![2024屆廣東省梅縣東山中學高二數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第1頁](http://file4.renrendoc.com/view/3335cdab60409a8f3251e12796d1d8c6/3335cdab60409a8f3251e12796d1d8c61.gif)
![2024屆廣東省梅縣東山中學高二數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第2頁](http://file4.renrendoc.com/view/3335cdab60409a8f3251e12796d1d8c6/3335cdab60409a8f3251e12796d1d8c62.gif)
![2024屆廣東省梅縣東山中學高二數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第3頁](http://file4.renrendoc.com/view/3335cdab60409a8f3251e12796d1d8c6/3335cdab60409a8f3251e12796d1d8c63.gif)
![2024屆廣東省梅縣東山中學高二數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第4頁](http://file4.renrendoc.com/view/3335cdab60409a8f3251e12796d1d8c6/3335cdab60409a8f3251e12796d1d8c64.gif)
![2024屆廣東省梅縣東山中學高二數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第5頁](http://file4.renrendoc.com/view/3335cdab60409a8f3251e12796d1d8c6/3335cdab60409a8f3251e12796d1d8c65.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆廣東省梅縣東山中學高二數(shù)學第一學期期末學業(yè)水平測試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.概率論起源于賭博問題.法國著名數(shù)學家布萊爾帕斯卡遇到兩個賭徒向他提出的賭金分配問題:甲、乙兩賭徒約定先贏滿局者,可獲得全部賭金法郎,當甲贏了局,乙贏了局,不再賭下去時,賭金如何分配?假設每局兩人輸贏的概率各占一半,每局輸贏相互獨立,那么賭金分配比較合理的是()A.甲法郎,乙法郎 B.甲法郎,乙法郎C.甲法郎,乙法郎 D.甲法郎,乙法郎2.在中國,周朝時期的商高提出了“勾三股四弦五”的勾股定理的特例.在西方,最早提出并證明此定理的為公元前世紀古希臘的畢達哥拉斯學派,他們用演繹法證明了直角三角形斜邊平方等于兩直角邊平方之和.若一個直角三角形的斜邊長等于則這個直角三角形周長的最大值為()A. B.C. D.3.在中國古代,人們用圭表測量日影長度來確定節(jié)氣,一年之中日影最長一天被定為冬至.從冬至算起,依次有冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣,其日影長依次成等差數(shù)列,若冬至、立春、春分日影長之和為31.5尺,小寒、雨水,清明日影長之和為28.5尺,則大寒、驚蟄、谷雨日影長之和為()A.25.5尺 B.34.5尺C.37.5尺 D.96尺4.如圖,在單位正方體中,以為原點,,,為坐標向量建立空間直角坐標系,則平面的法向量是()A.,1, B.,1,C.,, D.,1,5.已知數(shù)列中,,(),則()A. B.C. D.26.若直線l的傾斜角是鈍角,則l的方程可能是()A. B.C. D.7.設函數(shù),則()A.1 B.5C. D.08.在平行六面體ABCD﹣A1B1C1D1中,AC與BD的交點為M,設=,=,=,則=()A.++ B.+C.++ D.+9.函數(shù)f(x)=xex的單調增區(qū)間為()A.(-∞,-1) B.(-∞,e)C.(e,+∞) D.(-1,+∞)10.已知不等式的解集為,關于x的不等式的解集為B,且,則實數(shù)a的取值范圍為()A. B.C. D.11.已知雙曲線(,)的左、右焦點分別為,,.若雙曲線M的右支上存在點P,使,則雙曲線M的離心率的取值范圍為()A. B.C. D.12.某中學的“希望工程”募捐小組暑假期間走上街頭進行了一次募捐活動,共收到捐款1200元.他們第1天只得到10元,之后采取了積極措施,從第2天起,每一天收到的捐款都比前一天多10元.這次募捐活動一共進行的天數(shù)為()A.13 B.14C.15 D.16二、填空題:本題共4小題,每小題5分,共20分。13.已知、雙曲線的左、右焦點,A、B為雙曲線上關于原點對稱的兩點,且滿足,,則雙曲線的離心率為___________.14.已知直線和平面,且;①若異面,則至少有一個與相交;②若垂直,則至少有一個與垂直;對于以上命題中,所有正確的序號是___________.15.已知函數(shù),則________16.若是直線外一點,為線段的中點,,,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線與直線交于點.(1)求過點且平行于直線的直線的方程,并求出兩平行直線間的距離;(2)求過點并且在兩坐標軸上的截距互為相反數(shù)的直線的方程.18.(12分)如圖,在空間直角坐標系中有長方體,且,,點E在棱AB上移動.(1)證明:;(2)當E為AB的中點時,求直線AC與平面所成角的正弦值.19.(12分)如圖,是平行四邊形,已知,,平面平面.(1)證明:;(2)若,求平面與平面所成二面角的平面角的余弦值20.(12分)共享電動車(sharedev)是一種新的交通工具,通過掃碼開鎖,實現(xiàn)循環(huán)共享.某記者來到中國傳媒大學探訪,在校園噴泉旁停放了10輛共享電動車,這些電動車分為熒光綠和橙色兩種顏色,已知從這些共享電動車中任取1輛,取到的是橙色的概率為,若從這些共享電動車中任意抽取3輛.(1)求取出的3輛共享電動車中恰好有一輛是橙色的概率;(2)求取出的3輛共享電動車中橙色的電動車的輛數(shù)X的分布列與數(shù)學期望.21.(12分)已知拋物線上的點M(5,m)到焦點F的距離為6.(1)求拋物線C的方程;(2)過點作直線l交拋物線C于A,B兩點,且點P是線段AB的中點,求直線l方程.22.(10分)如圖,直三棱柱中,底面是邊長為2的等邊三角形,D為棱AC中點.(1)證明:AB1//平面;(2)若面B1BC1與面BC1D的夾角余弦值為,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用獨立事件計算出甲、乙各自贏得賭金的概率,由此可求得兩人各分配的金額.【詳解】甲贏得法郎的概率為,乙贏得法郎的概率為,因此,這法郎中分配給甲法郎,分配給乙法郎.故選:A.2、C【解析】設直角三角形的兩條直角邊邊長分別為,則,根據(jù)基本不等式求出的最大值后,可得三角形周長的最大值.【詳解】設直角三角形的兩條直角邊邊長分別為,則.因為,所以,所以,當且僅當時,等號成立.故這個直角三角形周長的最大值為故選:C3、A【解析】由題意可知,十二個節(jié)氣其日影長依次成等差數(shù)列,設冬至日的日影長為尺,公差為尺,利用等差數(shù)列的通項公式,求出,即可求出,從而得到答案【詳解】設從冬至日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣其日影長依次成等差數(shù)列{},如冬至日的日影長為尺,設公差為尺.由題可知,所以,,,,故選:A4、A【解析】設平面的法向量是,,,由可求得法向量.【詳解】在單位正方體中,以為原點,,,為坐標向量建立空間直角坐標系,,0,,,1,,,1,,,1,,,0,,設平面的法向量是,,,則,取,得,1,,平面的法向量是,1,.故選:.5、A【解析】由已知條件求出,可得數(shù)是以3為周期的周期數(shù)列,從而可得,進而可求得答案【詳解】因為,(),所以,所以數(shù)列的周期為3,,故選:A6、A【解析】根據(jù)直線方程,求得直線斜率,再根據(jù)傾斜角和斜率的關系,即可判斷和選擇.【詳解】若直線的傾斜角為,則,當時,為鈍角,當,,當,為銳角;當不存在時,傾斜角為,對A:,顯然傾斜角為鈍角;對B:,傾斜角為銳角;對C:,傾斜角為銳角;對D:不存在,此時傾斜角為直角.故選:A.7、B【解析】由題意結合導數(shù)的運算可得,再由導數(shù)的概念即可得解.【詳解】由題意,所以,所以原式等于.故選:B.8、B【解析】利用向量三角形法則、平行四邊形法則、向量共線定理即可得出【詳解】如圖所示,∵=+,又=,=-,=,∴=+,故選:B9、D【解析】求出,令可得答案.【詳解】由已知得,令,得,故函數(shù)f(x)=xex的單調增區(qū)間為(-1,+∞).故選:D.10、B【解析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分離參數(shù)求解即可.【詳解】由得,,解得,因為,所以所以可得在上恒成立,即在上恒成立,故只需,,當時,,故故選:B11、A【解析】利用三角形正弦定理結合,用a,c表示出,再由點P的位置列出不等式求解即得.【詳解】依題意,點P不與雙曲線頂點重合,在中,由正弦定理得:,因,于是得,而點P在雙曲線M的右支上,即,從而有,點P在雙曲線M的右支上運動,并且異于頂點,于是有,因此,,而,整理得,即,解得,又,故有,所以雙曲線M的離心率的取值范圍為.故選:A12、C【解析】由題意可得募捐構成了一個以10元為首項,以10元為公差的等差數(shù)列,設共募捐了天,然后建立關于的方程,求出即可【詳解】由題意可得,第一天募捐10元,第二天募捐20元,募捐構成了一個以10元為首項,以10元為公差的等差數(shù)列,根據(jù)題意,設共募捐了天,則,解得或(舍去),所以,故選:二、填空題:本題共4小題,每小題5分,共20分。13、【解析】可得四邊形為矩形,運用三角函數(shù)的定義可得,,由雙曲線的定義和矩形的性質,可得,由離心率公式求解即可.【詳解】、為雙曲線的左、右焦點,可得四邊形為矩形,在中,,∴,在中,,可得,,∴,∴,∵,∴,∴,故答案為:.【點睛】關鍵點點睛:得出四邊形為矩形,利用雙曲線的定義解決焦點三角形問題.14、①②【解析】假設與都不相交得到,得到①正確,若不垂直,上取一點,作交于,得到,得到②正確,得到答案.【詳解】若與都不相交,,,則,同理,故,與異面矛盾,①正確;若不垂直,上取一點,作交于,,,故,,故,,,故,,,故,②正確.故答案為:①②.15、.【解析】將代入計算,利用和互為相反數(shù),作差可得,計算可得結果.【詳解】解:函數(shù)則.,,作差可得:,即,解得:代入此時成立.故答案為:.16、【解析】根據(jù)題意得到,進而得到,求得的值,即可求解.【詳解】因為為線段的中點,所以,所以,又因為,所以,所以故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);.(2)或.【解析】(1)首先求得交點坐標,然后利用待定系數(shù)法確定直線方程,再根據(jù)兩平行直線之間距離公式即可計算距離;(2)根據(jù)截距式方程的求法解答【小問1詳解】由得設直線的方程為,代入點坐標得,∴直線的方程為∴兩平行線間的距離【小問2詳解】當直線過坐標原點時,直線的方程為,即;當直線不過坐標原點時,設直線的方程為,代入點坐標得,∴直線的方程的方程為,即綜上所述,直線的方程為或18、(1)證明見解析(2)【解析】(1)設,求出,,利用向量法能求出;(2)求出平面的法向量,利用向量法能求出直線與平面所成角的正弦值【小問1詳解】證明:設,,,,;【小問2詳解】當為的中點時,,,設平面的法向量,則,取,得,設直線與平面所成角為,則直線與平面所成角的正弦值為:19、(1)見解析;(2).【解析】(1)推導出,取BC的中點F,連結EF,可推出,從而平面,進而,由此得到平面,從而;(2)以為坐標原點,,所在直線分別為,軸,以過點且與平行的直線為軸,建立空間直角坐標系,利用向量法能求出平面與平面所成二面角的余弦值【詳解】(1)∵是平行四邊形,且∴,故,即取BC的中點F,連結EF.∵∴又∵平面平面∴平面∵平面∴∵平面∴平面,∵平面∴(2)∵,由(Ⅰ)得以為坐標原點,所在直線分別為軸,建立空間直角坐標系(如圖),則∴設平面的法向量為,則,即得平面一個法向量為由(1)知平面,所以可設平面的法向量為設平面與平面所成二面角的平面角為,則即平面與平面所成二面角的平面角的余弦值為.【點睛】用空間向量求解立體幾何問題的注意點(1)建立坐標系時要確保條件具備,即要證明得到兩兩垂直的三條直線,建系后要準確求得所需點的坐標(2)用平面的法向量求二面角的大小時,要注意向量的夾角與二面角大小間的關系,這點需要通過觀察圖形來判斷二面角是銳角還是鈍角,然后作出正確的結論20、(1);(2)分布列見解析,數(shù)學期望為.【解析】(1)先求出兩種顏色的電動車各有多少輛,然后根據(jù)超幾何分布求概率的方法即可求得答案;(2)先確定X的所有可能取值,進而求出概率并列出分布列,然后根據(jù)期望公式求出答案.【小問1詳解】因為從10輛共享電動車中任取一輛,取到橙色的概率為0.4,所以橙色的電動車有4輛,熒光綠的電動車有6輛.記A為“從中任取3輛共享單車中恰好有一輛是橙色”,則.【小問2詳解】隨機變量X的所有可能取值為0,1,2,3.所以,,,.所以分布列為0123數(shù)學期望.21、(1)(2)【解析】(1)由拋物線定義有求參數(shù),即可寫出拋物線方程.(2)由題意設,聯(lián)立拋物線方程,結合韋達定理、中點坐標求參數(shù)k,即可得直線l方程【小問1詳解】由題設,拋物線準線方程為,∴拋物線定義知:可得,故【小問2詳解】由題設,直線l的斜率存在且不為0,設聯(lián)立方程,得,整理得,則.又P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教版數(shù)學七年級下冊第41課時《用加減法解二元一次方程組(三)》聽評課記錄
- 湘教版數(shù)學八年級上冊2.5《第6課時 全等三角形的性質和判定的應用》聽評課記錄1
- 聽評課記錄英語九年級
- 人教版(廣西版)九年級數(shù)學上冊聽評課記錄21.2 解一元二次方程
- 生態(tài)自然保護游合同
- 狂犬疫苗打完免責協(xié)議書(2篇)
- 蘇科版數(shù)學八年級下冊《10.2 分式的基本性質》聽評課記錄
- 部編版道德與法治七年級上冊第三單元第七課《親情之愛第三框讓家更美好》聽課評課記錄
- 【2022年新課標】部編版七年級上冊道德與法治第三單元師長情誼6-7課共5課時聽課評課記錄
- 五年級數(shù)學上冊蘇教版《認識平方千米》聽評課記錄
- 部編版四年級語文下冊第一單元大單元教學設計
- 檢驗批劃分及容量
- 六年級下冊數(shù)學應用題練習100題及答案
- 5系鋁合金制備工藝
- 急診科護士的婦產科急癥急救
- 《案場服務禮儀》課件
- 醫(yī)療器械-軟件設計和開發(fā)-驗證報告-模板范例
- 學校食堂《風險管控清單》
- 小學生研學旅行展示ppt模板
- (完整版)高標準農田建設施工組織設計
- 鋼琴教學大綱
評論
0/150
提交評論