mm·kg/m2).
2.0.4Tensileloadcarryingcapacityofalaminate
Ultimatetensileloadofunitwidthlaminate,withunitofN/mm.
2.0.5Laminateunittensilestiffness
Ratiooftensileloadtocorrespondingstrainofunitwidthlaminate,withunitofN/mm.
2.0.6Designthicknessofstructurallayer
Thicknessofstructuralcalculationformainloadinlayer,whichdoes水印notincludethethicknessof
liningandoutersurface.
2.0.7Designthickness
Theentirelayerthicknessincludingthethicknessofthestructurallayer,thethicknessofthelining
andtheoutersurface.
2.0.8Simplifiedfailureenvelope
Asimplifiedpolygonallineforthebiaxialstressfailurecurvesofanisotropicmaterials.
2.0.9Airbubble
Acavityformedbyairretentioninalayer.
2.0.10Chip
Asmallpieceofdamageontheedgeorsurfaceofalayer.
2.0.11Crazing
Irregularminorcrackonthesurfaceofalayer.
2.0.12Dryspot
Areaswherefibres人人文庫arenotadequatelysaturatedwithresin.
2.0.13Exposedfibre
Thesurfaceoredgefibresareexposed.
2.0.14Pit
Acraterareaofalayer.
2.0.15Scratch
Scoringorshallowmarkonthesurfaceofalayer.
2.0.16Wrinkle
Wavysurfaceofthelayerduetoirregularshapeoroverlappingofthestructure.
·2·
3Basicrequirements
3.1Generalrequirements
3.1.1Thedesignpressurerangeoffibrereinforcedplasticsequipmentshallbeinaccordancewiththe
followingrequirements:
1Wherethediameterislessthanorequalto4m,thedesigninternalpressureshallnotbelarger
than1.0MPa,andtheproductofthedesigninternalpressureanddiametershallnotbelargerthan
2.4MPa·m,andthedesignexternalpressureshallnotbelargerthan0.1MPa;
2Wherethediameterislargerthan4m,thedesigninternalpressureshallnotbelargerthan
2.0kPa,andthedesignexternalpressureshallnotbelargerthan0.5kPa.
3.1.2Thedesignpressurerangeoffibrereinforcedplasticpipingshallbeinaccordancewiththe
followingrequirements:
1Wherethediameterislessthanorequalto600mm,thedesigninternalpressureshallnotbe
largerthan1.0MPa;
2Wherethediameterislargerthan600mmandlessthanorequalto1200mm,thedesigninternal
pressureshallnotbelargerthan0.6MPa;水印
3Externalpressureshallnotbelargerthan0.1MPa.
3.1.3Whenthedesignpressureanddiameteroffibrereinforcedplasticsequipmentandpipingdonot
conformtothescopestipulatedinArticles3.1.1and3.1.2ofthiscode,thematerialpropertiesshallbe
determinedbytesting.
3.1.4Thedesigntemperaturerangeoffibrereinforcedplasticequipmentshouldbe-40℃to+120℃,
andthedesigntemperaturerangeofpipingshouldbe-30℃to+110℃.Whenthetemperaturerangeis
notsatisfied,theperformanceofthematerialshallbedeterminedbytesting.
3.2Functionalrequirements
3.2.1Flameretardantresinsoradditivesshallbeusedwhenflameretardantperformanceoffibre
reinforcedplasticsequipmentandpipingisrequired.
3.2.2Conductivecarbonfibresorconductivefillersshallbeusedwhenfibrereinforcedplastics
equipmentandpipingarerequiredtohaveantistaticproperties,andthecontinuoussurfaceresistivity
-
shallnotbelarger人人文庫than1.0×106Ωorthevolumeresistivityshallnotbelargerthan1.0×106Ω·m.The
electrostaticgroundingshallmeettherequirementsoftherelevantprovisionsofSH3097Codeforthe
DesignofStaticElectricityGroundingforPetrochemicalIndustry,thecurrentindustrystandard.
3.2.3Whenwearresistanceoffibrereinforcedplasticequipmentandpipingarerequired,wear
resistantfillersshallbeaddedtotheresinorothertechnicalmeasuresshouldbetaken.
3.2.4Whenthereisfoodhygienerequirementforfibrereinforcedplasticsequipmentandpiping,it
shallmeettherequirementsofthecurrentnationalstandardsGB/T14354FoodContainersofGlass
FibreReinforcedUnsaturatedPolyesterResinandGB/T5009.98MethodforAnalysisofHygienic
StandardofUnsaturatedPolyesterResinandGlassFibreReinforcedPlasticsUsedasFood
ContainersandPackagingMaterials.
·3·
3.3Designconditionsanddocuments
3.3.1Thedesignconditionsofthefibrereinforcedplasticequipmentandpipingprovidedbytheclient
shallincludethefollowingcontents:
1Componentsandcharacteristicsofmedium;
2Operatingparameterssuchasworkingpressure,workingtemperature,liquidlevel,velocityand
branchload;
3Processdescription;
4Geometricparameters,nozzleorientationandsupporttype;
5Naturalconditionssuchasambienttemperature,seismicfortificationintensity,windandsnow
loads,etc.;
6Otherconditions.
3.3.2Beforemanufacturingfibrereinforcedplasticsequipmentandpiping,themanufacturershall
havedesigndocumentssuchasdesigntasksheets,calculationsheets,designdrawings,design
specifications,etc.
3.3.3Thefollowingcontentsshallbeincludedinthedesigndrawingandthedesignspecifications:
1Nameandclassificationofproject,majorregulations,specificationsandproductstandardsfor
designandmanufacture;
2Workingpressure,workingtemperature,composition,characteristics水印,velocity,toxicityand
explosionhazardofthemedium;
3Designtemperature,designpressureandwind,snowandearthquakeloads;
4Types,gradesandspecificationsofmainrawmaterials;
5Maincharacteristicparametersanddeviationcontrolrangeofequipmentdiameter,height,
volume,pipediameter,lengthandsoon;
6Layersequence,numberoflayers,thicknessanddeviationcontrolrangeoffibrereinforced
plasticsequipmentandpiping;
7Accessoriessuchasliftinglug,strutandladder;
8Locationofnameplatesforfibrereinforcedplasticsequipmentandpiping;
9Packaging,transportationandinstallationrequirements;
10Testingrequirements.
3.4Overpressureprotection
3.4.1Allequipment人人文庫inthiscodeshallbeprotectedbyovervoltage.
3.4.2Theovervoltageprotectionoftheequipmentconnectedwiththeatmospheremustbein
accordancewiththefollowingrequirements.
1Shallbeopenatthetop,andshouldbecommunicateddirectlywiththeair;
2Thesectionalareaoftheventshallnotbelessthanthelargervaluebetweentheinletand
outletdimensionsoftheequipment(netcirculationarea);
3Airtightventmustnotbeprohibited;
4Theoverflowportshallbeinstalled,andthesectionareaoftheoverflowportshallnotbe
lessthantheinletdimension.
3.4.3Overvoltageprotectionforequipmentthatdoesnotinterconnectwiththeatmosphereshallbein
·4·
accordancewiththefollowingrequirements:
1Overpressurereliefdevicesshallbeinstalledforequipmentwithoverpressureduring
operation;
2Theinstallationofoverpressurereliefdeviceshallconformtotherelevantprovisionsof
GB150.1:.
PressureVessels-Part1GeneralRequirements
水印
人人文庫
·5·
4Materials
4.1Generalrequirements
4.1.1Thematerialselectionoffibrereinforcedplasticequipmentandpipingshallbebasedon
calculating,evaluating,testingandverifyingofthemechanicalproperties,chemicalresistance,physical
propertiesandprocessingpropertiesofthematerials.
4.1.2ThematerialsusedinfibrereinforcedplasticequipmentandpipingshallhaveaMaterialSafety
DataSheet.
4.2Rawmaterials
4.2.1Unsaturatedpolyesterresin,vinylesterresinandepoxyresinshouldbeselectedforfibre
reinforcedplasticequipmentandpiping.Whenothertypesofresinsareselected,theirpropertiesshallbe
determinedbytesting.
4.2.2Resinsusedforfibrereinforcedplasticsequipmentandpipingshallbeinaccordancewiththe
followingrequirements:
1Resinshallmeettheworkingconditionsandformingprocessrequirements水??;
2Resinshallbematchedwithreinforcementmaterial;
3Thesameresinshouldbechosenforliningandstructurallayer;
4Unsaturatedpolyesterresinandvinylesterresinshallbematchedwiththeinitiatorand
acceleratorselected;
5Epoxyresinshallbematchwiththeselectedcuringagent.
4.2.3Thequalityoftheresinshallbeinaccordancewiththefollowingrequirements:
1Thequalityofunsaturatedpolyesterresinshallmeettherelevantrequirementsofcurrent
nationalstandardGB/T8237LiquidUnsaturatedPolyesterResinforFibreReinforcedPlastics;
2Thequalityofvinylesterresinshallmeettherelevantrequirementsofcurrentnationalstandard
GB/T50590TechnicalCodeforAnticorrosionEngineeringofVinylEsterResins;
3Thequalityofepoxyresinshallmeettherelevantrequirementsofcurrentnationalstandard
GB/T13657;
Bisphenol-AEpoxyResin
4ThepropertiesofresincastingbodyshouldbeinaccordancewiththosespecifiedinTable
4.2.3:人人文庫
Table4.2.3Propertiesofresincastingbody
MechanicalpropertyLiningresinStructurallayerresin
Tensilestrength(MPa)≥60.0≥60.0
Tensilemodulus(×103MPa)≥2.5≥3.0
Fractureelongation(%)≥3.5≥2.5
HeatdeflectiontemperatureHDT℃1.80MPa≥T+20
(,,)d
Noterepresentingdesigntemperature.
:Td
·6·
5Thecorrosionresistanceoftheresinmaybedeterminedbythecorrosionresistancedataofthe
resin,existingapplicationexperience,couponorlaboratorytestandverification,etc.Theevaluation
methodshallmeettherequirementsofAppendixAofthiscode.
4.2.4Glassfibreanditsproducts,carbonfibreanditsproducts,syntheticfibreanditsproductsshould
beselectedasreinforcementmaterialsforfibrereinforcedplasticequipmentandpiping.Whenother
typesofreinforcementmaterialsareselected,theirpropertiesshallbedeterminedbytests.
4.2.5Reinforcementmaterialsforfibrereinforcedplasticequipmentandpipingshallbeinaccordance
withthefollowingrequirements:
1Reinforcementmaterialsshallmeettherequirementsofworkingconditionsandmolding
process;
2Thecouplingagentusedinfibresurfacetreatmentshallbematchedwithresin;
3Thetypeoffibrereinforcedmaterialusedfortheconnectionbetweentheequipmentcylinder
andpipelineshallbethesameasthereinforcementmaterialsoftheequipmentcylinderandpipeline.
4.2.6Glassfibreanditsproductsshouldbechosenchoppedstrandsmat,wovenroving,winding
filament,gunroving,wovenfabrics,surfaceveil,andthequalityofwhichshallbeinaccordancewiththe
followingrequirements:
1Thequalityofchoppedstrandmatshallmeettherequirementsofthecurrentnationalstandard
GB/T17470;
GlassFibreMats-ChoppedStrandandContinuousFilamentMats
2Thequalityofwovenrovingshallmeettherequirementsofcurrent水印nationalstandardGB/T18370
GlassFibreWovenRoving;
3Thequalityofwindingfilamentandgunrovingshallmeetthetherequirementsofcurrent
nationalstandardGB/T18369GlassFibreRoving;
4Thequalityofwovenfabricsshallbeinaccordancewiththetherequirementsofcurrent
nationalstandardGB/T25040GlassFibreStitchedFabrics;
5Thepercentmoisturecontentofsurfaceveilshallnotbelargerthan0.2%,andthemassper
unitareashouldbe(30—50)g/m2.
4.2.7Thequalityofcarbonfibreanditsproductsshallmeettherelevantrequirementsofcurrent
nationalstandardGB/T26752,andGB/T30021
PAN-BasedCarbonFibreWarpKnittingCarbon
FibreReinforcements.
4.2.8Undertheconditionofdifferentcorrosivemedium,thereinforcingmaterialsofliningandouter
surfaceoffibrereinforcedplasticsequipmentandpipingshouldbeselectedaccordingtoTable4.2.8.
Table4.2.8Selectionformofreinforcedmaterialforliningandoutersurface
No.人人文庫CorrosivemediumTypeofsurfaceveilTypeofchoppedstrandmat
Alkalineinorganicsubstanceandhydrolysable
1SEorECR
saltofalkalineinorganicsubstance-
2HydrolyzablesaltofoxidizingalkalineinorganicsubstanceSEorECR
-
Acidinorganicsubstanceandhydrolysablesalt
3CorECRECR
ofacidinorganicsubstance--
4InorganicoxidizingacidCorECRECR
--
5AlkalineorganicsCorEEorECR
-
·7·
Table4.2.8(continued)
No.CorrosivemediumTypeofsurfaceveilTypeofchoppedstrandmat
6AcidicorganicsCorECRECR
--
7SurfaceactiveagentCorEorSEorECR
-
8OrganicsolventCorEEorECR
-
9StrongoxidizerCorEorSEorECR
-
10OthersCorEorSEorECR
-
Notes:1Sstandsforsyntheticfibreorcarbonfibre,Cforchemicalresistantglassfibre,Eforalkalifreeglassfibre,andECRforacid
----
resistantglassfibre;
2TheclassificationofcorrosivemediumshallmeettherequirementsoftheprovisionsofAppendixBofthiscode.
4.3Materialpropertiesoflaminaandlaminate
4.3.1Themechanicalpropertiesoffibrereinforcedplasticlaminaforequipmentandpipesshouldbe
determinedbytesting.Whenusingthelayeringcalculationmethod,themechanicalpropertiesofthe
glassfibrereinforcedplasticlaminashallbeinaccordancewiththefollowingrequirements:
ThemechanicalpropertiesofthelaminashallbeinaccordancewithTable4.3.11;
1-
2Thewindingangleandtheunittensilemodulusofthecircumferentialandaxialdirectionofthe
filamentwoundlayershouldbeinaccordancewithTable4.3.12;
-水印
3Thewindingangleandthepoissonratioofthefilamentwoundlayershouldbeinaccordance
withTable4.3.13;
-
4Theglassfibrecontentbymassofthelaminashallbeinaccordancewiththefollowing
requirements:
1)Forchoppedstrandmat,itshouldbe25%to35%;
2)Forwovenroving,itshouldbe45%to55%;
3)Forwindingroving,itshouldbe60%to75%.
Table4.3.1-1Mechanicalpropertiesofglassfibrereinforcedplasticlaminamaterials
UnittensilestrengthUUnittensilemodulusXInterlaminarorlapshear
ReinforcementApplicableii
Direction
materialtypesconditions[N/mmkg/m2][N/mmkg/m2]strengthτMPa
(·)(·)lap()
ChoppedstrandmatAll200140007.0
ξ≥1/6500×ξ4000+24000×ξ
Warp
ξ<1/6604000
Wovenroving
ξ≤5/6500×(1-ξ)4000+24000×(1-ξ)
Weft6.0
人人文庫ξ>5/6604000
Fibre
Filamentwound85°<θ<90°50028000
direction
Notes:1Inthetable,ξistheratioofthewarpdirectionofthetotalfibremassofglasswovenroving;
2Inthetable,θisthewindingangle,representingtheanglebetweenthedirectionofwindingandtheaxisxofthecylinderorpipe.
Table4.3.1-2Windingangle,circumferentialunitandaxialunittensilemodulusofthefilamentwoundlayer
TheangleθbetweenthewindingdirectionCircumferentialunittensilemodulusAxialunittensilemodulus
andtheaxisxofthecylinderorpipe(°)[N/(mm·kg/m2)][N/(mm·kg/m2)]
0—28000
5—27400
10—26000
·8·
Table4.3.1-2(continued)
TheangleθbetweenthewindingdirectionCircumferentialunittensilemodulusAxialunittensilemodulus
andtheaxisxofthecylinderorpipe(°)[N/(mm·kg/m2)][N/(mm·kg/m2)]
15—23800
20460019800
25455016000
30455012800
3546009800
4050007500
4558005800
5075005000
5598004600
60128004550
65160004550
70198004600
7523800—
8026000—
8527400—
9028000—
'
Table4.3.1-3WindingangleandPoissonsratiooffilament水印woundlayer
Angleθbetweenfibrewindingdirectionandaxisofthecylinderorpipe°Poisson'sratioPoisson'sratio
x()vyxvxy
00.0750.26
50.0750.27
100.100.32
150.140.38
200.180.47
250.240.56
300.310.59
350.370.61
400.450.59
450.540.54
500.590.45
550.610.37
人人文庫600.590.31
650.560.24
700.470.18
750.380.14
800.320.10
850.270.075
900.260.075
Notes:1xistheaxisofthecylinderorpipe;yisthecircumferentialdirectionofthecylinderorpipe;
2ThePoisson′sratiovisthexdirectionstraincausedbythestressintheydirectionandthePoisson′sratiovistheydirection
yx,xy
straincausedbythestressinthexdirection.
9··
4.3.2Themechanicalpropertiesofthefibrereinforcedplasticlaminatesmaybecalculatedaccording
tothelayeringcalculationbasedonthelaminatetheoryorthetestingresults,andshallbeinaccordance
withthefollowingrequirements:
1Whentestedparametersorhistoricaldataaremissing,thefollowinglayeringcalculation
methodshallbeused;
1)Theunittensilestiffnessandunittensilestrengthofthelaminateshallbecalculatedaccording
tothefollowingformulas:
X=nWX+nWX+…+nWX(4.3.21)
lam111222iii-
U=nWU+nWU+…+nWU(4.3.22)
lam111222iii-
where
UnittensilestiffnessoflaminateN/mm
Xlam—();
UnittensilestrengthoflaminateN/mm
Ulam—();
n—Numberoflayersoftheithlamina;
i-
W—Fibremassperunitareaoftheithlamina(kg/m2);
i-
X—Unittensilemodulusoftheithlamina[N/(mm·kg/m2)];forafilamentwoundlayer,when
i-
thewindingangleislessthan15°andthecircumferentialtensilemodulusiscalculated,the
valueshallbe0;whenthewindingangleisgreaterthan75°andtheaxialtensilemodulusis
calculated,thevalueshallbe0;
U—Unittensilestrengthoftheithlamina[N/(mm·kg/m2)].
i水印
-
2)Thetensilemodulusofthelaminateshallbecalculatedaccordingtothefollowingformulas:
E=X/t(4.3.23)
lamlamd-
n
t=∑t(4.3.24)
di-
i=1
■(100-)■
1mg
t=■+■×W×103(4.3.25)
i■ρm×ρ■i-
■ggr■
where
TensilemodulusoflaminateMPa
Elam—();
Calculatedthicknessofstructurallayeroflaminatemm
td—();
t—Structurecalculationthicknessoftheithlamina(mm);
i-
m—Fibremasspercentageoftheithlamina;
g-
W—Fibremassperunitareaoftheithlamina(kg/m2);
i-
Densityofcuredresinkg/m3
ρr—();
Densityoffibrekg/m3.
ρg—人人文庫()
3)Theflexuralmodulusofthelaminateshallbecalculatedaccordingtothefollowingformulas:
1n2
E=∑WX■12(h-h)+t2■(4.3.26)
bt3ii■i0i■-
di=1
∑n
WiXihi
=i=14.3.27
h0()
∑n-
WiXi
i=1
where
FlexuralmodulusoflaminateMPa
Eb—();
·10·
W—Fibremassperunitareaoftheithlamina(kg/m2);
i-
X—Unittensilemodulusoftheithlamina[N/(mm·kg/m2)];
i-
h—Distancebetweenthecenteroftheithlaminaandthecenterofthelaminate(mm)(Figure4.3.2);
i-
Distancebetweentheneutralplaneofthelaminateandthecenterofthelaminatemm.
h0—()
Figure4.3.2Schematicdiagramofthedistancehbetweenthecenteroftheithlaminaandthecenterofthelaminate
i-
2Whentestingisusedtodeterminetheperformanceoflaminaandlaminate,itshallbein
accordancewiththefollowingrequirements:
1)Thetestspecimensshallbemadeaccordingtothedesignedlayers,andthenumberof
processedspecimensforeachtestitemshallnotbelessthan15;
2)Laminaandlaminateperformancetestingitemsshallbeinaccordancewiththosespecifiedin
Table4.3.21;
-
Table4.3.2-1Laminaandlaminateperformancetestingitem
TestitemsLaminaLaminate
Unittensilestrength√水印—
Unittensilemodulus√—
Tensileproperties
Unittensilestrength—√
Unittensilestiffness—√
Tensilemodulus—√
Elasticmodulus
Flexuralmodulus—√
Interlaminarshearstrength○○
Shearstrength
Lapshearstrength√√
Shearstrength—√
Note:“√”meanstheitemshalltobeinspected;“○”meanstheitemshouldtobeinspected;“—”meansnoitemtobeinspected.
3)Theconfidenceofthespecimendatashallbecalculatedaccordingtothefollowingformulas:
ˉ
J=J-t×s(4.3.28)
lam-
人人文庫ˉ
∑(J-J)2
s=(4.3.29)
N-1-
where
Typicalvaluesforpresetlayersperformance
Jlam—;
ˉ
J—Averagetestresultsofmeasuredperformanceofpresetlayup;
—distributionthreshold,whichmaybevaluedaccordingtoTable4.3.22;
tt--
s—Standarddeviation;
J—Actualtestresult;
N—Numberofspecimens.
·11·
t
Table4.3.2-2-distributionthreshold
NtNt
152.160242.074
162.145252.069
172.131262.064
182.120272.060
192.110282.056
202.101292.052
212.093302.048
222.086312.045
232.080322.042
ⅠEquipmentdesignfactorandallowablestrain
4.3.3Thedesignfactorofthemechanicalpropertiesoftheequipmentshallbedeterminedin
accordancewiththefollowingrequirements:
1Thedesignfactorshallbecalculatedaccordingtofollowingformulas:
K=2×K×K×K×K(4.3.31)
1234-
F=2×K×K×K×K(4.3.32)
1234水印-
where
K—Designfactor,shallnotlessthan6.0;
F—Bucklingfactor,shallnotlessthan4.0;
Partialdesignfactorrelatingtotestandverificationofmaterialproperties
K1—;
Partialdesignfactorrelatingtochemicalenvironment
K2—;
Partialdesignfactorrelatingtotheinfluenceofthedesigntemperatureandresin
K3—HDT;
K—Partialdesignfactorrelatingtolongtermperformanceoflaminate.
4-
2Whenthepartialdesignfactorcannotbedetermined,thedesignfactorshallnotbelessthan
10.0andthebucklingfactorshallnotbelessthan5.0.
Thetestandverificationpartialdesignfactorshallbeinaccordancewiththefollowing
4.3.4K1
requirements:
1Whenthemechanicalpropertiesofthelaminateusedinthedesignaredeterminedbythe
layeringcalculationmethodandtheperformancevaluesofeachlaminainTable4.3.1ofthiscodeare
adopted,Kshallbeinaccordancewiththefollowingrequirements:
1人人文庫
1)Whenthereisaproductperformanceofthesamelaminatesmanufacturedwithin18
monthsandthereisacceptablehistoricaltestdataofperformanceoftheproductshall
,K1
betakenas2.0;
2)Whenthereisaproductperformanceofthesamelaminatesmanufacturedwithin12
monthsandthereisacceptablehistoricaltestdataofperformanceoftheproductshall
,K1
betakenas1.5;
3)Whenthereisaproductperformanceofthesamelaminatesmanufacturedwithin12months,
andtheperformanceofthelaminaisverifiedby5datasets,gettheaverageof5dataandthe
averageof3dataexcludingthemaximumandminimumones.Thesmallerofthetwoaverage
·12·
valuesshallbegreaterthantheperformancevalueinTable4.3.1ofthiscodeshallbe
,K1
takenas1.3;
4)Whenthereisaproductperformanceofthesamelaminatesmanufacturedwithin12months,
andthemechanicalpropertiesofthelaminatesusedinthedesignareverifiedbyatestof5data
sets,gettheaverageof5dataandtheaverageof3dataexcludingthemaximumandminimum
ones.Thesmallerofthetwoaveragevaluesshallbegreaterthanthemechanicalpropertiesof
thelaminateusedinthedesignshallbetakenas1.2.
,K1
2Whenthemechanicalpropertiesofthelaminateusedinthedesignaredeterminedbythe
layeringcalculation,theperformanceofthelaminaisdeterminedbytestingorbytheoriginaltest
results,andtheperformanceofthelaminaisverifiedby5datasets,gettheaverageof5dataandthe
averageof3dataexcludingthemaximumandminimumones,thesmallerofthetwoaveragevalues
shallbegreaterthantheperformancevalueofthelaminashallbetakenas1.1.
,K1
3Whenthemechanicalpropertiesofthelaminatesusedinthedesignaremeasuredandsampled
fromthesimulatedspecimensofthelaboratory,theperformancetestdatashallnotbelessthan15for
thetestverificationshallbetakenas1.1.
,K1
4Whenthemechanicalpropertiesofthelaminateusedinthedesignaremeasuredandsampled
fromtheequipmentspecimen,theperformancetestdatashallnotbelessthan15forthetestverification,
andshallbetakenas1.0.
K1
4.3.5ThevalueKofthepartialdesignfactorrelatingtothechemicalenvironmentshallmeetthe
2水印
requirementsofAppendixAofthiscode.
4.3.6Thepartialdesignfactorrelatingtothedesigntemperatureandthethermaldeflection
temperatureoftheresinshallbecalculatedasfollowsandthevalueshallbeintherangeof
(HDT),K3
1.0—1.4.
T-20
K=1.0+0.4d(4.3.6)
3HDT-40
where
Designtemperature
Td—;
HDT—Heatdeflectiontemperatureofresin.
4.3.7ThepartialdesignfactorKrelatingtothelongtermperformanceofthelaminateshallbein
4-
accordancewithTable4.3.7andthefollowingrequirements:
1Wherecombinationlaminatesofchoppedstrandmat,wovenrovingorwindingroving,the
valueofshallbetakenforthemajorconstituent
K4;
2ForthecalculationofthebucklingfactorF,onlytheKvalueforflexuralshallbeused;
人人文庫4
3ForthecalculationoftheoveralldesignfactorK,wheretheloadingisacombinationofboth
tensionandflexuralthevaluefortensionshallbeused.
,K4
Table4.3.7PartialdesignfactorKrelatingtolongtermperformanceoflaminate
4-
TensionBending
Reinforcementtype
ShorttermloadLongtermloadLongtermload
---
Wovenroving1.001.301.90
Choppedstrandmat1.002.402.40
Filamentwound(circumferential)1.001.301.40
Filamentwound(axial)1.001.601.70
·13·
4.3.8Theallowablestrainoflaminatesforequipmentandtheallowableunitloadshallbein
accordancewiththefollowingrequirements:
Theallowablestrainvalueoftheresinshallbecalculatedaccordingtothefollowingformula
1εar,
andshallnotbegreaterthanthevaluespecifiedinTable4.3.81;
-
ε=0.1×ε(4.3.81)
arr-
where
Allowablestrainvalueofresin%
εar—();
Fractureelongationofresincastingbody%.
εr—()
Table4.3.8-1Allowablestrainvalueofresin
ResintypeAllowablestrainvalue(%)
Vinylesterresin0.27
Unsaturatedpolyesterresin0.23
2Theallowablestrainvalueofthelaminateshallbecalculatedaccordingtothefollowing
formula:
U
ε=lam(4.3.82)
lam×-
KXlam
where
Allowablestrainvalueoflaminate
εlam—;
X—Unittensilestiffness(N/mm)ofthelaminate,determinedinaccordance水印withFormula(4.3.21);
lam-
—Designfactor,determinedinaccordancewithFormula(4.3.31);
K-
U—Unittensilestrength(N/mm)ofthelaminate,determinedinaccordancewithFormula(4.3.22).
lam-
Theallowablestrainofthelaminateforequipmentshallbeasmallvalueinthecalculated
3εd
valuesofFormula(4.3.81)andFormula(4.3.82).WhenthecalculatedvaluesofFormula(4.3.81)
---
andFormula(4.3.82)cannotbedetermined,theallowablestrainshallbe0.001.
-
Themaximumstrainintheitemwhentestedoftheequipmentshallnotexceedthevalue
4εtest
specifiedinTable4.3.82.
-
Table4.3.8-2Maximumtestedstrain
ResintypeMaximumstrain(%)
Vinylesterresin0.35
Unsaturatedpolyesterresin0.30
5Theallowableunitloadoftheequipmentlaminatesshallbecalculatedaccordingtothe
followingformula:人人文庫
[q]=ε×X(4.3.83)
dlam-
where
[q]—Allowableunitloadforequipmentlaminates(N/mm).
6Theallowableshearstressoftheequipmentlaminatesshallbecalculatedaccordingtothe
followingformula:
τ
[τ]=(4.3.84)
K-
where
[τ]—Allowableshearstressofequipmentlaminates(MPa);
·14·
τ—Theshearstrength(MPa)oftheequipmentlaminates,canbemeasuredaccordingtothe
currentnationalstandardGB/T1450.2
Fibre-ReinforcedPlasticComposites-Detemination
;whennodetectedvalueisavailable,50MPaispreferred;
ofthePunch-TypeShearStrength
K—Thedesignfactor,shallbeinaccordancewiththerequirementsofArticle4.3.3ofthiscode.
ⅡAllowablestressandallowablestrainofpipe
4.3.9Theallowablestressofthepipelaminatesshallbetheelasticitymodulusmultipliedbythe
allowablestrain.Theelasticitymodulusshallbedeterminedinaccordancewiththerequirementsof
Article4.3.2ofthiscode.Theallowablestrainshallbedeterminedbyspecifiedvaluemethodorlong
-
termperformancetestmethod.Theallowablestressshallbedeterminedinaccordancewiththe
followingrequirements:
1WhentheallowablestrainisdeterminedbySpecifiedValuemethod,andtheloadconditionsare
occasionalshorttermloadsnotincludingthehydrostatictestloadandSustainedloadsincludingthe
-
thermalexpansionload,theallowablestressshallbetakenthevaluecalculatedinthisarticle;
WhentheallowablestrainisdeterminedbyLongtermPerformanceTestmethod,andtheload
2-
conditionsareSustainedloadsnotincludingthethermalexpansionload,theallowablestressshallbe
takenthevaluecalculatedinthisarticle;
WhentheallowablestrainisdeterminedbyLongtermPerformanceTestmethod,andtheload
3-
conditionsareSustainedloadsincludingthethermalexpansionload,theallowablestressshallbethe
valuecalculatedinthisarticletimes125%;水印
WhentheallowablestrainisdeterminedbyLongtermPerformanceTestmethod,andtheload
4-
conditionsareOccasionalshorttermloadsandSustainedloadsnotincludingthethermalexpansion
-
load,theallowablestressshallbethevaluecalculatedinthisarticletimes133%.
4.3.10WhenusingSpecifiedValuemethod,theallowablestrainofthelaminateunderchemical
conditionsandtemperatureconditionsshallbedeterminedinaccordancewiththefollowing
requirements:
1Theclassificationofchemicalconditionsshallbedeterminedaccordingtothelossinflexural
strengthoftheimmersednonstressedspecimenunderthesetchemicalenvironment,andshallbein
-
accordancewiththefollowingrequirements:
1)Thethicknessofthespecimenshallbe4mm—6mm,itshallbesubjectedtoacureschedule
simulatingthattobeusedforthefinishedpipe,andshallbeimmersedfor6monthsatthe
designtemperature;
2)ChemicalconditionsⅠ:thisconditionapplieswhenthelossinflexuralstrengthislessthan
20%ofthe人人文庫originalvalue;
3)ChemicalconditionsⅡ:thisconditionapplieswhenthelossinflexuralstrengthismorethan
20%butlessthan50%oftheoriginalvalue;
4)Ifthelossofflexuralstrengthisgreaterthan50%oftheoriginalvalue,thenthematrixfibre
systemshallbedeemedunsuitableandnotused.
2Theclassificationoftemperatureconditionsshallbedeterminedbythedifferencebetweenthe
heatdistortiontemperatureHDToftheresinandthedesigntemperatureandshallbeinaccordancewith
thefollowingrequirements:
1)TemperatureconditionⅠ,thedesigntemperatureshallbeatleast40℃belowHDT;
2)TemperatureconditionⅡ,thedesigntemperatureshallbeatleast20℃belowbutnotmore
·15·
than40℃belowHDT.
3Whenthechemicalenvironmentandtemperatureconditionsaredetermined,intermsof
temperatureandchemicalconditionclassifications,strainclassratingsshallbeselectedaccordingto
thosespecifiedinTable4.3.101.
-
Table4.3.10-1Temperatureandchemicalconditionclassificationscorrespondingstrainclassratings
Temperaturecondition
Chemicalcondition
ⅠⅡ
ⅠLevel1Level2
ⅡLevel3Level4
4Whenstrainclassratingsaredetermined,allowablestrainshallbeselectedaccordingtothose
specifiedinTable4.3.102.
-
Table4.3.10-2Strainclassratingsandallowablestrain
StrainclassratingsAllowablestrain
Class10.0018
Class20.0015
Class30.0012
Class40.0009
5Forpipesmanufacturedusingfilamentwoundatanyanglebetween±15°and±75°,the
anisotropicelasticanalysisshallbecarriedouttoconfirmthattheallowable水印strainisnotexceeded.
Withoutsuchananalysistheallowablestrainshallbenogreaterthan0.0009.
WhenusingtheLongtermPerformanceTestmethod,thetestshallcomplywiththerelevant
4.3.11-
requirementofthecurrentnationalstandardGB/T21238GlassFibreReinforcedPlasticsMortar
Pipes,theendofthespecimenshallbeafreeendclosure,andtheallowablestrainincircumferential
directionshallbecalculatedaccordingtothefollowingformula:
pD
ε=97.5i(4.3.11)
d2·
KXlam
where
Allowablestrainvaluesatdesignlife
εd—;
D—Pipespecimeninternaldiameterforlongtermperformancetesting(mm);
i-
The97.5%lowerconfidencelimitoftheinternalpressuretoproducefailureatthedesignlife
p97.5—
(MPa);
Laminateunittensilestiffnessofthespecimen.Whenthereisnosuchvaluethespecimencan
Xlam—,
beablated人人文庫accordingtothecurrentnationalstandardGB/T2577TestMethodforResin
ContentofGlassFibreReinforcedPlastics,andthefibremassperunitareaandtheplyscheme
ofeachspecimenareobtained.TheaveragevalueisthencalculatedaccordingtotheFormula
(4.3.21)ofthiscode;
-
K—Designfactor,whichshallnotbelessthan1.5.
4.3.12Whenthenumberofcyclesoffatigueloadisgreaterthan1000orthestressrangeofstress
cyclesisgreaterthan20%oftheallowablestress,theallowablestrainvalueeitherselectedinTable
4.3.102orcalculatedaccordingtoFormula(4.3.11)ofthiscodeshallalsobedividedbythefatigue
-
correctionfactorshallbecalculatedaccordingtothefollowingformula
Kn,Kn:
=1+0.25()[Log()-3]4.3.12
KnAσσn10n()
·16·
where
Fatiguecorrectionfactor
Kn—;
n—Numberofstresscyclesduringdesignlife;
Stressrangeduringafatiguecycle
Aσ—;
Maximumstressduringafatiguecycle.
σn—
4.3.13Theallowablestrainofthepipelaminateshalllessthan10%oftheresinfracturestrain.
Whenthelongtermperformancetestmethodisusedtodeterminetheallowablestrainvalueof
4.3.14-
thelaminate,andthentheallowablestressvalueiscalculated,thesimplifiedfailureenvelopecalculation
andfailuredeterminationofthepipelineandfittingsshallbeinaccordancewiththefollowing
requirements:
1TheshorttermcircumferentialfailurestressσandlongtermregressionratioRcanbe
-sh-
obtainedbythelongtermperformancetestmethod,andtheaxialtensilestrengthvalueσcanbe
-sa
obtainedaccordingtothecurrentnationalstandardGB/T5349
Fibre-ReinforcedThermosettingPlastic
,andthebiaxialstressratioshall
CompositesPipe-DeterminationofLongitudinalTensilePropertiesR
becalculatedaccordingtothefollowingformulas:
pD
σ=6,97.5%LCLi(4.3.141)
sh2t-
R=p/p(4.3.142)
L,97.5%LCL6,97.5%LCL-
r=2σ/σ(4.3.143)
sash水印-
where
σ—Shorttermcircumferentialfailurestressobtainedbythelongtermperformancetestmethod
sh--
(MPa);
σ—Shorttermaxialtensilestrengthvalue(MPa),whichcanbemeasuredaccordingtothe
sa-
currentnationalstandardGB/T5349
Fibre-ReinforcedThermosettingPlasticComposites
;
Pipe-DeterminationofLongitudinalTensileProperties
—Pipespecimenstructuralwallthicknessforthelongtermperformancetesting(mm);
t-
—Longtermregressionratio(%);
R-
97.5%lowerconfidencelimitoftheinternalpressuretoproducefailureatthedesignlife
pL,97.5%LCL—
(MPa);
—97.5%lowerconfidencelimitoftheinternalpressuretoproducefailureat6minbythe
p6,97.5%LCL
extrapolationcurve(MPa);
—Biaxialstressratio,whichmaybecalculatedaccordingtoFormula(4.3.143).Whennodata,
r-
thedefault人人文庫biaxialstressratioofthecomponentcanbeselectedaccordingtothosespecified
inTable4.3.14.
Table4.3.14Thedefaultbiaxialstressratio
ComponentDefaultbiaxialstressratio
55°filamentwoundpipe0.50
Filamentwoundfittings,primarilyhoopwinding0.45
Laminatedfittingswithbidirectionalreinforcement1.90
Adhesivebondedjoints1.00
Laminatedjointswithbidirectionalreinforcement2.00
·17·
2Thecalculationofthesimplifiedfailureenvelopeshallincludethecircumferentialallowable
stressandtheallowableaxialstressofthepureinternalpressurestate(2∶1),theallowableaxialstressof
thepureaxialtensilestate(0∶1),andtheyshallbecalculatedaccordingtothefollowingformulas:
σ=R×σ/K(4.3.144)
ah(2:1)sh-
σ=σ/2(4.3.145)
al(2:1)ah(2:1)-
σ=r×σ/2(4.3.146)
al(0:1)ah(2:1)-
where
Circumferentialallowablestressofthepureinternalpressurestate21MPa
σah(2:1)—(∶)();
(2:1)Allowableaxialstressofthepureinternalpressurestate21MPa
σal—(∶)();
(0:1)Allowableaxialstressofthepureaxialtensilestate01MPa
σal—(∶)();
K—Designfactor,shallnotbelessthan1.5.
ThethreestressvaluescalculatedbytheFormula(4.3.144)toFormula(4.3.146)shallbe
3--
connectedtothefoldlinewhichisthesimplifythefailureenvelope(Figure4.3.14).Thesafetyofthe
pipelineshallbedeterminedbywhetherthecalculatedvaluesofaxialandcircumferentialstressare
withinthesimplifiedfailureenvelope.
水印
Figure4.3.14Simplifieddiagram
1—Failureenvelope
人人文庫
·18·
5Equipmentdesign
5.1Generalrequirements
5.1.1Designpressureofequipmentshallbedeterminedinaccordancewiththefollowing
requirements:
1Thedesignpressureoftheequipmentsubjectedtointernalpressureshallbethemaximumset
pressureatthetopoftheequipment,consideringcorrespondingdesigntemperature,andthevalueshall
notbelowerthantheworkingpressure;
2Thedesignpressureoftheexternalpressureequipmentshallbenotlessthanthemaximum
internalandexternalpressuredifferencegeneratedatanytimeduringnormalworking,andshallnot
exceed0.1MPa;
3Thedesignpressureofthevacuumequipmentshallbe0.1MPa.
5.1.2Thedesignpressureusedinthecalculationsfortheequipmentshallbethepressureusedto
determinethethicknessoftheequipmentcomponentsatthecorrespondingdesigntemperatureandshall
includeadditionalloadssuchasliquidcolumnpressure.
5.1.3Theequipmentdesigntemperatureshallbethehighestorlowest水印operatingtemperatureofthe
equipmentsetundernormalworkingconditions.
5.1.4Theequipmentdesignshallincludethecalculationofthestrengthofcylindersandheads,the
secondarybonding,cutoutsandcompensation,theconnectionstructureofbranchesandother
-
components,boltconnection,saddleandthesupportstructures.
5.1.5Theequipmentdesigncanadoptruledesignmethod,analysisdesignmethod,andtest
verificationdesignmethod.Forruledesignmethodandanalyticaldesignmethod,thedesignfactorshall
notbelessthan6.0,andthebucklingfactorshallnotbelessthan4.0.Fortestverificationdesign
method,thefailurepressureshallnotbelessthan6timesthedesignpressure.
5.1.6Thelayeringdesignoftheequipmentshallincludethetypeoffibreandproduct,theresinsystem
andmixratio,theorder,directionandnumberoflayers,theformingandcuringprocess,theresinorfibre
contentandtolerance.
5.1.7Thewalloftheequipmentconsistsofalining,astructurallayerandanoutersurface,andshallbe
inaccordancewiththefollowingrequirements:
1Thelining人人文庫shallbecomposedoftheinnersurfacelayerandthebarrierlayer,andthethickness
shallnotbelessthan2.5mm,andshallbeinaccordancewiththefollowingrequirements:
1)Theinnersurfacelayershallbemadeofsurfaceveil,theresincontentshallbegreaterthan
85%,andthethicknessshallnotbelessthan0.3mm;
2)Thebarrierlayershouldbechoppedstrandmat,wovenfabrics,andgunroving.Theresin
contentshallnotbelowerthan65%.
2Thestructurallayermaybeacombinationofsingleorseveralreinforcingmaterialssuchas
windingfilament,choppedstrandmat,wovenfabrics,gunroving,wovenroving,etc.,whichmaybe
formedbywinding,sprayingandhandlayup,andshallbeinaccordancewiththefollowing
-
requirements:
·19·
1)Thethicknessofthestructurallayershallbedeterminedbycalculation;
2)Whenthestructurallayerismadeofglassfibre,itscontentshallmeettherequirementof
Article4.3.1(4)ofthiscode.
3Thedesignoftheoutersurfaceshallbeinaccordancewiththefollowingrequirements:
1)Incorrosiveenvironment,thesurfaceveilshallbeusedandtheresincontentshallnotbelower
than85%;
2)WhenrequiredtopreventUV,theresinusedshallbeaddedwithUVabsorbent;
)Theoutermostlayeroftheoutersurfacelayershallbeairresistantresinorgelcoatresin;
3-
4)Thethicknessoftheoutersurfacelayershouldnotbelessthan0.3mm.
5.1.8Thethicknessoftheliningandtheoutersurfaceshallnotbeincludedinstrengthcalculation;the
totalthicknessshallbeusedincalculatingtheexternalpressurestabilityandtheselfweightload.
-
5.1.9Whenthesteelannularsupportisbondedtothehousingtoformarigidsupport,theoperating
temperatureoftheequipmentshouldnotbemorethan60℃.
5.2Loadandaction
5.2.1Thedesignloadoftheequipmentshallincludethefollowingcontents:
1Internalpressure,externalpressureormaximumpressuredifference;
2Hydrostaticpressureunderworkingandtestingconditions;
3Theweightoftheinternals,packingandequipment,thegravity水印loadoftheinternalmedium
undernormalworkingconditionsorpressuretest;
4Auxiliaryequipmentandthermalinsulationmaterials,linings,pipes,escalators,platform
gravityloads;
5Windload,seismicloadandsnowload;
6Eccentricload;
7Partialload;
8Impactload;
9Forcecausedbytemperaturegradientorthermalexpansion;
10Theloadgeneratedduringtheinstallationandoperationofpersonnelcanbecalculated
accordingtotheuniformlydistributedloadof1.5kN/m2;
Othershorttermloads.
11-
5.2.2Windloads,seismicloadsandsnowloadsshallbeinaccordancewiththefollowing
requirements:
1Thebasic人人文庫windpressurevalueofeachregionmaybedeterminedaccordingtotheNational
BasicWindPressureDistributionMaporthelocalmeteorologicaldepartmentdata,andshallnotbe
lowerthantherelevantprovisionsofthecurrentnationalstandardGB50009LoadCodefortheDesign
ofBuildingStructures,andshallnotbelessthan300N/m2;
2Seismicfortificationintensityshallincludedesignseismicgroupingandseismicacceleration,
andshallbedeterminedaccordingtolocalmeteorologicaldata,andshallnotbelowerthantherelevant
provisionsofthecurrentnationalstandardGB50011CodeforSeismicDesignofBuildings;
3ThesnowloadshallmeettherelevantrequirementsofthecurrentnationalstandardGB50009
LoadCodefortheDesignofBuildingStructures.
5.2.3Thelocalloadshallincludethereactionforceofthesupport,thelugsandotheraccessorieson
·20·
thelocalareaoftheequipmenthousing,andtheconnectionloadsgeneratedbythepipes,valvesand
othercontainercomponents.
5.2.4Theimpactloadshallincludetheimpactloadcausedbythesuddenfluctuationofthepressure,
thereactionforcecausedbythefluidimpact,andtheadditionalloadgeneratedduringtransportationand
lifting.
Shorttermloadsshallincludewindloads,snowloads,seismicloads,personnelloads,and
5.2.5-
installationloads.
5.2.6Thevariousloadsontheequipmentshallbethemostunfavorablecombinationofinstallation,
hydrostatictest,normalworkingconditionsandabnormalworkingconditions.Thecombinationofloads
canbedeterminedaccordingtospecifiedinTable5.2.6.
Table5.2.6Combinationofloads
EquipmentstatusDesignload①
Weightofemptyequipment
Liftingload
Installation
Accessorygravity
Loadgeneratedduringinstallationandoperation
Weightofemptyequipment
Testpressure
Hydrostaticpressureduringtesting水印
PressuretestWindload
Partialload
Eccentricload
Attachmentgravityload
Internalpressure,externalpressureormaximumpressuredifference
Gravityloadofthemedium
Equipmentemptyweight
Snowload
Eccentricload
Localloadsactingonsupports,lugsandotheraccessories
NormalworkImpactload
Loadcausedbytemperaturegradientordifferentamountofthermal
expansion
Loadgeneratedbytheoperatorduringinstallationandoperation
Attachmentgravityload
人人文庫Windload②
Seismicload+25%windload②
Loadduringnormaloperation,atypeofoverloadthatmayoccurwhen
Abnormalwork
workisstarted,stopped,orinterrupted
Notes:①Accordingtothespecificstateoftheequipment,theloadcombinationinthetablecanbeaddedordeletedduringthedesign.
②Takethelargerof"windload"and"seismicload+25%windload".
5.3Structuralcalculation
5.3.1Forfibrereinforcedplasticequipment,structuralcalculationsshallbemadeforcylinders,conical
shells,conicalheads,convexheads,flatplates,flangesandgroundanchorelements.
·21·
5.3.2Theloadcalculationofthecylinderunderinternalpressureshallbeinaccordancewiththe
followingrequirements:
1Themaximumcircumferentialunitloadshallbecalculatedaccordingtothefollowing
formulas:
D
q=p×(5.3.21)
ΦD2-
p=PS+PH(5.3.22)
D-
where
MaximumcircumferentialunitloadN/mm
qΦ—();
DesignpressureusedinthecalculationsMPa
pD—();
D—Insidediameterofequipment(mm);
PS—Maximumallowablepressure(MPa);
PH—Staticpressureoftheliquidcolumn(MPa).
Thecircumferentialloadbearingcapacityofcylindricallaminatesshallsatisfythefollowing
formula:
q≤[q](5.3.23)
ΦΦ-
where
[]CircumferentialallowableunitloadoflaminatesofthecylinderunderinternalpressureN/
qΦ—(
mm).水印
2Combinedaxialloadsshallbecalculatedinaccordancewiththefollowingrequirements:
1)Theaxialunitloadcausedbyinternalpressureshallbecalculatedaccordingtothefollowing
formulas:
D
q=p×(5.3.24)
x,pD4-
P
p=PS+e(5.3.25)
D-
K4
P
p=PS+e(5.3.26)
D-
K4
where
AxialunitloadcausedbyinternalpressureN/mm
qx,p—();
DesignpressureusedinthecalculationsMPawhenthecylinderisundercompressionit
pD—();,
shallbecalculatedaccordingtoFormula(5.3.25);whenthecylinderisundertension,itshall
-
becalculatedaccordingtoFormula(5.3.26);
人人文庫-
P—Shorttermpressureload(MPa);
e-
K—Thepartialdesignfactorrelatingtothelongtermperformanceoflaminatesshallbein
4-
accordancewithTable4.3.7.
2)Theaxialunitloadresultingfromthebendingmomentcausedbywind,snoworseismicload
shallbecalculatedaccordingtothefollowingformulas:
4M
q=D(5.3.27)
x,mπ×D2-
M
M=M+e(5.3.28)
D-
K4
·22·
M
M=M+e(5.3.29)
D-
K4
where
AxialunitloadduetobendingmomentscausedbywindsnowloadsorseismicloadsN/mm
qx,m—,();
BendingmomentincalculationNmmwhenthecylinderisundercompressionitshallbe
MD—(·);,
calculatedaccordingtoFormula(5.3.25);whenthecylinderisundertension,itshallbe
-
calculatedaccordingtoFormula(5.3.26);
-
M—Bendingmoment(N·mm);
M—Shorttermmomentload(N·mm).
e-
3)Axialunitloadcausedbydeadweightofequipment,mediumweightandadditionalload
generatedbymaintenanceshouldbecalculatedaccordingtothefollowingformulas:
W
q=D(5.3.210)
x,wπ×D-
W
W=W+e(5.3.211)
D-
K4
W
W=W+e(5.3.212)
D-
K4
where
q—Axialunitloadcausedbydeadweightofequipment,mediumweightandadditionalload
x,w水印
generatedbymaintenance(N/mm);
WeightusedincalculationsNwhenthecylinderisundercompressionitshallbe
WD—():,
calculatedaccordingtotheFormula(5.3.211);whenthecylinderisundertension,itshallbe
-
calculatedaccordingtotheFormula(5.3.212);
-
W—Weight(N);
W—Shorttermweight(N).
e-
ThecombinedaxialunitloadshallbethesumofthevaluesofFormula(5.3.24),F(xiàn)ormula(5.3.27)
--
andFormula(5.3.210),consideringdirectionofload.
-
4)Theaxialloadoftheshellshallbecalculatedaccordingtothefollowingformula:
q=q+q-q(5.3.213)
x,cx,Mx,wx,p-
where
AxialunitloadofcylinderundercompressionN/mm
qx,c—();
AxialunitloadduetobendingmomentN/mm
qx,M—();
q—Axialunitloadduetopressure(N/mm);
x,p人人文庫
Axialunitloadabovethepointcausedbytheweightoftheequipmentandmediumand
qx,w—,
additionalloadofmaintenance(N/mm).
5)Axialunitload(N/mm)ofcylinderundertensionshallbecalculatedaccordingtothe
followingformula:
q=q+q+q(5.3.214)
xx,px,Mx,w-
where
AxialunitloadofcylinderundertensionN/mm
qx—();
Axialunitloadbelowthepointcausedbytheweightoftheequipmentandmediumand
qx,w—,
additionalloadofmaintenance(N/mm);
·23·
Theaxialcompressiveloadoflaminatesofthecylindeshallsatisfytherequirementsof
6)qx,c
Article5.3.3ofthiscode,andtheaxialtensileloadbearingcapacityofthelaminateshall
satisfythefollowingformula:
[q]≤[q](5.3.215)
xx-
where
[]Theaxialtensileallowableunitloadofthelaminateofthecylinderunderinternalpressure
qx—
(N/mm).
5.3.3Theloadcalculationforthecylinderunderexternalpressureshallbeinaccordancewiththe
followingrequirements;
1Theaxialcompressioncriticalbucklingloadofthecylindershallbecalculatedaccordingtothe
followingformulas:
t2
u=k×E×E×(5.3.31)
cφbxD-
0.84
=(5.3.32)
k-
D
1+
200×t
d
co≤3.5(5.3.33)
-
D×t
2水印
0.78
=(5.3.34)
k-
D
1+
200×t
d
co>3.5(5.3.35)
-
D×t
2
0.54
=(5.3.36)
k-
D
1+
200×t
where
AxialcompressivebucklingunitloadforthecylindricalshellN/mm
uc—();
FlexuralmodulusincircumferentialdirectionMPa
Eφb—();
FlexuralmodulusinaxialdirectionMPa
Ex—();
t—Shellthickness(mm);
D—Innerdiameter人人文庫oftheequipment(mm);
—Factorincalculations:forshellswithoutcutouts,iscalculatedaccordingtoFormula(5.3.32);
k-k-
forshellswithwithcutoutsorskirtsupports,whentheFormula(5.3.33)issatisfied,is
--k
calculatedaccordingtoFormula(5.3.34);whentheFormula(5.3.35)issatisfied,shallbe
--k
calculatedaccordingtoFormula(5.3.36);
-
d—Diameterofthecutout(mm).
co-
Theaxialbearingcapacityofthelaminateofthecylindershouldmeetthefollowingformula:
u
c≥(5.3.37)
F-
qx,c
where
·24·
F—Bucklingsafetyfactor;
AxialcompressionunitloadofthecylinderN/mm.
qx,c—()
2Thecriticalcircumferentialbucklingpressureofcylindersubjecttoexternalpressureshallbe
calculatedaccordingtothefollowingformulas:
Whenusingtheshortcylinderwith≤6itshallbecalculatedaccordingtothefollowing
1)LsD,
formula:
Dt2.5
=2.4×(3×)0.25××()5.3.38
pcEφbEx(-)
LsD
Whenusingthelongcylinderwith>6itshallbecalculatedaccordingtothefollowing
2)LsD,
formula:
=2.1××(/)35.3.39
pcEφbtD(-)
where
CriticalcircumferentialbucklingpressureofcylindersubjecttoexternalpressureMPa
pc—();
Calculatedlengthmmwhichshallbethedistancebetweentwoadjacentsupportlinesonthe
Ls—(),
cylinder.Whenthereisnostiffeningringonthecylinder,thetotallengthofthecylindershall
betakenplus1/3ofthedepthofeachconvexheadsurface(Figure5.3.31);whenthereisa
-
stiffeningringonthecylinder,themaximumdistancebetweenthecenterlinesoftwoadjacent
stiffeningringsshallbetaken(Figure5.3.32);whenthereisastiffeningringonthecylinder,
-
takethecenterofthefirststiffeningringofthecylinder.Thedistance水印betweenthelineandthe
tangentoftheconvexheadis1/3oftheconvexsurfaceoftheconvexhead(Figure5.3.32);
-
whenthecylinderisconnectedtotheconeshellandthejointcanbeusedasthesupportline,
themaximumdistancebetweenthejointandtheadjacentsupportlineisthecalculatedlength
oftheconesection(Figure5.3.33).
-
Thecircumferentialcompressionbearingcapacityoflaminateofthecylindershouldmeetthe
followingformula:
p
c≥F(5.3.3-10)
pD
人人文庫
Figure5.3.31ThecalculatedlengthoftheFigure5.3.32Thecalculatedlengthofthe
--
cylinderwithoutstiffeningringcylinderwithstiffeningring
1—Tangentpoint1—Tangentpoint;2—Centerlineofstiffeningring
3Thecombinedaxialandradialloadsshallsatisfythefollowingformula:
×1.25×1.25
?qx,cF??pDF?
?÷+?÷≤1(5.3.3-11)
èuc?èpc?
where
TheaxialunitloadN/mmofthecylinderundercompressionshallbecalculatedaccording
qx,c—()
totheFormula(5.3.213);
-
·25·
Figure5.3.33Calculatedlengthoftheconeshellwhenthecylinderisconnectedtothecone
-
1—Tangentpoint;2—Centerlineofstiffeningring
ThebucklingloadN/mmoftheaxialcompressionunitofthecylindershallbecalculated
uc—()
accordingtotheFormula(5.3.31);
-
CriticalcircumferentialbucklingpressureofcylinderssubjecttoexternalpressureMPa.
pc—()
4Whenusingamethodwithinternalorexternalstiffeningringstoshortenthecalculatedlength
ofthecylindertoathinnercylinderthicknessthanthatofthesecondparagraphofthisarticle,the
calculationofthecriticalbucklingpressureshallbeinaccordancewiththefollowingrequirements:
1)Thetotalcriticalbucklingpressureshallbecalculatedaccordingtothefollowingformulas:
42
0.252×tλ8×(m-1)×E×I
=(3×)×c×+ss5.3.312
pcEφbEx()
2×3-
D?λ?2LsDs
222
?m-1+÷×(m+λ)
è2?水印
π×D
λ=(5.3.313)
2-
2×(L+h)
s3
where
TotalcriticalbucklingpressureMPatheminimumvalueshallbefoundafterthetrial
pc—(),
calculationwithm=2,3,etc.;
CircumferentialflexuralmodulusofcylinderMPa
Eφb—();
AxialflexuralmodulusofcylinderMPa
Ex—();
m—Circumferentialbucklingwavenumber;
CircumferentialbendingmodulusofthestiffeningringMPa
Es—();
Momentofinertiaofthestiffeningringmm4
Is—();
Distancebetweenthetwostiffeningringsmmwhenthedistancebetweenthestiffeningrings
Ls—();
isnotequidistant,theaveragevalueofthestiffeningringspacingshallbetaken;
t—Minimumshellthicknesst(Figure5.4.34)ort(Figure5.3.35)ofthecylinderinareaofthe
c人人文庫c1c2
--
stiffeningring;
λ—Parameteroftheshell.
Thecircumferentialbearingcapacityofacylindricalshellwithinternalorexternalstiffeningrings
shallsatisfythefollowingformula:
p
c≥F(5.3.3-14)
pD
Whenisgreaterthan20orthecontributionfromtheshellisignoredthestiffeningring
2)LsD,
stiffnessshallmeetthefollowingformula:
·26·
p×L×D3×F
E×I≥Dss(5.3.315)
ss24-
where
Neutralaxisdiameterofstiffeningringmm.
Ds—()
3)ThesizeofthesolidstiffeningringmaybedeterminedaccordingtothosespecifiedinFigure
5.3.34.Theeffectivewidthofthecylinderusedinthecalculationshallsatisfythefollowing
-L
formulas:
L=b+1.15×D×t(5.3.316)
sc-
5t≤b≤20t(5.3.317)
css-
1.5t≤t≤4b(5.3.318)
css-
b≤300mm(5.3.319)
s-
where
StiffeningringouteredgewidthmmthevalueshallmeettherequirementsofFormula
bs—(),
(5.3.317),F(xiàn)ormula(5.3.318),andFormula(5.3.319).
---
Figure5.3.34Solidstiffeningring水印
-
4)Holloworcoveredstiffeningringconfiguration,whencalculatedaccordingtoFormula
(5.3.312),itsbasicsizeshallbedeterminedaccordingtoFigure5.3.35:
--
Figure5.3.35Holloworcoveredstiffeningring
-
1FillerfoamoropenAveragethickness
—();tc—
5Thestiffeningringshallbecircledaroundthecircumferenceofthecylinderandshouldbe
tightlybonded.
Thedesignoftheconicalshellandconicalhead(Figure5.3.41,F(xiàn)igure5.3.42)shallbein
5.3.4--
accordancewiththefollowingrequirements:
1Theknuckleradiusshallnotbelessthan0.06timesthediameterofthecylinderatthejoint;
2Whenthe人人文庫pressureis-600Pa—+6500Pa,thenonfoldingstructuremaybeadopted;
-
Figure5.3.41ConicalshellwithknuckleFigure5.3.42Conicalshellwithoutknuckle
--
·27·
3Whenthepressureisgreaterthan+6500Paorlessthanorequalto-600Pa,theflanged
structureshallbeadopted,andtheconeapexangleshallnotbegreaterthan150°;
4Conicalheadswithaconeanglegreaterthan150°shallbedesignedinaccordancewiththeflat
coverandshallbecalculatedinaccordancewiththeprovisionsofArticle5.3.20andArticle5.3.22to
Article5.3.24ofthiscode;
5Thelengthofstressconcentrationattenuationonthecylindricalandconicalshellsinthe
knuckleareashallbecalculatedasfollows:
D×t
L=k(5.3.4)
ccosφ
where
Lengthofstressconcentrationattenuationmm
Lc—();
Thicknessontheconicalshellmm
tk—();
φ—Halfconeangle.
5.3.5Theconicalshellloaddesignsubjecttointernalpressureshallbeinaccordancewiththe
followingrequirements:
1Thecircumferentialunitloadofconesubjecttointernalpressureshallbecalculatedaccording
tothefollowingformula:
p×D
φDk水印
q=(5.3.51)
2cosφ-
where
qφ—Maximumcircumferentialunitloads(N/mm);
φ—Halftheangleattheapexofthecone;
Calculatethediameterofthecirclemm.
Dk—()
Thecircumferentialloadbearingcapacityoftheconesubjectedtointernalpressureshallsatisfythe
followingformula:
φ≤[φ](5.3.52)
qq-
where
[qφ]—Circumferentialallowableunitloadofthecone(N/mm).
2Attheknuckearea,theaxialunitloadoftheconesubjecttointernalpressureshallbecalculated
accordingtothefollowingformulas:
)Axialunitloadofaconicalshellwithknuckle(Figure5.3.41)underinternalpressureshallbe
1人人文庫-
calculatedaccordingtothefollowingformula:
p×D×K
q=Dkc1(5.3.53)
x12-
where
AxialunitloadofconicalshellwithknuckleN/mm
qx1—();
Thestressconcentrationfactorforconicalshellwithknuckleshallbeaccordingtothose
Kc1—
specifiedinTable5.3.51.
-
Theaxialunitloadoftheconicalshellwithknuckleshallsatisfythefollowingformula:
q≤[q](5.3.54)
x1x-
·28·
Table5.3.51StressconcentrationfactorKofconicalshellwithknuckle
-c1
Angle
rφ
D10°20°30°45°60°75°
0.061.572.182.553.224.16.28
0.081.522.022.342.743.515.53
0.101.461.862.132.262.934.79
0.151.331.461.461.531.933.59
0.201.061.201.201.261.532.79
0.301.001.061.131.201.331.86
where
[]Axialallowableunitloadofthelaminateformingthewallthicknessoftheconicalshellwith
qx—
knuckle(N/mm).
2)Theaxialunitloadoftheconicalshellwallthicknesssubjecttointernalpressurewithout
knuckle(Figure5.3.42)shallbecalculatedaccordingtothefollowingformula:
-
p×D×K
q=Dkc2(5.3.55)
x22-
where
AxialunitloadofconicalshellwithoutknuckleN/mm
qx2—();
Stressconcentrationfactorofconicalshellswithoutknuckle水印shallbetakenasspecifiedin
Kc2—
Table5.3.52.
-
Table5.3.52StressconcentrationfactorKofconeshellwithoutknuckle
-c2
Angleφ
tk
D15°30°45°60°
0.0022.945.628.9013.6
0.0052.053.705.808.70
0.0101.602.754.126.30
0.0201.242.003.004.40
0.0401.001.552.203.20
0.0501.001.452.002.75
Theaxialelementloadofthewallthicknessoftheconicalshellwithoutknuckleshallsatisfythe
followingformula:
q≤[q](5.3.56)
人人文庫x2x-
where
[]AxialunitloadofaconicalshellwithoutknuckleN/mm.
qx—()
5.3.6Theconicalshellloaddesignsubjecttoexternalpressureshallbeinaccordancewiththe
followingrequirements:
1Thestrengthoftheconesubjecttoexternalpressureshallmeetthecircumferentialunitload
bearingcapacityrequiredbyFormula(5.3.52).
-
2Theradialstabilityoftheconesubjecttoexternalpressureshallbecalculatedaccordingtothe
followingformulas:
When≤6thecriticalradialbucklingpressureshallbecalculatedaccordingtothe
1)LDm,
·29·
followingformula:
×cos2.5
4Dm?tφ?
p=2.40×E3×E××?÷(5.3.61)
cφbx×cos-
LsφèDm?
H
L=(5.3.62)
scosφ-
D+D
D=12(5.3.63)
m2-
When>6thecriticalradialbucklingpressureshallbecalculatedaccordingtothe
2)LDm,
followingformula:
3
?t×cosφ?
p=2.1E×?÷(5.3.64)
cφb-
èDm?
where
CriticalradialbucklingpressureMPa
pc—();
L—Effectivelengthofconicalshellordistancebetweenribs(mm)(Figure5.3.33);
s-
Averagediameterofthetapermm.
Dm—()
Theradialstabilityoftheconicalshellsubjecttoexternalpressureshallsatisfythefollowing
formula:
p
c≥F(5.3.65)
p-
D水印
3Theaxialcriticalcompressiveloadoftheconicalsubjecttoexternalpressure(Figure5.3.6)
shallbecalculatedaccordingtothefollowingformulas:
t2×cosφ
u=k×E×E×(5.3.66)
cφbx-
Dm
0.84
=(5.3.67)
k-
D
1+m
200×t×cosφ
NN
q=x1q=x2(5.3.68)
1π×2π×-
D1D2
where
CriticalaxialunitcompressionloadN/mm
uc—();
k—Coefficient;
ThegeometricalchangeoftheconicalshellunderexternalpressureFigure5.3.6andtheaxial
q1,q2—()
pressureoftheelementundertheactionofaxialforceNandN(N/mm).
人人文庫x1x2
Figure5.3.6Conicalshellunderexternalpressure
Theaxialcompressionloadoftheconicalshellsubjecttoexternalpressureshallsatisfythe
followingformula:
·30·
u
c≥(5.3.69)
F-
qx
where
AxialunitcompressionloadofconeshellsubjecttoexternalpressureN/mm.
qx—()
4Thecombinedaxialandradialunitcompressiveloadsshallsatisfythefollowingformula:
1.251.25
?q×F??p×F?
x+D≤1(5.3.610)
?÷?÷-
èuc?èpc?
where
CriticalradialunitbucklingpressureN/mm
pc—();
AxialunitcompressionloadN/mm.
uc—()
5.3.7Theaxialunitloadcalculationsubjecttointernalpressureconicalhead(Figure5.3.7)shallbein
accordancewiththefollowingrequirements:
Figure5.3.7Conicalhead
r
1Whentheapexangleofthehalfconeis60°—75°,and0≤≤水印0.1,theaxialelementloadof
D
thelaminateatthecornershallbecalculatedaccordingtothefollowingformulas:
1+
1?D?βb
q=α×p××?÷×t(5.3.71)
xbDsin×cosk-
φφètk?
r2r
α=-64×()+7.6×()+0.13(5.3.72)
bDD-
r2r
β=51.6×()-8.18×()+0.52(5.3.73)
bDD-
where
AxialunitloadoflaminateatcornerN/mm
qx—();
Structuralfeaturecoefficient
αb—;
Structuralfeaturecoefficient.
βb—
Theaxialunitloadofthelaminatesubjecttointernalpressureconicalheadatthecornershallmeet
thefollowingformula人人文庫:
q≤[q](5.3.74)
xx-
where
[]Forminganaxiallypermittedunitloadofthelaminateatthecornersubjecttointernalpressure
qx—
conicalhead(N/mm).
r
2Whenthehalfconeangleisnotintherangeof60°—75°,andshallbeintherangeof0≤≤
D
0.1,itshallbedesignedaccordingtotheflatcover.
5.3.8Thecriticalradialbucklingpressureoftheconicalheadsubjecttoexternalpressureshallbe
calculatedaccordingtothefollowingformula:
·31·
t2.5
p=13.58×E×sinφ×(cosφ)1.5×()(5.3.81)
cbD-
where
CriticalradialbucklingpressureMPa
pc—();
FlexuralmodulusofconicalheadstructureMPa.
Eb—()
Thestabilitychecksubjecttoexternalpressureconicalheadshallmeetthefollowingformula:
p
c≥(5.3.82)
F-
pD
Theconvexheadshallincludeahemisphericalhead(Figure5.3.91)andanellipticalordished
5.3.9-
head(Figure5.3.92).Whenanellipticalordishshapedheadisused,theinnerradiusofthespherical
--
portionoftheheadshallbe0.8D≤R<D,andtheinnerradiusofthecorneroftheheadshallbe
0.1D≤r<0.25D.
Figure5.3.91HemisphericalheadFigure5.3.92水印Ovalheadanddishshapedhead
---
5.3.10Theunitloadcalculationoftheconvexheadsubjecttointernalpressureshallbeinaccordance
withthefollowingrequirements:
1Theunitloadoftheovalheadandthecornerofthedishheadshallbecalculatedaccordingto
thefollowingformula:
p×D×K
q=Dd(5.3.101)
k,p2-
where
UnitloadinthecornerareaoftheovalheadandthedishheadN/mm
qk,p—();
K—Concentrationfactoratthecornersoftheellipticalheadandthebutterflyheadshallbe
d
checkedinaccordancewithTable5.3.10.
2Thesphericalareaunitloadofthetorisphericalheadandthehemisphericalheadshallbe
calculatedaccordingtothefollowingformula:
q=0.6×p×R(5.3.102)
pD-
where人人文庫
SphericalareaunitloadofdishheadandhemisphericalheadN/mm
qp—();
R—Sphericalarearadius(mm).
3Whenthethicknessofthelaminateinthecornerareaofthedishheadisgreaterthanthe
thicknessofthelaminateinthesphericalarea,theuppercornerareaoftheheadandthelengthofthe
reinforcingsectiononthecasingshallbecalculatedaccordingtothefollowingformula:
L=D×t(5.3.103)
ck-
where
Lengthoflocalthickeningontheheadknuckleareaorontheshellmm
Lc—();
Thicknessofcylinderknuckleareamm.
tk—()
·32·
4Theloadbearingcapacityoftheconvexheadsubjecttointernalpressureshallmeetthe
followingformula:
q≤[q](5.3.104)
k,pp-
where
[]AllowableunitloadsforellipticheadandtorisphericalheadN/mm.
qp—()
K
Table5.3.10Theconcentrationfactoroftheknuckleareaofellipticheadandtorisphericalheadd
Kd
=<
hitRDRD
DD
rr
0.1≤≤0.150.15≤≤0.25
DD
0.0052.95
0.0102.85
0.200.0202.65Notallowed
0.0402.35
0.0502.25
0.0052.351.90
0.0102.251.80
0.250.0202.101.75
0.0401.85水印1.70
0.0501.751.70
0.0051.951.45
0.0101.851.45
0.300.0201.601.40
0.0401.401.35
0.0501.301.30
5.3.11Thestabilityoftheconvexheadsubjecttoexternalpressureshallbechecked,andthecritical
bucklingpressureshallbecalculatedaccordingtothefollowingformula:
t2
p=0.242×E×()(5.3.111)
cbR-
Thestabilityoftheconvexheadsubjecttoexternalpressureshallmeetthefollowingformula:
p
c≥(5.3.112)
F-
pD
Whendesigning人人文庫flatbottomequipmentthefoundationshall
,
5.3.12-
beflat,andtheallowablesupportclearanceoftheattachmentonthe
bottomplateshouldmeettherequirementsofsettingthesupportplate.
5.3.13Whentheknuckleradiusr>30mmorr/D>0.05ofthe
knuckleregion(Figure5.3.13)oftheflatbottomequipment,the
calculationofthemaximumaxialunitloadofknuckleregionshallbe
inaccordancewiththefollowingrequirement:
Figure5.3.13Flatbottomequipment
1Theunitloadintheknuckleregionfrominternalpressure
knucklearea
(hydrostaticplusoverpressure)shallbecalculatedaccordingtothe
1—Filledarea;2—Slope
·33·
followingformulas:
q=3×k×p×D(5.3.131)
xk,1pD-
?D?■2×rt1.15■
=0.22+0.6+0.0566××■-4.44×(k)-0.04■5.3.132
kp?÷■()
t■DD-
èk?■■
where
Maximumaxialunitloadintheknuckleregionfrominternalpressurehydrostaticplus
qxk,1—(
overpressure)(N/mm);
Structuralcharacteristiccoefficientshallnotbelessthan0.22.
kp—
2Theaxialunitloadofthecylindershallbecalculatedaccordingtothefollowingformulas:
q=6×k×∑q(5.3.133)
xk,2nx,i-
|1.152|
r?D??r?
=|1.38+0.41××-0.077×|5.3.134
kn|?÷?÷|()
|Dtt|-
|èk?èk?|
where
AxialunitloadofthecylinderN/mm
qxk,2—();
∑—Axialunitloadcombination(N/mm)causedbystaticload,windload,gravityload,etc.;
qx,i
Structuralfeaturecoefficienttakingtheabsolutevalue.
kn—,
3Thecombinationqbetweenloadsshallbecalculatedaccordingtothefollowingformulasand
xk水印
shalltakealargervalue.
q=q+0.3×q(5.3.135)
xkxk,1xk,2-
q=q+0.3×q(5.3.136)
xkxk,2xk,1-
4Thelaminateintheknuckleregionoftheflatbottomequipmentfullysupportedshallbe
calculatedaccordingtothefollowingformulasandshallalsocomplywiththerequirementsofthiscode
(5.3.23):
-
W4×M
q=-D±D±q(5.3.137)
xkmaxπ×Dπ×D2xk-
q≤[q](5.3.138)
xkmaxxk-
where
ThemaximumaxialunitloadN/mmintheknuckleregion
qxkmax—();
[]AxialallowableunitloadintheknuckleregionN/mm.
qxk—()
Whentheknuckleradius≤30mmor/≤0.05intheknuckleregionoftheflatbottom
5.3.14rrD-
equipment(Figure5.3.13),thecalculationofthemaximumaxialunitloadoftheknuckleregionshallbe
inaccordancewith人人文庫thefollowingrequirement.
1Themaximumaxialunitloadintheknuckleregionfrominternalpressure(hydrostaticplus
overpressure)shallbecalculatedaccordingtothefollowingformulas:
q=0.72×p×D(5.3.141)
xk,1D-
q=0.90×p×D(5.3.142)
xk,1D-
W4×M
q=-D±D±q(5.3.143)
xkmaxπ×Dπ×D2xk,1-
where
AxialunitloadN/mmintheknuckleregionfrominternalpressurehydrostaticplus
qxk,1—()(
overpressure),whent≤t,shallbecalculatedaccordingtoFormula(5.3.141);whent>
b1k-b1
·34·
t,itshallbecalculatedaccordingtoFormula(5.3.142);
k-
MaximumaxialunitloadintheknuckleregionN/mm.
qxkmax—()
2Thebearingcapacityofthelaminateintheknuckleregionshallmeettherequirementsofthis
code(5.3.23)inadditiontothefollowingformula:
-
q≤[q](5.3.144)
xkmaxxk-
where
[]AxialallowableunitloadN/mmintheknuckleregion.
qxk—()
ThelengthoflocalthickeningatthebottomoftheshellFigure5.3.13shallbecalculated
3Lc()
accordingtothefollowingformula:
L=D×t(5.3.145)
ck-
ThelengthoflocalthickeningatthebottomoftheflatbottomFigure5.3.13shallbecalculated
Lc()
accordingtothefollowingformula:
L=D×t(5.3.146)
cb1-
Thecutoutofequipmentsshallbecompensated,andadiscshapedcompensationplateshould
5.3.15--
beplacedaroundthecutout.Thecalculationofbranchesandcutoutcompensationshallbein
--
accordancewiththefollowingrequirements:
Branchstructureforcompensationatthecutoutsoftheequipmentshallbeflushbranch(Figure
1-
5.3.151)orthroughbranch(Figure5.3.152).
--水印
Figure5.3.151Flushbranch
-
Figure5.3.152Throughbranch
-
Themaximum人人文庫unitloadintheregionofthecutoutshallbecalculatedaccordingtothe
2
-
followingformulas:
q=q×ν(5.3.151)
maxA-
?d?
=1.5×?1+c÷5.3.152
νA?÷()
2××-
èDtc?
where
q—Maximumunitload(N/mm)intheregionofthecutout;
max-
—Maximumunitload(N/mm)oftheshellwithoutcutout;
q-
Loadconcentrationfactor
νA—;
·35·
d—Diameter(mm)ofthecutoutontheshell/head;
c-
Thicknessoftheshellatthebranchmm.
tc—()
Themaximumunitloadintheregionofthecutoutshallsatisfythefollowingformula:
3-
q≤[q]+[q](5.3.153)
maxlamc-
where
[]AllowableunitloadN/mmoftheshelllaminate
qlam—();
[]AllowableunitloadN/mmforcompensationlaminate.
qc—()
4Thewidthofthecompensationlaminatecanbecalculatedasfollowsandshallbegreaterthan
100mm:
l=D×t(5.3.154)
aa-
where
Widthofthecompensationlaminatemm
la—();
Totalcompensationthicknessrequiredatthebranch.
ta—
5Theminimuminnercompensationshallbeinaccordancewiththefollowingrequirement:
)Whenthediameterofthecutoutislessthanorequalto50mm,theinnercompensationshall
1-
bealiningandnolessthanalayerof300g/m2choppedstrandmat;
)Whenthediameterofcutoutisgreaterthan50mmandlessthanorequalto150mm,theinner
2-
compensationshallbealiningandtwolayersof450g/m2chopped水印strandmat;
)Whenthediameterofthecutoutisgreaterthan150mm,theinnercompensationshallbea
3-
liningandatleast3layersof450g/m2choppedstrandmat.
Theminimumreinforcementoverlayatbranchposition(Figure5.3.153)shallbe3layersof
6-
450g/m2choppedstrandmat,andthelengthshallnotbelessthan75mm.
人人文庫
Figure5.3.153Thereinforcementoverlayatbranchposition
-
1—Filledarea;2—Compensationlayer;3-Reinforcementoverlay
5.3.16Thetensileandshearloadsofthecompensationlayershallbeverifiedaccordingtothe
followingformulas.
p×d
q=Dc(5.3.161)
b4-
qτ
τ′=b≤lap(5.3.162)
lap20×-
toverK
where
TensileunitloadofthecompensationlayerN/mm
qb—();
·36·
′ShearstressofthecompensationlayerMPa
τlap—();
ThelapshearstrengthofthelaminatecompensationlayerMPawhenusingglassfibre
τlap—(),
reinforcedmaterials,maybemeasuredaccordingtotheprovisionsofTable4.3.1ofthiscode
oraccordingtotheprovisionsofAppendixLofthiscode;
K—Designfactor,whichcanbevaluedinaccordancewiththeprovisionsofArticle4.3.3ofthis
code;
Compensationthicknessmm.
tover—()
5.3.17Thejointbetweentheequipmentheadandthecylinderand
thecylinder(Figure5.3.17)shallbeinaccordancewiththefollowing
requirement:
1Thebearingcapacityofthejointoverlayshallnotbeless
thantheloadoftheconnectedcylinderinboththecircumferential
directionandtheaxialdirection;
2TheslopeofthejointzoneofthejointoverlayshallnotbeFigure5.3.17Seamjointdiagram
1Inneroverlay2Resinputtyfiller
greaterthan1∶6;—;—;
3Outeroverlay4Mainlaminate
Thelengthofthejointoverlayshallbecalculatedas—;—
3Lj
follows:
K×q
L=(5.3.17)
jτ
lap水印
where
Jointoverlaylengthmm
Lj—();
K—Designfactor,accordingtotheprovisionsofArticle4.3.3ofthiscode;
q—Maximumunitloadinthecircumferentialoraxialdirectionintheenclosure(N/mm);
LapshearstrengthMPaofthesecondarybondedlaminateoverlay.Whenglassfibre
τlap—()
reinforcedmaterialsareused,thevaluesmaybespecifiedinTable4.3.1ofthiscode.
4Thelengthoftheoverlayshallbeinaccordancewiththefollowingrequirement;
1)Whenthethicknessoftheoverlayislessthanorequalto6mm,theminimumlengthshallbe
100mm;
2)Whenthethicknessoftheoverlayisgreaterthan6mm,theminimumlengthshallbe150mm;
3)Thelengthoftheoverlayshouldnotbelessthan20timesthethicknessoftheoverlay.
5.3.18Theplatesoftheequipmentcomponentsshallberectangular,circular,sector,andtriangular.
Theboundaryclassificationofrectangularplatesshallbeinaccordancewiththefollowingrequirements:
1Fouredges人人文庫simplysupportedshallbeClassA;
2FouredgesfixedshallbeClassB;
3Onelongedgesimplysupported,theotherthreeedgesfixedshouldbeClassC;
4Oneshortedgesimplysupported,theotherthreeedgesfixedshouldbeClassD.
5.3.19Thebendingmomentcalculationofrectangularflatplatesshallbeinaccordancewiththe
followingrequirements.
1Bendingmomentofrectangularplatesunderuniformlydistributedloadshallbecalculated
accordingtothefollowingformula:
M=β×p×b2(5.3.191)
p1-
·37·
where
BendingmomentofrectangularplateunderuniformlydistributedloadNmm/mm
Mp—(·);
β—ConstantsofrectangularflatplatessubjectedtouniformlydistributedloadsarefoundinTable
1
5.3.191;
-
p—Uniformlydistributedloadonarectangularplate(MPa);
—Lengthoftheshortsideofarectangularplate(mm).
b
Table5.3.19-1Constantsofrectangularflatplatessubjectedtouniformlydistributedloads
BoundaryBoundaryAspectratio(a/b)
Constant
typeclassification1.001.251.501.752.002.503.004.005.00>5.00
β0.0480.0670.0810.0930.1020.1130.1190.1250.1250.125
1
bA
α0.0440.0600.0840.0990.1110.1260.1340.1400.1420.142
a1
β0.0510.0670.0750.0800.0830.0830.0830.0830.0830.083
B1
α0.0140.0200.0240.0260.0280.02810.02820.02840.02840.0284
1
β0.0600.0770.0940.1070.1140.1210.1240.1240.1240.124
C1
α0.0170.0280.0370.0440.0490.0550.0570.0580.0580.058
1
β0.0600.0730.0790.0820.0830.0830.0830.0830.0830.083
1
D
α0.0170.0220.0250.0270.0280.02840.02840.02840.02840.0284
1
Note:Indicatesthattheboundaryissimplysupported;Indicatesthatthe水印boundaryisafixed.
2Thebendingmomentoftherectangularplatesubjectedtothehydrostaticloadvaryinglinearly
from0toshouldbecalculatedaccordingtothefollowingformula
p1:
M=β×p×b2(5.3.192)
p11-
where
MomentofrectangularplatesubjectedtohydrostaticloadNmm/mm
Mp—(·);
ConstantsforrectangularplatessubjectedtohydrostaticloadwhichcanbefoundinTable
β1—,
5.3.192;
-
MaximumvalueoflinearlyvaryingloadonarectangularplateMPa
p1—();
b—Lengthoftheshortsideofarectangularplate(mm).
Table5.3.192Constantsofarectangularflatplatewithhydrostaticloadvaryinglinearlyfrom0to
-p1
BoundaryAspectratio(a/b)
Constant
classification1/21/1.751/1.51/1.251.001.251.501.75≥2.00
β0.01150.01450.01870.02450.03340.03930.04620.04810.0500
1
A、C、D
α0.00090.00150.00240.00410.00690.00940.01200.01310.0142
1人人文庫
β0.03480.03390.03240.02980.02640.03550.04290.04860.0529
1
B
α0.05530.04950.04220.03290.02220.03290.04220.04950.0553
1
ThebendingmomentofaAclassrectangularplatewithaconcentratedloadatitscentershall
3-
becalculatedaccordingtothefollowingformula:
W?2b?
M=×?1.3×ln+β÷(5.3.193)
p4×ππ×2-
èr1?
where
M—BendingmomentofaAclassrectangularplatewithaconcentratedloadatitscenter
p-
(N·mm/mm);
·38·
β—ConstantsofrectangularflatplatessubjectedtocentrallocalloadarefoundinTable5.3.193;
2-
Radiusoftheareaofthelocalloadonarectangularplatemm
r1—();
—Lengthoftheshortsideofarectangularplate(mm);
b
—Localloadonarectangularplate(N).
W
ThebendingmomentofaBclassrectangularplatewithcentrallocalloadshallbecalculated
4-
accordingtothefollowingformula:
M=β×W(5.3.194)
p3-
where
M—BendingmomentofaBclassrectangularplatewithcentrallocalload(N·mm/mm);
p-
β—Constantsofrectangularflatplatessubjectedtocentrallocalloadarefoundintable5.3.193;
3-
W—Localloadonarectangularplate(N).
Table5.3.19-3Constantsofrectangularflatplatessubjectedtocentrallocalload
BoundaryAspectratio(a/b)
Constant
classification1.001.251.501.752.002.503.004.005.00>5.00
α0.12670.15180.16710.17630.18050.18210.18310.18420.18490.1851
2
A
β0.4350.6910.8380.9170.9580.9760.9860.9971.0001.000
2
α0.06110.07200.07680.07850.07880.07900.07910.07910.07910.0791
2
Bβ-0.238-0.0520.0360.0670.0670.0670.0670.0670.0670.067
2
β0.12570.15300.16320.16650.16740.1677水印0.16790.16800.16800.1680
3
5.3.20Thebendingmomentcalculationofthecircularplateshallbeinaccordancewiththefollowing
requirement.
1Thebendingmomentofacircularplatewithperipheralsimplysupportsunderauniformly
distributedloadshallbecalculatedaccordingtothefollowingformula:
M=0.0516×p×d2(5.3.201)
pDp-
where
MomentofacircularflatplatesubjectedtouniformlydistributedloadNmm/mm
Mp—(·);
UniformlydistributedloadonacircularplateMPa
pD—();
Calculateddiameterofacircularplatemm.
dp—()
2Thebendingmomentofacircularplatewithperipheralfixedsupportsunderauniformly
distributedloadshallbecalculatedaccordingtothefollowingformula:
M=0.03125×p×d2(5.3.202)
pDp-
where人人文庫
MomentofacircularflatplatesubjectedtouniformlydistributedloadNmm/mm
Mp—(·);
UniformlydistributedloadonacircularplateMPa
pD—();
Calculateddiameterofacircularplatemm.
dp—()
3Thebendingmomentofacircularplatewithperipheralsimplysupportsundercentrallocalload
shallbecalculatedaccordingtothefollowingformula:
W■d■
M=1.3×lnp+1■(5.3.203)
p4×π■2×-
■r1■
where
Bendingmomentofaperipheralsimplysupportedcircularplateundercentrallocalload
Mp—
·39·
(N·mm/mm);
W—Localloadonacircularplate(MPa);
Radiusoftheareaoflocalloadonacircularplatemm
r1—();
Calculateddiameterofacircularplatemm.
dp—()
4Thebendingmomentofacircularplatewithperipheralfixedsupportsunderconcentratedload
atcentershallbecalculatedaccordingtothefollowingformulas,andshouldbetakentoalargevalue:
Wd
M=0.325××lnp+1(5.3.204)
pπ2×-
r1
W
M=(5.3.205)
p4×π-
where
Thebendingmomentofacircularplatewithfixedsupportsunderconcentratedloadatcenter
Mp—
(N·mm/mm);
W—Concentratedloadonacircularplate(MPa);
Radiusoftheareaofconcentratedloadonacircularplatemm
r1—();
Calculateddiameterofacircularplatemm.
dp—()
5.3.21Thebendingmomentofasectorortriangularplatesubjectedtoauniformlydistributedload
shallbecalculatedaccordingtothefollowingformula:
M=β×p×r2(5.3.21)
pDp水印
where
MomentofasectorortriangularplatesubjectedtoauniformlydistributedloadNmm/mm
Mp—(·);
β—Constantsofsectorortriangularflatplatessubjectedtouniformlydistributedloadsarefound
inTable5.3.21;
UniformlydistributedloadonasectorortriangularplateMPa
pD—();
Radiusofthesectorplateorthelengthofthesideofthetriangularplatemm.
rp—()
Table5.3.21Constantsofsectorortriangleplatecalculationsubjectedtouniformlydistributedload
Angleππ/2π/3π/4
Peripheralsimplysupports
α0.03680.01440.00620.0031
β0.07560.04880.03400.0250
Peripheralfixedsupports
α0.08860.02460.01000.0054
β人人文庫0.08680.03810.02550.0183
5.3.22Whentheplateissubjectedtobendingmomentloadsincludinginternalpressure,vacuum,
liquidcolumnstaticpressure,windload,snowload,locallyconcentratedloadandthemostsevere
combinationofvariousloads,thedesignbendingmomentoftheplateshouldbecalculatedaccordingto
thefollowingformula:
M+M
=++sw5.3.22
MDMpMl()
K4
where
DesignbendingmomentoftheplateNmm/mm
MD—(·);
M—AccordingtotheFormula(5.3.191),F(xiàn)ormula(5.3.194),F(xiàn)ormula(5.3.201),
p---
·40·
Formula(5.3.205)andFormula(5.3.21),bendingmomentcausedbyuniformor
-
concentratedload(N·mm/mm);
PartialbendingmomentactingontheplateNmm/mm
Ml—(·);
SnowloadactingontheplateNmm/mm
Ms—(·);
WindloadactingontheplateNmm/mm
Mw—(·);
K—Partialdesignfactorrelatingtolongtermperformanceoflaminateshallbeinaccordance
4-
withTable4.3.7ofthiscode.
5.3.23Themasscalculationoftheunitareareinforcingmaterialoftheplateunderloadshallbein
accordancewiththefollowingrequirements:
1Whenchoppedstrandmatisusedasthereinforcingmaterialfortheflatplate,themassofthe
choppedstrandmatperunitareashallbecalculatedaccordingtothefollowingformula:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 美觀耐用彩鋼墻面板工程承包協(xié)議
- 槽棎施工與工程監(jiān)理合同
- 餐飲企業(yè)員工派遣與餐飲設(shè)備租賃合同
- 豪車贈與及售后服務(wù)保障合同
- 金融科技公司股東退股及數(shù)據(jù)安全合同
- 財務(wù)合同部財務(wù)報表編制與披露合同
- 合同審計面試題目及答案
- 廣告制作合同協(xié)議書范例
- 中間人合同協(xié)議書
- 承包出租樓房合同協(xié)議書
- 破產(chǎn)管理人工作履職報告(優(yōu)選.)
- 集裝箱碼頭堆場優(yōu)化問題
- 《redis講解》PPT課件
- 景觀園林設(shè)計收費(fèi)的標(biāo)準(zhǔn)
- 京東考試答案
- 遞進(jìn)式流程通用模板PPT
- 腦損傷病情觀察意識狀態(tài)的分級
- 請假通用員工請假單模板
- 客訴處理與應(yīng)對技巧
- 麥凱66客戶檔案管理表格
- 框架六層中學(xué)教學(xué)樓工程施工方案
評論
0/150
提交評論