2023-2024學年甘肅省慶陽市第二中學高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第1頁
2023-2024學年甘肅省慶陽市第二中學高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第2頁
2023-2024學年甘肅省慶陽市第二中學高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第3頁
2023-2024學年甘肅省慶陽市第二中學高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第4頁
2023-2024學年甘肅省慶陽市第二中學高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年甘肅省慶陽市第二中學高二數(shù)學第一學期期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在棱長為4的正方體中,為的中點,點P在正方體各棱及表面上運動且滿足,則點P軌跡圍成的圖形的面積為()A. B.C. D.2.已知等差數(shù)列的前項和為,若,則()A B.C. D.3.若圓C:上有到的距離為1的點,則實數(shù)m的取值范圍為()A. B.C. D.4.某救援隊有5名隊員,其中有1名隊長,1名副隊長,在一次救援中需隨機分成兩個行動小組,其中一組2名隊員,另一組3名隊員,則正、副隊長不在同一組的概率為()A. B.C. D.5.橢圓的長軸長是()A.3 B.4C.6 D.86.某口罩生產(chǎn)商為了檢驗產(chǎn)品質量,從總體編號為001,002,003,…,499,500的500盒口罩中,利用下面的隨機數(shù)表選取10個樣本進行抽檢,選取方法是從下面的隨機數(shù)表第1行第5列的數(shù)字開始由左向右讀取,則選出的第3個樣本的編號為()160011661490844511657388059052274114862298122208075274958035696832506128473975345862A.148 B.116C.222 D.3257.已知橢圓的焦點分別為,,橢圓上一點P與焦點的距離等于6,則的面積為()A.24 B.36C.48 D.608.如圖所示,用3種不同的顏色涂入圖中的矩形A,B,C中,要求相鄰的矩形不能使用同一種顏色,則不同的涂法有()ABCA.3種 B.6種C.12種 D.27種9.過點P(2,1)作直線l,使l與雙曲線-y2=1有且僅有一個公共點,這樣的直線l共有A.1條 B.2條C.3條 D.4條10.函數(shù)的導函數(shù)的圖像如圖所示,則()A.為的極大值點B.為的極大值點C.為的極大值點D.為的極小值點11.過拋物線C:的準線上任意一點作拋物線的切線,切點為,若在軸上存在定點,使得恒成立,則點的坐標為()A. B.C. D.12.在中,,,,則此三角形()A.無解 B.一解C.兩解 D.解的個數(shù)不確定二、填空題:本題共4小題,每小題5分,共20分。13.在正方體中,,,P,F(xiàn)分別是線段,的中點,則點P到直線EF的距離是___________.14.已知點P是雙曲線右支上的一點,且以點P及焦點為定點的三角形的面積為4,則點P的坐標是_____________15.在中,若面積,則______16.根據(jù)某市有關統(tǒng)計公報顯示,隨著“一帶一路”經(jīng)貿合作持續(xù)深化,該市對外貿易近幾年持續(xù)繁榮,2017年至2020年每年進口總額(單位:千億元)和出口總額(單位:千億元)之間的一組數(shù)據(jù)如下:2017年2018年2019年2020年若每年的進出口總額,滿足線性相關關系,則______;若計劃2022年出口總額達到千億元,預計該年進口總額為______億元三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某中學共有名學生,其中高一年級有名學生,為了解學生的睡眠情況,用分層抽樣的方法,在三個年級中抽取了名學生,依據(jù)每名學生的睡眠時間(單位:小時),繪制出了如圖所示的頻率分布直方圖.(1)求樣本中高一年級學生人數(shù)及圖中的值;(2)估計樣本數(shù)據(jù)的中位數(shù)(保留兩位小數(shù));(3)估計全校睡眠時間超過個小時的學生人數(shù).18.(12分)已知拋物線與直線相切.(1)求該拋物線的方程;(2)在軸的正半軸上,是否存在某個確定的點M,過該點的動直線與拋物線C交于A,B兩點,使得為定值.如果存在,求出點M的坐標;如果不存在,請說明理由.19.(12分)已知,,其中.(1)求的值;(2)設(其中、為正整數(shù)),求的值.20.(12分)在數(shù)列中,,是與的等差中項,(1)求證:數(shù)列是等差數(shù)列(2)令,求數(shù)列的前項的和21.(12分)已知點和直線.(1)求以為圓心,且與直線相切的圓的方程;(2)過直線上一點作圓的切線,其中為切點,求四邊形PAMB的面積的最小值.22.(10分)已知橢圓的焦點為,且長軸長是焦距的倍(1)求橢圓的標準方程;(2)若斜率為1的直線與橢圓相交于兩點,已知點,求面積的最大值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】構造輔助線,找到點P軌跡圍成的圖形為長方形,從而求出面積.【詳解】取的中點E,的中點F,連接BE,EF,AF,則由于為的中點,可得,所以∠CBE=∠ECN,從而∠BCN+∠CBE=∠BCN+∠ECN=90°,所以BE⊥CN,又EF⊥平面,平面,所以EF⊥CN,又因為BEEF=E,所以CN⊥平面ABEF,所以點P軌跡圍成的圖形為矩形ABEF,又,所以矩形ABEF面積為.故選:A2、B【解析】利用等差數(shù)列的性質可求得的值,再結合等差數(shù)列求和公式以及等差中項的性質可求得的值.【詳解】由等差數(shù)列的性質可得,則,故.故選:B.3、C【解析】利用圓與圓的位置關系進行求解即可.【詳解】將圓C的方程化為標準方程得,所以.因為圓C上有到的距離為1的點,所以圓C與圓:有公共點,所以因為,所以,解得,故選:C4、C【解析】求出基本事件總數(shù)與正、副隊長不在同一組的基本事件個數(shù),即可求出答案.【詳解】基本事件總數(shù)為正、副隊長不在同一組的基本事件個數(shù)為故正、副隊長不在同一組的概率為.故選:C.5、D【解析】根據(jù)橢圓方程可得到a,從而求得長軸長.【詳解】橢圓方程為,故,所以橢圓長軸長為,故選:D.6、A【解析】按隨機數(shù)表法逐個讀取數(shù)字即可得到答案.【詳解】根據(jù)隨機數(shù)表法讀取的數(shù)字分別為:116,614(舍),908(舍),445,116(舍),573(舍),880(舍),590(舍),522(舍),741(舍),148,故選出的第3個樣本的編號為148.故選:A.7、A【解析】由題意可得出與、、的值,在根據(jù)橢圓定義得的值,即可得到是直角三角形,即可求出的面積.【詳解】由題意知,.根據(jù)橢圓定義可知,是直角三角形,.故選:A.8、C【解析】根據(jù)給定信息,按用色多少分成兩類,再分類計算作答.【詳解】計算不同的涂色方法數(shù)有兩類辦法:用3種顏色,每個矩形涂一種顏色,有種方法,用2色,矩形A,C涂同色,有種方法,由分類加法計數(shù)原理得(種),所以不同的涂法有12種.故選:C9、B【解析】利用幾何法,結合雙曲線的幾何性質,得出符合條件的結論.【詳解】由雙曲線的方程可知其漸近線方程為y=±x,則點P(2,1)在漸近線y=x上,又雙曲線的右頂點為A(2,0),如圖所示.滿足條件的直線l有兩條:x=2,y-1=-(x-2)【點睛】該題考查的是有關直線與雙曲線的公共點有一個的條件,結合雙曲線的性質,結合圖形,得出結果,屬于中檔題目.10、A【解析】由導函數(shù)的圖像可得函數(shù)的單調區(qū)間,從而可求得函數(shù)的極值【詳解】由的圖像可知,在和上單調遞減,在和上單調遞增,所以為的極大值點,和為的極小值點,不是函數(shù)的極值點,故選:A11、D【解析】設切點,點,聯(lián)立直線的方程和拋物線C的準線方程可得,將問題轉化為對任意點恒成立,可得,解出,從而求出答案【詳解】設切點,點由題意,拋物線C的準線,且由,得,則直線的方程為,即,聯(lián)立令,得由題意知,對任意點恒成立,也就是對任意點恒成立因為,,則,即對任意實數(shù)恒成立,所以,即,所以,故選:D【點睛】一般表示拋物線的切線方程時可將拋物線方程轉化為函數(shù)解析式,可利用導數(shù)的幾何意義求解切線斜率,再代入計算.12、C【解析】利用正弦定理求出的值,再根據(jù)所求值及a與b的大小關系即可判斷作答.【詳解】在中,,,,由正弦定理得,而為銳角,且,則或,所以有兩解故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】以A為坐標原點建立空間直角坐標系,利用向量法即可求解點P到直線EF的距離.【詳解】解:如圖,以A為坐標原點,,,的方向分別為x,y,z軸的正方向,建立空間直角坐標系,因為,所以,,,所以,,所以點P到直線EF的距離.故答案為:.14、【解析】由題可得P到x軸的距離為1,把代入,得,可得P點坐標【詳解】設,由題意知,所以,則,由題意可得,把代入,得,所以P點坐標為故答案為:15、##【解析】結合三角形面積公式與余弦定理得,進而得答案.【詳解】解:由三角形的面積公式得,所以,因為,所以,即,因為,所以故答案為:16、①.1.6②.3.65千##3650【解析】根據(jù)給定數(shù)表求出樣本中心點,代入即可求得,取可求出該年進口總額.【詳解】由數(shù)表得:,,因此,回歸直線過點,由,解得,此時,,當時,即,解得,所以,預計該年進口總額為千億元.故答案為:1.6;3.65千三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)樣本中高一年級學生的人數(shù)為,;(2);(3).【解析】(1)利用分層抽樣可求得樣本中高一年級學生的人數(shù),利用頻率直方圖中所有矩形的面積之和為可求得的值;(2)利用中位數(shù)左邊的矩形面積之和為可求得中位數(shù)的值;(3)利用頻率分布直方圖可計算出全校睡眠時間超過個小時的學生人數(shù).【小問1詳解】解:樣本中高一年級學生的人數(shù)為.,解得.【小問2詳解】解:設中位數(shù)為,前兩個矩形的面積之和為,前三個矩形的面積之和為,所以,則,得,故樣本數(shù)據(jù)的中位數(shù)約為.【小問3詳解】解:由圖可知,樣本數(shù)據(jù)落在的頻率為,故全校睡眠時間超過個小時的學生人數(shù)約為.18、(1);(2).【解析】(1)直線與拋物線相切,所以有,可解得,得拋物線方程.(2)聯(lián)立直線與拋物線有,把目標式坐標化可得與無關,可得.試題解析:(1)聯(lián)立方程有,,有,由于直線與拋物線相切,得,所以.(2)假設存在滿足條件的點,直線,有,,設,有,,,,當時,為定值,所以.19、(1);(2).【解析】(1),,寫出的展開式通項,由可得出關于的方程,解出的值,再利用賦值法可求得所求代數(shù)式的值;(2)寫出的展開式,求出、的值,即可求得的值.【小問1詳解】解:設,,的展開式通項為,所以,,即,,解得,所以,.【小問2詳解】解:,,,因此,20、(1)證明見解析;(2).【解析】(1)求得,利用等差數(shù)列的定義可證得結論成立;(2)求出,可計算得出,利用并項求和法可求得數(shù)列的前項的和.小問1詳解】解:由題意知是與的等差中項,可得,可得,則,可得,所以,,又由,可得,所以數(shù)列是首項和公差均為的等差數(shù)列.【小問2詳解】解:由(1)可得:,,對任意的,,因此,.21、(1)(2)【解析】(1)利用到直線的距離求得半徑,由此求得圓的方程.(2)結合到直線的距離來求得四邊形面積的最小值.【小問1詳解】圓的半徑,圓的方程為.【小問2詳解】由四邊形的面積知,當時,面積最小.此時...22、(1);(2)1.【解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論