2023-2024學(xué)年浙江省金蘭教育合作組織高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第1頁(yè)
2023-2024學(xué)年浙江省金蘭教育合作組織高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第2頁(yè)
2023-2024學(xué)年浙江省金蘭教育合作組織高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第3頁(yè)
2023-2024學(xué)年浙江省金蘭教育合作組織高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第4頁(yè)
2023-2024學(xué)年浙江省金蘭教育合作組織高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年浙江省金蘭教育合作組織高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)F是雙曲線的左焦點(diǎn),,P是雙曲線右支上的動(dòng)點(diǎn),則的最小值為()A.5 B.C. D.92.某企業(yè)甲車(chē)間有200人,乙車(chē)間有300人,現(xiàn)用分層抽樣的方法在這兩個(gè)車(chē)間中抽取25人進(jìn)行技能考核,則從甲車(chē)間抽取的人數(shù)應(yīng)為()A.5 B.10C.8 D.93.已知點(diǎn)O為坐標(biāo)原點(diǎn),拋物線C:的焦點(diǎn)為F,點(diǎn)T在拋物線C的準(zhǔn)線上,線段FT與拋物線C的交點(diǎn)為W,,則()A.1 B.C. D.4.某綜合實(shí)踐小組設(shè)計(jì)了一個(gè)“雙曲線型花瓶”.他們的設(shè)計(jì)思路是將某雙曲線的一部分(圖1中A,C之間的曲線)繞其虛軸所在直線l旋轉(zhuǎn)一周,得到花瓶的側(cè)面,花瓶底部是平整的圓面,如圖2.該小組給出了圖1中的相關(guān)數(shù)據(jù):,,,,,其中B是雙曲線的一個(gè)頂點(diǎn).小組中甲、乙、丙、丁四位同學(xué)分別用不同的方法估算了該花瓶的容積(忽略瓶壁和底部的厚度),結(jié)果如下表所示學(xué)生甲乙丙丁估算結(jié)果()其中估算結(jié)果最接近花瓶的容積的同學(xué)是()(參考公式:,,)A.甲 B.乙C.丙 D.丁5.已知,則“”是“直線與平行”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.直線的斜率是方程的兩根,則與的位置關(guān)系是()A.平行 B.重合C.相交但不垂直 D.垂直7.等差數(shù)列中,已知,,則的前項(xiàng)和的最小值為()A. B.C. D.8.若直線l的傾斜角是鈍角,則l的方程可能是()A. B.C. D.9.設(shè)變量,滿足約束條件則的最小值為()A.3 B.-3C.2 D.-210.設(shè)為空間中的四個(gè)不同點(diǎn),則“中有三點(diǎn)在同一條直線上”是“在同一個(gè)平面上”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分又非必要條件11.設(shè)村莊外圍所在曲線的方程可用表示,村外一小路所在直線方程可用表示,則從村莊外圍到小路的最短距離為()A. B.C. D.12.已知函數(shù)有兩個(gè)極值點(diǎn)m,n,且,則的最大值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.銀行一年定期的存款的利率為p,如果將a元存入銀行一年定期,到期后將本利再存一年定期,到期后再存一年定期……,則10年后到期本利共________元14.已知O為坐標(biāo)原點(diǎn),拋物線C:的焦點(diǎn)為F,P為C上一點(diǎn),PF與x軸垂直,Q為x軸上一點(diǎn),且,若,則______.15.如圖,SD是球O的直徑,A、B、C是球O表面上的三個(gè)不同的點(diǎn),,當(dāng)三棱錐的底面是邊長(zhǎng)為3的正三角形時(shí),則球O的半徑為_(kāi)_____.16.已知數(shù)列是等差數(shù)列,若,則___________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知拋物線C:經(jīng)過(guò)點(diǎn).(1)求拋物線C的方程及其準(zhǔn)線方程;(2)經(jīng)過(guò)拋物線C的焦點(diǎn)F的直線l與拋物線交于兩點(diǎn)M,N,且與拋物線的準(zhǔn)線交于點(diǎn)Q.若,求直線l的方程.18.(12分)已知是拋物線的焦點(diǎn),點(diǎn)在拋物線上,且.(1)求的方程;(2)過(guò)上一動(dòng)點(diǎn)作的切線交軸于點(diǎn).判斷線段的中垂線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.19.(12分)二項(xiàng)式展開(kāi)式中第五項(xiàng)的二項(xiàng)式系數(shù)是第三項(xiàng)系數(shù)的4倍.求:(1);(2)展開(kāi)式中的所有的有理項(xiàng).20.(12分)如圖,在四棱錐中,底面是矩形,平面于點(diǎn)M連接.(1)求證:平面;(2)求平面與平面所成角的余弦值.21.(12分)已知數(shù)列是遞增的等比數(shù)列,是其前n項(xiàng)和,,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和22.(10分)已知圓C經(jīng)過(guò),,三點(diǎn),并且與y軸交于P,Q兩點(diǎn),求線段PQ的長(zhǎng)度.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由雙曲線的的定義可得,于是將問(wèn)題轉(zhuǎn)化為求的最小值,由得出答案.【詳解】設(shè)雙曲線的由焦點(diǎn)為,且點(diǎn)A在雙曲線的兩支之間.由雙曲線的定義可得,即所以當(dāng)且僅當(dāng)三點(diǎn)共線時(shí),取得等號(hào).故選:B2、B【解析】根據(jù)分層抽樣的定義即可求解.【詳解】從甲車(chē)間抽取的人數(shù)為人故選:B3、B【解析】根據(jù)平面向量共線的性質(zhì),結(jié)合拋物線的定義進(jìn)行求解即可.【詳解】由已知得:,該拋物線的準(zhǔn)線方程為:,所以設(shè),因?yàn)椋?,由拋物線的定義可知:,故選:B4、D【解析】根據(jù)幾何體可分割為圓柱和曲邊圓錐,利用圓柱和圓錐的體積公式對(duì)幾何體的體積進(jìn)行估計(jì)即可.【詳解】可將幾何體看作一個(gè)以為半徑,高為的圓柱,再加上兩個(gè)曲邊圓錐,其中底面半徑分別為,,高分別為,,,,所以花瓶的容積,故最接近的是丁同學(xué)的估算,故選:D5、A【解析】首先由兩直線平行的充要條件求出參數(shù)的取值,再根據(jù)充分條件、必要條件的定義判斷即可;【詳解】因?yàn)橹本€與平行,所以,解得或,所以“”是“直線與平行”的充分不必要條件.故選:A.6、C【解析】由韋達(dá)定理可得方程的兩根之積為,從而可知直線、的斜率之積為,進(jìn)而可判斷兩直線的位置關(guān)系【詳解】設(shè)方程的兩根為、,則直線、的斜率,故與相交但不垂直故選:C7、B【解析】由等差數(shù)列的性質(zhì)將轉(zhuǎn)化為,而,可知數(shù)列是遞增數(shù),從而可求得結(jié)果【詳解】∵等差數(shù)列中,,∴,即.又,∴的前項(xiàng)和的最小值為故選:B8、A【解析】根據(jù)直線方程,求得直線斜率,再根據(jù)傾斜角和斜率的關(guān)系,即可判斷和選擇.【詳解】若直線的傾斜角為,則,當(dāng)時(shí),為鈍角,當(dāng),,當(dāng),為銳角;當(dāng)不存在時(shí),傾斜角為,對(duì)A:,顯然傾斜角為鈍角;對(duì)B:,傾斜角為銳角;對(duì)C:,傾斜角為銳角;對(duì)D:不存在,此時(shí)傾斜角為直角.故選:A.9、D【解析】轉(zhuǎn)化為,則最小即直線在軸上的截距最大,作出不等式組表示的可行域,數(shù)形結(jié)合即得解【詳解】轉(zhuǎn)化為,則最小即直線在軸上的截距最大作出不等式組表示的可行域如圖中陰影部分所示,作出直線,平移該直線,當(dāng)直線經(jīng)過(guò)時(shí),在軸上的截距最大,最小,此時(shí),故選:D10、A【解析】由公理2的推論即可得到答案.【詳解】由公理2的推論:過(guò)一條直線和直線外一點(diǎn),有且只有一個(gè)平面,可得在同一平面,故充分條件成立;由公理2的推論:過(guò)兩條平行直線,有且只有一個(gè)平面,可得,當(dāng)時(shí),同一個(gè)平面上,但中無(wú)三點(diǎn)共線,故必要條件不成立;故選:A【點(diǎn)睛】本題考查點(diǎn)線面的位置關(guān)系和充分必要條件的判斷,重點(diǎn)考查公理2及其推論;屬于中檔題;公理2的三個(gè)推論:經(jīng)過(guò)一條直線和直線外一點(diǎn),有且只有一個(gè)平面;經(jīng)過(guò)兩條平行直線,有且只有一個(gè)平面;經(jīng)過(guò)兩條相交直線,有且只有一個(gè)平面;11、B【解析】求出圓心到直線距離,減去半徑即為答案.【詳解】圓心到直線的距離,則從村莊外圍到小路的最短距離為故選:B12、C【解析】對(duì)求導(dǎo)得,得到m,n是兩個(gè)根,由根與系數(shù)的關(guān)系可得m,n的關(guān)系,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求單調(diào)性,進(jìn)而得最值.【詳解】由得:m,n是兩個(gè)根,由根與系數(shù)的關(guān)系得:,故,令記,則,故在上單調(diào)遞減.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意求出每年底的本利和,歸納即可.【詳解】由題意知,第一年本利和為:元,第二年本利和為:元,第三年本利和為:元,以此類(lèi)推,第十年本利和為:元,故答案:14、3【解析】先求點(diǎn)坐標(biāo),再由已知得Q點(diǎn)坐標(biāo),由列方程得解.【詳解】拋物線:()的焦點(diǎn),∵P為上一點(diǎn),與軸垂直,所以P的橫坐標(biāo)為,代入拋物線方程求得P的縱坐標(biāo)為,不妨設(shè),因?yàn)镼為軸上一點(diǎn),且,所以Q在F的右側(cè),又,,,因?yàn)?,所以,,所?故答案為:3.15、【解析】由三棱錐是正三棱錐,利用正弦定理得出三角形外接圓的半徑,進(jìn)而求出,再由余弦定理得出球O的半徑.【詳解】因?yàn)?,所以平面,三棱錐是正三棱錐,設(shè)為三角形外接圓的圓心,則在上,連接,,由得出,所以,在中,,即,解得,則球O的半徑為.故答案為:16、8【解析】利用計(jì)算可得答案.【詳解】設(shè)等差數(shù)列的公差為,故答案為:8.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)拋物線C的方程為,準(zhǔn)線方程為(2)或.【解析】(1)將點(diǎn)代入拋物線求出即可得出拋物線方程和準(zhǔn)線方程;(2)設(shè)出直線方程,與拋物線聯(lián)立,表示出弦長(zhǎng)和即可求出.【小問(wèn)1詳解】將代入可得,解得,所以拋物線C的方程為,準(zhǔn)線方程為;【小問(wèn)2詳解】由題得,設(shè)直線方程為,,設(shè),聯(lián)立方程,可得,則,所以,因?yàn)橹本€與準(zhǔn)線交于點(diǎn)Q,則,則,因?yàn)?,所以,解得,所以直線l的方程為或.18、(1)(2)過(guò)定點(diǎn),定點(diǎn)為【解析】(1)利用拋物線的定義求解;(2)設(shè)直線的方程為,,與拋物線方程聯(lián)立,根據(jù)直線與拋物線C相切,由求得,再得到,寫(xiě)出線段的中垂線方程求解.【小問(wèn)1詳解】解:由題意得,,解得=2p,因?yàn)辄c(diǎn)M(,4)在拋物線C上,所以42=2p=4p2,解得p=2,所以拋物線C的標(biāo)準(zhǔn)方程為.【小問(wèn)2詳解】由已知得,直線的斜率存在且不為0,所以設(shè)直線的方程為,與拋物線方程聯(lián)立并消去得:,因?yàn)橹本€與拋物線C相切,所以,得,,所以,得,在中,令得,所以,所以線段中點(diǎn)為,線段的中垂線方程為,所以線段的中垂線過(guò)定點(diǎn).19、(1)6;(2),,【解析】(1)先得到二項(xiàng)展開(kāi)式的通項(xiàng),再根據(jù)第五項(xiàng)的二項(xiàng)式系數(shù)是第三項(xiàng)系數(shù)的4倍,建立方程求解.(2)根據(jù)(1)的通項(xiàng)公式求解.【詳解】(1)二項(xiàng)展開(kāi)式的通項(xiàng).依題意得,,所以,解得.(2)由(1)得,當(dāng),3,6時(shí)為有理項(xiàng),故有理有,,.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的通項(xiàng)公式,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.20、(1)證明見(jiàn)詳解(2)【解析】(1)連接,交于點(diǎn),則為中點(diǎn),再由等腰三角形三線合一可知為中點(diǎn),連接,利用中位線可知,根據(jù)直線與平面平行的判定定理即可證明;(2)根據(jù)題意建立空間直角坐標(biāo)系,求出兩個(gè)平面的法向量,利用向量法即可求出兩平面所成角的余弦值.【小問(wèn)1詳解】連接,交于點(diǎn),則為中點(diǎn),因?yàn)?,于,則為中點(diǎn),連接,則,又因?yàn)槠矫妫矫?所以平面;【小問(wèn)2詳解】如圖所示,以點(diǎn)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,則,,設(shè)平面的一個(gè)法向量為,由可得,令,得,即,易知平面的一個(gè)法向量為,設(shè)平面與平面所成角

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論