2023-2024學(xué)年湖南省長(zhǎng)郡中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第1頁(yè)
2023-2024學(xué)年湖南省長(zhǎng)郡中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第2頁(yè)
2023-2024學(xué)年湖南省長(zhǎng)郡中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第3頁(yè)
2023-2024學(xué)年湖南省長(zhǎng)郡中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第4頁(yè)
2023-2024學(xué)年湖南省長(zhǎng)郡中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年湖南省長(zhǎng)郡中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若橢圓的一個(gè)焦點(diǎn)為,則的值為()A.5 B.3C.4 D.22.幾位大學(xué)生響應(yīng)國(guó)家的創(chuàng)業(yè)號(hào)召,開發(fā)了一款應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng).這款軟件的激活碼為下面數(shù)學(xué)問(wèn)題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項(xiàng)是20,接下來(lái)的兩項(xiàng)是20,21,再接下來(lái)的三項(xiàng)是20,21,22,依此類推.求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項(xiàng)和為2的整數(shù)冪.那么該款軟件的激活碼是A.440 B.330C.220 D.1103.橢圓的焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P在橢圓上,若|PF1|=4,則∠F1PF2的余弦值為A. B.C. D.4.若圓與直線相切,則()A.3 B.或3C. D.或5.橢圓的短軸長(zhǎng)為()A.8 B.2C.4 D.6.在平面直角坐標(biāo)系中,已知點(diǎn),,,,直線AP,BP相交于點(diǎn)P,且它們斜率之積是.當(dāng)時(shí),的最小值為()A. B.C. D.7.年月日,很多人的微信圈都在轉(zhuǎn)發(fā)這樣一條微信:“,所遇皆為對(duì),所做皆稱心””.形如“”的數(shù)字叫“回文數(shù)”,即從左到右讀和從右到左讀都一樣的正整數(shù),則位的回文數(shù)共有()A. B.C. D.8.已知橢圓與直線交于A,B兩點(diǎn),點(diǎn)為線段的中點(diǎn),則a的值為()A. B.3C. D.9.已知?jiǎng)訄AM與直線y=2相切,且與定圓C:外切,求動(dòng)圓圓心M的軌跡方程A. B.C. D.10.已知橢圓=1(a>b>0)的右焦點(diǎn)為F,橢圓上的A,B兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,|FA|=2|FB|,且·≤a2,則該橢圓離心率的取值范圍是()A.(0,] B.(0,]C.,1) D.,1)11.曲線與曲線的()A.長(zhǎng)軸長(zhǎng)相等 B.短軸長(zhǎng)相等C.離心率相等 D.焦距相等12.已知等比數(shù)列各項(xiàng)均為正數(shù),且,,成等差數(shù)列,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某班名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示.根據(jù)頻率分布直方圖,估計(jì)該班本次測(cè)試平均分為______14.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且a1=-1,an+1=SnSn+1,則Sn=__________.15.已知直線和直線垂直,則實(shí)數(shù)___________.16.設(shè)在中,角A、B、C所對(duì)的邊分別為a、b、c,從下列四個(gè)條件:①;②;③;④中選出三個(gè)條件,能使?jié)M足所選條件的存在且唯一的所有c的值為______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在長(zhǎng)方體中,,,,M為上一點(diǎn),且(1)求點(diǎn)到平面的距離;(2)求二面角的余弦值18.(12分)已知橢圓上的點(diǎn)到左、右焦點(diǎn)、的距離之和為4,且右頂點(diǎn)A到右焦點(diǎn)的距離為1.(1)求橢圓的方程;(2)直線與橢圓交于不同兩點(diǎn),,記的面積為,當(dāng)時(shí)求的值.19.(12分)已知函數(shù)(a是常數(shù)).(1)當(dāng)時(shí),求的單調(diào)區(qū)間與極值;(2)若,求a的取值范圍.20.(12分)已知拋物線C:的焦點(diǎn)為F,為拋物線C上一點(diǎn),且(1)求拋物線C的方程:(2)若以點(diǎn)為圓心,為半徑的圓與C的準(zhǔn)線交于A,B兩點(diǎn),過(guò)A,B分別作準(zhǔn)線的垂線交拋物線C于D,E兩點(diǎn),若,證明直線DE過(guò)定點(diǎn)21.(12分)已知雙曲線的漸近線方程為,且過(guò)點(diǎn)(1)求雙曲線的方程;(2)過(guò)雙曲線的一個(gè)焦點(diǎn)作斜率為的直線交雙曲線于兩點(diǎn),求弦長(zhǎng)22.(10分)設(shè)等差數(shù)列的前項(xiàng)和為,已知,.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由題意判斷橢圓焦點(diǎn)在軸上,則,解方程即可確定的值.【詳解】有題意知:焦點(diǎn)在軸上,則,從而,解得:.故選:B.2、A【解析】由題意得,數(shù)列如下:則該數(shù)列的前項(xiàng)和為,要使,有,此時(shí),所以是第組等比數(shù)列的部分和,設(shè),所以,則,此時(shí),所以對(duì)應(yīng)滿足條件的最小整數(shù),故選A.點(diǎn)睛:本題非常巧妙地將實(shí)際問(wèn)題和數(shù)列融合在一起,首先需要讀懂題目所表達(dá)的具體含義,以及觀察所給定數(shù)列的特征,進(jìn)而判斷出該數(shù)列的通項(xiàng)和求和.另外,本題的難點(diǎn)在于數(shù)列里面套數(shù)列,第一個(gè)數(shù)列的和又作為下一個(gè)數(shù)列的通項(xiàng),而且最后幾項(xiàng)并不能放在一個(gè)數(shù)列中,需要進(jìn)行判斷.Ⅱ卷3、B【解析】根據(jù)題意,橢圓的標(biāo)準(zhǔn)方程為,其中則,則有|F1F2|=2,若a=3,則|PF1|+|PF2|=2a=6,又由|PF1|=4,則|PF2|=6-|PF1|=2,則cos∠F1PF2==.故選B4、B【解析】根據(jù)圓與與直線相切,利用圓心到直線的距離等于半徑求解.【詳解】圓的標(biāo)準(zhǔn)方程為:,則圓心為,半徑為,因?yàn)閳A與與直線相切,所以圓心到直線的距離等于半徑,即,解得或,故選:B5、C【解析】根據(jù)橢圓的標(biāo)準(zhǔn)方程求出,進(jìn)而得出短軸長(zhǎng).【詳解】由,可得,所以短軸長(zhǎng)為.故選:C.6、A【解析】設(shè)出點(diǎn)坐標(biāo),求得、所在直線的斜率,由斜率之積是列式整理即可得到點(diǎn)的軌跡方程,設(shè),根據(jù)雙曲線的定義,從而求出的最小值;【詳解】解:設(shè)點(diǎn)坐標(biāo)為,則直線的斜率;直線的斜率由已知有,化簡(jiǎn)得點(diǎn)的軌跡方程為又,所以點(diǎn)的軌跡方程為,即點(diǎn)的軌跡為以、為頂點(diǎn)的雙曲線的左支(除點(diǎn)),因?yàn)椋O(shè),由雙曲線的定義可知,所以,當(dāng)且僅當(dāng)、、三點(diǎn)共線時(shí)取得最小值,因?yàn)椋?,所以,即的最小值為;故選:A7、C【解析】根據(jù)“回文數(shù)”的對(duì)稱性,只需計(jì)算前位數(shù)的排法種數(shù)即可,確定這四位數(shù)的選數(shù)的種數(shù),利用分步乘法計(jì)數(shù)原理可得結(jié)果.【詳解】根據(jù)“回文數(shù)”的對(duì)稱性,只需計(jì)算前位數(shù)的排法種數(shù)即可,首位數(shù)不能放零,首位數(shù)共有種選擇,第二位、第三位、第四位數(shù)均有種選擇,因此,位的回文數(shù)共有個(gè).故選:C.8、A【解析】先聯(lián)立直線和橢圓的方程,結(jié)合中點(diǎn)公式及點(diǎn)可求a的值.【詳解】設(shè),聯(lián)立,得,,因?yàn)辄c(diǎn)為線段的中點(diǎn),所以,即,解得,因?yàn)?,所?故選:A.9、D【解析】由題意動(dòng)圓M與直線y=2相切,且與定圓C:外切∴動(dòng)點(diǎn)M到C(0,-3)的距離與到直線y=3的距離相等由拋物線的定義知,點(diǎn)M的軌跡是以C(0,-3)為焦點(diǎn),直線y=3為準(zhǔn)線的拋物線故所求M的軌跡方程為考點(diǎn):軌跡方程10、B【解析】如圖設(shè)橢圓的左焦點(diǎn)為E,根據(jù)題意和橢圓的定義可知,利用余弦定理求出,結(jié)合平面向量的數(shù)量積計(jì)算即可.【詳解】由題意知,如圖,設(shè)橢圓的左焦點(diǎn)為E,則,因?yàn)辄c(diǎn)A、B關(guān)于原點(diǎn)對(duì)稱,所以四邊形為平行四邊形,由,得,,在中,,所以,由,得,整理,得,又,所以.故選:B11、D【解析】分別求出兩曲線表示的橢圓的位置,長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)、離心率和焦距,比較可得答案.【詳解】曲線表示焦點(diǎn)在x軸上的橢圓,長(zhǎng)軸長(zhǎng)為10,短軸長(zhǎng)為6,離心率為,焦距為8,曲線焦點(diǎn)在x軸上的橢圓,長(zhǎng)軸長(zhǎng)為,短軸長(zhǎng)為,離心率為,焦距為,故選:D12、A【解析】結(jié)合等差數(shù)列的性質(zhì)求得公比,然后由等比數(shù)列的性質(zhì)得結(jié)論【詳解】設(shè)的公比為,因?yàn)?,,成等差?shù)列,所以,即,,或(舍去,因?yàn)閿?shù)列各項(xiàng)為正)所以故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將每個(gè)矩形底邊的中點(diǎn)值乘以對(duì)應(yīng)矩形的面積,即可得解.【詳解】由頻率分布直方圖可知,該班本次測(cè)試平均分為.故答案為:.14、-.【解析】因?yàn)?,所以,所以,即,又,即,所以?shù)列是首項(xiàng)和公差都為的等差數(shù)列,所以,所以考點(diǎn):數(shù)列的遞推關(guān)系式及等差數(shù)列的通項(xiàng)公式【方法點(diǎn)晴】本題主要考查了數(shù)列的通項(xiàng)公式、數(shù)列的遞推關(guān)系式的應(yīng)用、等差數(shù)列的通項(xiàng)公式及其性質(zhì)定知識(shí)點(diǎn)的綜合應(yīng)用,解答中得到,,確定數(shù)列是首項(xiàng)和公差都為的等差數(shù)列是解答的關(guān)鍵,著重考查了學(xué)生靈活變形能力和推理與論證能力,平時(shí)應(yīng)注意方法的積累與總結(jié),屬于中檔試題15、【解析】根據(jù)兩條直線相互垂直的條件列方程,解方程求得m的值.【詳解】由于兩條直線垂直,故,解得.故答案為:.16、,##,【解析】由①②結(jié)合正弦定理可求出,但是角不唯一,故所選條件中不能同時(shí)有①②,只能是①③④或②③④,若選①③④,結(jié)合余弦定理可求,若選②③④,結(jié)合正弦定理即可求解【詳解】由①②結(jié)合正弦定理,所以,此時(shí)角不唯一,所以故所選條件中不能同時(shí)有①②,所以只能是①③④或②③④,若選①③④,即,,,由余弦定理可得,解得,若選②③④,即,,,因?yàn)?,,所以,由正弦定理得,,故答案為:,三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)以A為原點(diǎn),以AB、AD、所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系,利用空間向量求解,(2)求出和的法向量,利用空間向量求解【小問(wèn)1詳解】以A為原點(diǎn),以AB、AD、所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系由,,,,所以,,,因此,,,設(shè)平面的法向量,則,,所以,取,則,,于是,所以點(diǎn)到平面的距離【小問(wèn)2詳解】由,,設(shè)平面的法向量,則,,所以,取,則,,于是,由(1)知平面的法向量為,記二面角的平面角為,則,由圖可知二面角為銳角,所以所求二面角的余弦值為18、(1)(2)【解析】(1)根據(jù)題意得到,,再根據(jù)求解即可.(2)首先設(shè),,再根據(jù)求解即可.【小問(wèn)1詳解】由題意,,因?yàn)橛翼旤c(diǎn)到右焦點(diǎn)的距離為,即,所以,則,所以橢圓的標(biāo)準(zhǔn)方程為.【小問(wèn)2詳解】設(shè),,且根據(jù)橢圓的對(duì)稱性得,聯(lián)立方程組,整理得,解得,因?yàn)榈拿娣e為3,可得,解得.19、(1)函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,極小值是,無(wú)極大值.(2)【解析】(1)由當(dāng),得到,求導(dǎo),再由,求解;(2)將,轉(zhuǎn)化為成立,令,求其最大值即可.【小問(wèn)1詳解】解:當(dāng)時(shí),,定義域?yàn)?,所以,?dāng)時(shí),,當(dāng)時(shí),,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,所以時(shí),取得極小值是,無(wú)極大值.【小問(wèn)2詳解】因?yàn)?,即成?設(shè),則,當(dāng)時(shí),,當(dāng)時(shí),,所以在上單調(diào)遞增,在上單調(diào)遞減,所以,所以,即.20、(1);(2)證明見解析.【解析】(1)解方程和即得解;(2)設(shè),,將與圓P的方程聯(lián)立得到韋達(dá)定理,再寫出直線的方程即得解.【小問(wèn)1詳解】解:因?yàn)閽佄锞€C上一點(diǎn),且,所以到拋物線C的準(zhǔn)線的距離為2則,,則,所以,故拋物線C的方程為【小問(wèn)2詳解】證明:由(1)知,則圓P的方程為設(shè),,將與圓P的方程聯(lián)立,可得,則,當(dāng)時(shí),,不妨令,則,此時(shí);當(dāng)時(shí),直線DE的斜率為,則直線DE的方程為,即,即,令且,得,直線過(guò)點(diǎn);綜上,直線DE過(guò)定點(diǎn)21、(1);(2).【解析】(1)根據(jù)雙曲線漸近線斜率、雙曲線過(guò)點(diǎn)可構(gòu)造方程求得,由此可得雙曲線方程;(2)由雙曲線方程可得焦點(diǎn)坐標(biāo),由此可得

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論