版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年福建省仙游縣高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)在區(qū)間單調(diào)遞增,則的取值范圍是()A. B.C. D.2.給出如下四個命題正確的是()①方程表示的圖形是圓;②橢圓的離心率;③拋物線的準線方程是;④雙曲線的漸近線方程是A.③ B.①③C.①④ D.②③④3.已知平面法向量為,,則直線與平面的位置關(guān)系為A. B.C.與相交但不垂直 D.4.已知拋物線,過點與拋物線C有且只有一個交點的直線有()條A.0 B.1C.2 D.35.變量與的數(shù)據(jù)如表所示,其中缺少了一個數(shù)值,已知關(guān)于的線性回歸方程為,則缺少的數(shù)值為()22232425262324▲2628A.24 B.25C.25.5 D.266.過點且垂直于直線的直線方程是()A. B.C. D.7.如圖,在四面體OABC中,,,,點在線段上,且,為的中點,則等于()A. B.C. D.8.已知直線,,點是拋物線上一點,則點到直線和的距離之和的最小值為()A.2 B.C.3 D.9.執(zhí)行如圖所示的程序框圖,若輸出的的值為,則輸入的的值可能為()A.96 B.97C.98 D.9910.若:,:,則為q的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分又不必要條件11.在等差數(shù)列中,已知,則數(shù)列的前9項和為()A. B.13C.45 D.11712.已知拋物線上的點到該拋物線焦點的距離為,則拋物線的方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.方程()所表示的直線恒過定點________14.若直線是曲線的切線,也是曲線的切線,則__________15.已知點P是雙曲線右支上的一點,且以點P及焦點為定點的三角形的面積為4,則點P的坐標是_____________16.若隨機變量,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C:(1)若拋物線C上一點P到F的距離是4,求P的坐標;(2)若不過原點O的直線l與拋物線C交于A、B兩點,且,求證:直線l過定點18.(12分)在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=2,A1A=4,點D是BC的中點;(I)求異面直線A1B,AC1所成角的余弦值;(II)求直線AB1與平面C1AD所成角的正弦值19.(12分)已知幾何體中,平面平面,是邊長為4的菱形,,是直角梯形,,,且(1)求證:;(2)求平面與平面所成角的余弦值20.(12分)設(shè)命題方程表示中心在原點,焦點在坐標軸上的雙曲線;命題,,若“”為假命題,“”為真命題,求實數(shù)的取值范圍.21.(12分)如圖,在三棱錐中,平面平面,,都是等腰直角三角形,,,,分別為,的中點.(1)求證:平面;(2)求證:平面.22.(10分)已知橢圓的左、右焦點分別為,,離心率為,過左焦點的直線l與橢圓C交于A,B兩點,的周長為8(1)求橢圓C的標準方程;(2)如圖,,是橢圓C的短軸端點,P是橢圓C上異于點,的動點,點Q滿足,,求證與的面積之比為定值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】函數(shù)在區(qū)間上單調(diào)遞增,轉(zhuǎn)化為導(dǎo)函數(shù)在該區(qū)間上大于等于0恒成立,進而求出結(jié)果.【詳解】由題意得:在區(qū)間上恒成立,而,所以.故選:A2、A【解析】對選項①,根據(jù)圓一般方程求解即可判斷①錯誤,對選項②,求出橢圓離心率即可判斷②錯誤,對③,求出拋物線漸近線即可判斷③正確,對④,求出雙曲線漸近線方程即可判斷④錯誤?!驹斀狻繉τ冖龠x項,,,故①錯誤;對于②選項,由題知,所以,所以離心率,故②錯誤;對于③選項,拋物線化為標準形式得拋物線,故準線方程是,故③正確;對于④選項,雙曲線化為標準形式得,所以,焦點在軸上,故漸近線方程是,故④錯誤.故選:A3、A【解析】.本題選擇A選項.4、D【解析】設(shè)出過點與拋物線C只有一個公共點且斜率存在的直線方程,再與的方程聯(lián)立借助判別式計算、判斷作答.【詳解】拋物線的對稱軸為y軸,直線過點P且與y軸平行,它與拋物線C只有一個公共點,設(shè)過點與拋物線C只有一個公共點且斜率存在的直線方程為:,由消去y并整理得:,則,解得或,因此,過點與拋物線C相切的直線有兩條,相交且只有一個公共點的直線有一條,所以過點與拋物線C有且只有一個交點的直線有3條.故選:D5、A【解析】可設(shè)出缺少的數(shù)值,利用表中的數(shù)據(jù),分別表示出、,將樣本中心點帶入回歸方程,即可求得參數(shù).【詳解】設(shè)缺少的數(shù)值為,則,,因為回歸直線方程經(jīng)過樣本點的中心,所以,解得.故選:A6、A【解析】根據(jù)所求直線垂直于直線,設(shè)其方程為,然后將點代入求解.【詳解】因為所求直線垂直于直線,所以設(shè)其方程為,又因為直線過點,所以,解得所以直線方程為:,故選:A.7、D【解析】利用空間向量的加法與減法可得出關(guān)于、、的表達式.【詳解】.故選:D.8、C【解析】由拋物線的定義可知點到直線和的距離之和的最小值即為焦點到直線的距離.【詳解】解:由題意,拋物線的焦點為,準線為,所以根據(jù)拋物線的定義可得點到直線的距離等于,所以點到直線和的距離之和的最小值即為焦點到直線的距離,故選:C.9、D【解析】根據(jù)程序框圖得出的變換規(guī)律后求解【詳解】當時,,當時,,當時,,當時,,可得輸出的T關(guān)于t的變換周期為4,而,故時,輸出的值為,故選:D10、D【解析】根據(jù)充分條件和必要條件的定義即可得出答案.【詳解】解:因為:,:,所以,所以為q的既不充分又不必要條件.故選:D.11、C【解析】根據(jù)給定的條件利用等差數(shù)列的性質(zhì)計算作答【詳解】在等差數(shù)列中,因,所以.故選:C12、B【解析】由拋物線知識得出準線方程,再由點到焦點的距離等于其到準線的距離求出,從而得出方程.【詳解】由題意知,則準線為,點到焦點的距離等于其到準線的距離,即,∴,則故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將方程化為,令得系數(shù)等于0,即可得到答案.【詳解】方程可化為,由,得,所以方程()所表示的直線恒過定點.故答案為:.【點睛】本題考查了直線恒過定點問題,屬于基礎(chǔ)題.14、【解析】根據(jù)導(dǎo)數(shù)的幾何意義,結(jié)合待定系數(shù)法進行求解即可.【詳解】設(shè)曲線的切點為:,由,所以過該切點的切線斜率為:,于切線方程為:,因此有:,設(shè)曲線的切點為:,由,所以過該切點的切線斜率為:,于是切線方程為:,因此有:,因為,,即,因此,故答案為:【點睛】關(guān)鍵點睛:根據(jù)導(dǎo)數(shù)的幾何意義進行求解是解題的關(guān)鍵.15、【解析】由題可得P到x軸的距離為1,把代入,得,可得P點坐標【詳解】設(shè),由題意知,所以,則,由題意可得,把代入,得,所以P點坐標為故答案為:16、2【解析】根據(jù)給定條件利用二項分布的期望公式直接計算作答.【詳解】因為隨機變量,所以.故答案:2三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】(1)由拋物線的定義,可得點的坐標;(2)可設(shè)直線的方程為,,,,與拋物線聯(lián)立,消,利用韋達定理求得,,再根據(jù),可得,從而可求得參數(shù)的關(guān)系,即可得出結(jié)論.【小問1詳解】解:設(shè),,由拋物線的定義可知,即,解得,將代入方程,得,即的坐標為;【小問2詳解】證明:由題意知直線不能與軸平行,可設(shè)直線的方程為,與拋物線聯(lián)立得,消去得,設(shè),,,則,,由,可得,即,即,即,又,解得,所以直線方程為,當時,,所以直線過定點18、(I)(II)【解析】(I)以,,為x,y,z軸建立空間直角坐標系A(chǔ)﹣xyz,可得和的坐標,可得cos<,>,可得答案;(II)由(I)知,=(2,0,﹣4),=(1,1,0),設(shè)平面C1AD的法向量為=(x,y,z),由可得=(1,﹣1,),設(shè)直線AB1與平面C1AD所成的角為θ,則sinθ=|cos<,>|=,進而可得答案解:(I)以,,x,y,z軸建立空間直角坐標系A(chǔ)﹣xyz,則可得B(2,0,0),A1(0,0,4),C1(0,2,4),D(1,1,0),∴=(2,0,﹣4),=(0,2,4),∴cos<,>==∴異面直線A1B,AC1所成角的余弦值為:;(II)由(I)知,=(2,0,﹣4),=(1,1,0),設(shè)平面C1AD的法向量為=(x,y,z),則可得,即,取x=1可得=(1,﹣1,),設(shè)直線AB1與平面C1AD所成的角為θ,則sinθ=|cos<,>|=∴直線AB1與平面C1AD所成角的正弦值為:考點:異面直線及其所成的角;直線與平面所成的角19、(1)證明見解析;(2).【解析】(1)根據(jù)菱形的性質(zhì),結(jié)合面面垂直的性質(zhì)定理、線面垂直的判定定理和性質(zhì)進行證明即可;(2)建立空間直角坐標系,根據(jù)空間向量夾角公式進行求解即可.【詳解】(1)證明:連接,交于點,∵四邊形是菱形,∴,∵平面平面,平面平面,,∴平面,∵平面,∴,又,、平面,∴平面,∵平面,∴(2)解:取的中點,連接,∵是邊長為4的菱形,,∴,,以為原點,,,所在直線分別為,,軸建立如圖所示的空間直角坐標系,則,,,,∴,,設(shè)平面的法向量為,則,即,令,則,,∴,同理可得,平面的一個法向量為,∴,由圖知,平面與平面所成角為銳角,故平面與平面所成角余弦值為20、【解析】求出當命題、分別為真命題時實數(shù)的取值范圍,分析可知、中一真一假,分真假、假真兩種情況討論,求出對應(yīng)的實數(shù)的取值范圍,綜合可得結(jié)果.【詳解】解:若為真命題,則,即,解得,若為真命題,則,解得,因為“”為假命題,“”為真命題,則、中一真一假,若真假,則,可得,若假真,則,此時.綜上所述,實數(shù)的范圍為.21、(1)證明見解析(2)證明見解析【解析】(1)由三角形的中位線定理可證得MN∥AB,再由線面垂直的判定定理可證得結(jié)論,(2)由已知可得AB⊥BC,VC⊥AC,再由已知結(jié)合面面垂直的性質(zhì)定理可得VC⊥平面ABC,從而有AB⊥VC,然后由線面垂直的判定定理可證得結(jié)論【小問1詳解】證明:∵M,N分別為VA,VB的中點,∴MN∥AB,∵AB?平面CMN,MN?平面CMN,∴AB∥平面CMN【小問2詳解】證明:∵△ABC和△VAC均是等腰直角三角形,AB=BC,AC=CV,∴AB⊥BC,VC⊥AC,∵平面VAC⊥平面ABC,平面VAC∩平面ABC=AC,∴VC⊥平面ABC,∵AB?平面ABC,∴AB⊥VC,又VC∩BC=C,∴AB⊥平面VBC22、(1)(2)證明見解析【解析】(1)根據(jù)周長為8,求得a,再根據(jù)離心率求解;(2)方法一:設(shè),,得到直線和直線的方程,聯(lián)立求得Q的橫坐標,根據(jù)在橢圓上,得到,然后代入Q的橫坐標求解;方法二:設(shè)直線,的斜率分別為k,,點,,直線的方程為,與橢圓方程聯(lián)立,求得點P橫坐標,再由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智慧城市項目實施方案及管理辦法
- 工程資料整合外包
- 專業(yè)宣傳冊印刷服務(wù)合同
- 工程進度承諾函模板
- 招標方案編寫要領(lǐng)
- 我國建筑勞務(wù)分包的現(xiàn)狀與發(fā)展
- 粉墻抹面工程勞務(wù)外包協(xié)議
- 工業(yè)用管道材料供應(yīng)
- 裝修工程勞務(wù)分包合同范本圖片
- 崗位責任我來肩負
- 田字格模版內(nèi)容
- 統(tǒng)編教材小學(xué)語文課外閱讀《一百條裙子》導(dǎo)讀課課件
- 2019譯林版高中英語必修二單詞默寫表
- 二次結(jié)構(gòu)施工質(zhì)量通病防治措施
- 2022雙減背景下小學(xué)數(shù)學(xué)分層作業(yè)優(yōu)化設(shè)計研究課題結(jié)題報告
- PDCA循環(huán)PPT課件 精品
- (民法典版)離婚登記申請受理回執(zhí)單
- 國家開放大學(xué)《房屋建筑混凝土結(jié)構(gòu)設(shè)計》章節(jié)測試參考答案
- 地下水環(huán)境監(jiān)測井施工設(shè)計方案(共10頁)
- 社會責任運行風險評估表
- [方案]鐵路行車組織設(shè)計說明書
評論
0/150
提交評論