版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆河南駐許昌市高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點在拋物線上,則點到拋物線焦點的距離為()A.1 B.2C.3 D.42.已知橢圓的離心率為,則()A. B.C. D.3.在空間直角坐標(biāo)系中,點關(guān)于原點對稱的點的坐標(biāo)為()A. B.C. D.4.我國古代銅錢蘊(yùn)含了“外圓內(nèi)方”“天地合一”的思想.現(xiàn)有一銅錢如圖,其中圓的半徑為r,正方形的邊長為,若在圓內(nèi)隨即取點,取自陰影部分的概率是p,則圓周率的值為()A. B.C. D.5.已知O為坐標(biāo)原點,,點P是上一點,則當(dāng)取得最小值時,點P的坐標(biāo)為()A. B.C. D.6.直線的傾斜角為()A.150° B.120°C.60° D.30°7.若直線l的傾斜角是鈍角,則l的方程可能是()A. B.C. D.8.已知方程表示焦點在軸上的橢圓,則實數(shù)的取值范圍是()A. B.C. D.9.直線的傾斜角的取值范圍是()A. B.C. D.10.年1月初,中國多地出現(xiàn)散發(fā)病例甚至局部聚集性疫情,在此背景下,各地陸續(xù)發(fā)出“春節(jié)期間非必要不返鄉(xiāng)”的倡議,鼓勵企事業(yè)單位職工就地過年.某市針對非本市戶籍并在本市繳納社保,且春節(jié)期間在本市過年的外來務(wù)工人員,每人發(fā)放1000元疫情專項補(bǔ)貼.小張是該市的一名務(wù)工人員,則“他在該市過年”是“他可領(lǐng)取1000元疫情專項補(bǔ)貼”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.設(shè)函數(shù)在上可導(dǎo),則等于()A. B.C. D.以上都不對12.已知雙曲線,其中一條漸近線與x軸的夾角為,則雙曲線的漸近線方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)a為實數(shù),若直線與直線平行,則a值為______.14.若分別是平面的法向量,且,,,則的值為________.15.經(jīng)過兩點的雙曲線的標(biāo)準(zhǔn)方程是________16.已知函數(shù),則曲線在點處的切線方程為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直三棱柱中,,,與交于點,為的中點,(1)求證:平面;(2)求證:平面平面18.(12分)如圖,矩形ABCD,點E,F(xiàn)分別是線段AB,CD的中點,,,以EF為軸,將正方形AEFD翻折至與平面EBCF垂直的位置處.請按圖中所給的方法建立空間直角坐標(biāo)系,然后用空間向量坐標(biāo)法完成下列問題(1)求證:直線平面;(2)求直線與平面所成角的正弦值.19.(12分)已知數(shù)列滿足(1)求;(2)若,且數(shù)列的前n項和為,求證:20.(12分)已知橢圓()的左、右焦點為,,,離心率為(1)求橢圓標(biāo)準(zhǔn)方程(2)的左頂點為,過右焦點的直線交橢圓于,兩點,記直線,,的斜率分別為,,,求證:21.(12分)已知函數(shù)(1)討論函數(shù)的單調(diào)性;(2)若函數(shù)有兩個零點,,證明:22.(10分)已知等差數(shù)列的前n項和為,且.(1)求數(shù)列的通項公式及;(2)設(shè),求數(shù)列的前n項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】先求出拋物線方程,焦點坐標(biāo),再用兩點間距離公式進(jìn)行求解.【詳解】將代入拋物線中得:,解得:,所以拋物線方程為,焦點坐標(biāo)為,所以點到拋物線焦點的距離為故選:B2、D【解析】由離心率及橢圓參數(shù)關(guān)系可得,進(jìn)而可得.【詳解】因為,則,所以.故選:D3、C【解析】根據(jù)點關(guān)于原點對稱的性質(zhì)即可知答案.【詳解】由點關(guān)于原點對稱,則對稱點坐標(biāo)為該點對應(yīng)坐標(biāo)的相反數(shù),所以.故選:C4、B【解析】根據(jù)圓和正方形的面積公式結(jié)合幾何概型概率公式求解即可.【詳解】由可得故選:B5、A【解析】根據(jù)三點共線,可得,然后利用向量的減法坐標(biāo)運算,分別求得,最后計算,經(jīng)過化簡觀察,可得結(jié)果.【詳解】設(shè),則則∴當(dāng)時,取最小值為-10,此時點P的坐標(biāo)為.故選:A【點睛】本題主要考查向量數(shù)量積的坐標(biāo)運算,難點在于三點共線,審清題干,簡單計算,屬基礎(chǔ)題.6、D【解析】由斜率得傾斜角【詳解】直線的斜率為,所以傾斜角為30°.故選:D7、A【解析】根據(jù)直線方程,求得直線斜率,再根據(jù)傾斜角和斜率的關(guān)系,即可判斷和選擇.【詳解】若直線的傾斜角為,則,當(dāng)時,為鈍角,當(dāng),,當(dāng),為銳角;當(dāng)不存在時,傾斜角為,對A:,顯然傾斜角為鈍角;對B:,傾斜角為銳角;對C:,傾斜角為銳角;對D:不存在,此時傾斜角為直角.故選:A.8、D【解析】根據(jù)已知條件可得出關(guān)于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍.【詳解】因為方程表示焦點在軸上的橢圓,則,解得.故選:D.9、A【解析】由直線方程求得直線斜率的范圍,再由斜率等于傾斜角的正切值可得直線的傾斜角的取值范圍.【詳解】∵直線的斜率,,設(shè)直線的傾斜角為,則,解得.故選:A.10、B【解析】根據(jù)充分條件、必要條件的定義進(jìn)行判定.【詳解】只有非本市戶籍并在本市繳納社保的外來務(wù)工人員就地過年,才可領(lǐng)取1000元疫情專項補(bǔ)貼,小張是該市的一名務(wù)工人員,但他可能是本市戶籍或非本市戶籍但在本市未繳納社保,所以“他在該市過年”是“他可領(lǐng)取1000元疫情專項補(bǔ)貼”的必要不充分條件.故選:B.11、C【解析】根據(jù)目標(biāo)式,結(jié)合導(dǎo)數(shù)的定義即可得結(jié)果.【詳解】.故選:C12、C【解析】由已知條件計算可得,即得到結(jié)果.【詳解】由雙曲線,可知漸近線方程為,又雙曲線的一條漸近線與x軸的夾角為,故,即漸近線方程為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)兩直線平行得到,解方程組即可求出結(jié)果.【詳解】由題意可知,解得,故答案為:.14、-1或-2【解析】由題可得,即求.【詳解】依題意,,解得或.故答案為:或.15、【解析】設(shè)雙曲線的標(biāo)準(zhǔn)方程將點坐標(biāo)代入求參數(shù),即可確定標(biāo)準(zhǔn)方程.【詳解】令,則,可得,令,則,無解.故雙曲線的標(biāo)準(zhǔn)方程是.故答案為:.16、【解析】先求函數(shù)的導(dǎo)數(shù),再利用導(dǎo)數(shù)的幾何意義求函數(shù)在處的切線方程.【詳解】,,,所以曲線在點處的切線方程為,即.故答案為:【點睛】本題考查導(dǎo)數(shù)的幾何意義,重點考查計算能力,屬于基礎(chǔ)題型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】(1)根據(jù)直棱柱的性質(zhì)、平行四邊形的性質(zhì),結(jié)合三角形中位線定理、線面平行的判定定理進(jìn)行證明即可;(2)根據(jù)直棱柱的性質(zhì)、菱形的判定定理和性質(zhì),結(jié)合線面垂直的判定定理、面面垂直的判定定理進(jìn)行證明即可.【小問1詳解】在直三棱柱中,,且四邊形平行四邊形,又,則為的中點,又為的中點,故,即:,且平面,平面,所以平面;【小問2詳解】在直三棱柱中,平面,平面,則,且,,平面,故平面,因為平面,所以,又在平行四邊形中,,則四邊形菱形,所以,且,平面,故平面,因為平面,所以平面平面.18、(1)證明見解析;(2).【解析】(1)以為坐標(biāo)原點,建立空間直角坐標(biāo)系,寫出對應(yīng)向量的坐標(biāo),根據(jù)向量垂直,即可證明線面垂直;(2)根據(jù)(1)中所求平面的法向量,利用向量法,即可容易求得結(jié)果.【小問1詳解】矩形ABCD中,點E,F(xiàn)分別是線段AB,CD的中點,∴,∴翻折后∵平面平面,且面,面,故可得面,又面,∴,故兩兩垂直,∴分別以,,為,,軸建立如圖所示空間直角坐標(biāo)系:∵,則,,,,,,∵,,∴,∴,,又面,∴平面.【小問2詳解】由(1)知,平面的法向量為,又向量,則向量與法向量為所成角的余角即是直線與平面所成角,設(shè)直線與平面所成角為,向量與法向量為所成角為,則.故直線與平面所成角正弦值為.19、(1)(2)證明見解析【解析】(1)先求得,猜想,然后利用數(shù)學(xué)歸納法進(jìn)行證明.(2)利用放縮法證得結(jié)論成立.【小問1詳解】依題意,,,,猜想,下面用數(shù)學(xué)歸納法進(jìn)行證明:當(dāng)時,結(jié)論成立,假設(shè)當(dāng)時結(jié)論成立,即,由,,所以當(dāng)時,有,結(jié)論成立,所以當(dāng)時,.【小問2詳解】由(1)得,且為單調(diào)遞增數(shù)列,所以.所以.20、(1);(2)證明見解析【解析】(1)由可求出,結(jié)合離心率可知,進(jìn)而可求出,即可求出標(biāo)準(zhǔn)方程.(2)由題意知,,則由直線的點斜式方程可得直線的解析式為,與橢圓進(jìn)行聯(lián)立,設(shè),,結(jié)合韋達(dá)定理可得,從而由斜率的計算公式對進(jìn)行整理化簡從而可證明.【詳解】(1)解:因為,所以.又因為離心率,所以,則,所以橢圓的標(biāo)準(zhǔn)方程是(2)證明:由題意知,,,則直線的解析式為,代入橢圓方程,得設(shè),,則.又因為,,所以【點睛】關(guān)鍵點睛:本題第二問的關(guān)鍵是聯(lián)立直線和橢圓的方程后,結(jié)合韋達(dá)定理,用表示交點橫坐標(biāo)的和與積,從而代入進(jìn)行整理化簡.21、(1)函數(shù)的單調(diào)性見解析;(2)證明見解析.【解析】(1)求出函數(shù)的導(dǎo)數(shù),按a值分類討論判斷的正負(fù)作答.(2)將分別代入計算化簡變形,再對所證不等式作等價變形,構(gòu)造函數(shù),借助函數(shù)導(dǎo)數(shù)推理作答.【小問1詳解】已知函數(shù)的定義域為,,當(dāng)時,恒成立,所以在區(qū)間上單調(diào)遞增;當(dāng)時,由,解得,由,解得,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,所以,當(dāng)時,在上單調(diào)遞增,當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減.【小問2詳解】依題意,不妨設(shè),則,,于是得,即,亦有,即,因此,,要證明,即證,即證,即證,即證,令,,,則有在上單調(diào)遞增,,,即成立,所以.【點睛】思路點睛:涉及
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版人力資源規(guī)劃與培訓(xùn)顧問協(xié)議版B版
- 2025版工傷事故賠償協(xié)議書簽訂時間規(guī)定3篇
- 少兒圍棋培訓(xùn)課件
- 2025年度物業(yè)公司物業(yè)客戶投訴處理服務(wù)合同3篇
- 2024有孩子夫妻協(xié)商離婚協(xié)議參考格式
- 卷煙行業(yè)中的多渠道客戶服務(wù)策略
- 2024版二手房交易資金擔(dān)保結(jié)算協(xié)議
- 2024版住宅水電安裝工程總包協(xié)議條款一
- 白內(nèi)障患者手術(shù)期的護(hù)理
- 2024簽二手房買賣合同物業(yè)交割細(xì)則2篇
- 超短波操作流程圖
- 小學(xué)2022 年國家義務(wù)教育質(zhì)量監(jiān)測工作方案
- 化學(xué)品安全技術(shù)說明(膠水)
- 南寧市中小學(xué)學(xué)籍管理系統(tǒng)數(shù)據(jù)采集表
- 中空吹塑成型課件
- 領(lǐng)先閱讀X計劃第四級Bug Hunt 教學(xué)設(shè)計
- 《詩詞格律》word版
- 預(yù)算第二十三講
- 高中體育與健康人教版全一冊 6.2田徑—短跑 課件(共11張PPT)
- 蔬菜供貨服務(wù)保障方案
- WordA4信紙(A4橫條直接打印版)
評論
0/150
提交評論