![2024屆湖南省邵東縣三中數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第1頁](http://file4.renrendoc.com/view/fc32c79d0101b91951c5b1be75701e9a/fc32c79d0101b91951c5b1be75701e9a1.gif)
![2024屆湖南省邵東縣三中數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第2頁](http://file4.renrendoc.com/view/fc32c79d0101b91951c5b1be75701e9a/fc32c79d0101b91951c5b1be75701e9a2.gif)
![2024屆湖南省邵東縣三中數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第3頁](http://file4.renrendoc.com/view/fc32c79d0101b91951c5b1be75701e9a/fc32c79d0101b91951c5b1be75701e9a3.gif)
![2024屆湖南省邵東縣三中數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第4頁](http://file4.renrendoc.com/view/fc32c79d0101b91951c5b1be75701e9a/fc32c79d0101b91951c5b1be75701e9a4.gif)
![2024屆湖南省邵東縣三中數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第5頁](http://file4.renrendoc.com/view/fc32c79d0101b91951c5b1be75701e9a/fc32c79d0101b91951c5b1be75701e9a5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆湖南省邵東縣三中數(shù)學(xué)高二上期末聯(lián)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在正方體中,P,Q兩點分別從點B和點出發(fā),以相同的速度在棱BA和上運動至點A和點,在運動過程中,直線PQ與平面ABCD所成角的變化范圍為A. B.C. D.2.在各項都為正數(shù)的數(shù)列中,首項為數(shù)列的前項和,且,則()A. B.C. D.3.意大利數(shù)學(xué)家斐波那契,以兔子繁殖為例,引入“兔子數(shù)列”,,,,,,,,…,在實際生活中很多花朵的瓣數(shù)恰是斐波那契數(shù)列中的數(shù),斐波那契數(shù)列在物理化學(xué)等領(lǐng)域也有著廣泛的應(yīng)用.已知斐波那契數(shù)列滿足:,,,若,則等于()A. B.C. D.4.已知數(shù)列是等比數(shù)列,,是函數(shù)的兩個不同零點,則等于()A. B.C.14 D.165.過點P(2,1)作直線l,使l與雙曲線-y2=1有且僅有一個公共點,這樣的直線l共有A.1條 B.2條C.3條 D.4條6.已知直線l:,則下列結(jié)論正確的是()A.直線l的傾斜角是B.直線l在x軸上的截距為1C.若直線m:,則D.過與直線l平行的直線方程是7.圓的圓心到直線的距離為2,則()A. B.C. D.28.圓截直線所得弦的最短長度為()A.2 B.C. D.49.某次射擊比賽中,某選手射擊一次擊中10環(huán)的概率是,連續(xù)兩次均擊中10環(huán)的概率是,已知某次擊中10環(huán),則隨后一次擊中10環(huán)的概率是A. B.C. D.10.在正方體中,E,F(xiàn)分別為AB,CD的中點,則與平面所成的角的正弦值為()A. B.C. D.11.設(shè)等差數(shù)列的前項和為,若,則的值為()A.28 B.39C.56 D.11712.直線的傾斜角為()A.-30° B.60°C.150° D.120°二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為,過焦點的直線交拋物線與兩點,且,則拋物線的準(zhǔn)線方程為________.14.已知是雙曲線的左、右焦點,點M是雙曲線E上的任意一點(不是頂點),過作角平分線的垂線,垂足為N,O是坐標(biāo)原點.若,則雙曲線E的漸近線方程為__________15.正四棱柱中,,,點為底面四邊形的中心,點在側(cè)面四邊形的邊界及其內(nèi)部運動,若,則線段長度的最大值為__________16.過直線上一動點P作圓的兩條切線,切點分別為A,B,則四邊形PACB面積的最小值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列的公差,前3項和,且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.18.(12分)如圖,在四棱錐P-ABCD中,平面ABCD,,,,,.(1)證明:平面平面PAC;(2)求平面PCD與平面PAB夾角的余弦值.19.(12分)某種機械設(shè)備隨著使用年限的增加,它的使用功能逐漸減退,使用價值逐年減少,通常把它使用價值逐年減少的“量”換算成費用,稱之為“失效費”.某種機械設(shè)備的使用年限(單位:年)與失效費(單位:萬元)的統(tǒng)計數(shù)據(jù)如下表所示:使用年限(單位:年)1234567失效費(單位:萬元)2.903.303.604.404.805.205.90(1)由上表數(shù)據(jù)可知,可用線性回歸模型擬合與關(guān)系.請用相關(guān)系數(shù)加以說明;(精確到0.01)(2)求出關(guān)于的線性回歸方程,并估算該種機械設(shè)備使用8年的失效費參考公式:相關(guān)系數(shù)線性回歸方程中斜率和截距最小二乘估計計算公式:,參考數(shù)據(jù):,,20.(12分)已知圓,直線(1)求證:直線與圓恒有兩個交點;(2)設(shè)直線與圓的兩個交點為、,求的取值范圍21.(12分)在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點,已知直線:mx-(2-m)y-4=0與直線h:x+y-2=0的交點M在第一三象限的角平分線上.(1)求實數(shù)m的值;(2)若點P在直線l上且,求點P的坐標(biāo).22.(10分)如圖,多面體中,平面平面,,四邊形為平行四邊形.(1)證明:;(2)若,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先過點作于點,連接,根據(jù)題意,得到即為直線與平面所成的角,設(shè)正方體棱長為,設(shè),推出,進而可求出結(jié)果.【詳解】過點作于點,連接,因為四棱柱為正方體,所以易得平面,因此即為直線與平面所成的角,設(shè)正方體棱長為,設(shè),則,,因為兩點分別從點和點出發(fā),以相同的速度在棱和上運動至點和點,所以,因此,所以,因為,所以,則,因此.故選:C.【點睛】本題主要考查求線面角的取值范圍,熟記線面角的定義即可,屬于??碱}型.2、C【解析】當(dāng)時,,故可以得到,因為,進而得到,所以是等比數(shù)列,進而求出【詳解】由,得,得,又?jǐn)?shù)列各項均為正數(shù),且,∴,∴,即∴數(shù)列是首項,公比的等比數(shù)列,其前項和,得,故選:C.3、A【解析】利用可化簡得,由此可得.【詳解】由得:,,即.故選:A.4、C【解析】根據(jù)等比數(shù)列的性質(zhì)求得正確答案.【詳解】是函數(shù)的兩個不同零點,所以,由于數(shù)列是等比數(shù)列,所以.故選:C5、B【解析】利用幾何法,結(jié)合雙曲線的幾何性質(zhì),得出符合條件的結(jié)論.【詳解】由雙曲線的方程可知其漸近線方程為y=±x,則點P(2,1)在漸近線y=x上,又雙曲線的右頂點為A(2,0),如圖所示.滿足條件的直線l有兩條:x=2,y-1=-(x-2)【點睛】該題考查的是有關(guān)直線與雙曲線的公共點有一個的條件,結(jié)合雙曲線的性質(zhì),結(jié)合圖形,得出結(jié)果,屬于中檔題目.6、D【解析】A.將直線方程的一般式化為斜截式可得;B.令y=0可得;C.求出直線m斜率即可判斷;D.設(shè)要求直線的方程為,將代入即可.【詳解】根據(jù)題意,依次分析選項:對于A,直線l:,即,其斜率,則傾斜角是,A錯誤;對于B,直線l:,令y=0,可得,l在x軸上的截距為,B錯誤;對于C,直線m:,其斜率,,故直線m與直線l不垂直,C錯誤;對于D,設(shè)要求直線的方程為,將代入,可得t=0,即要求直線為,D正確;故選:D7、B【解析】配方求出圓心坐標(biāo),再由點到直線距離公式計算【詳解】圓的標(biāo)準(zhǔn)方程是,圓心為,∴,解得故選:B.【點睛】本題考查圓的標(biāo)準(zhǔn)方程,考查點到直線距離公式,屬于基礎(chǔ)題8、A【解析】由題知直線過定點,且在圓內(nèi),進而求解最值即可.【詳解】解:將直線化為,所以聯(lián)立方程得所以直線過定點將化為標(biāo)準(zhǔn)方程得,即圓心為,半徑為,由于,所以點在圓內(nèi),所以點與圓圓心間的距離為,所以圓截直線所得弦的最短長度為故選:A9、B【解析】根據(jù)條件概率的計算公式,得所求概率為,故選B.10、B【解析】作出線面角構(gòu)造三角形直接求解,建立空間直角坐標(biāo)系用向量法求解.【詳解】設(shè)正方體棱長為2,、F分別為AB、CD的中點,由正方體性質(zhì)知平面,所以平面平面,在平面作,則平面,因為,所以即為所求角,所以.故選:B11、B【解析】由已知結(jié)合等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)即可求解.【詳解】因為等差數(shù)列中,,則.故選:B.12、C【解析】根據(jù)直線斜率即可得傾斜角.【詳解】設(shè)直線的傾斜角為由已知得,所以直線的斜率,由于,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意作出圖形,設(shè)直線與軸的夾角為,不妨設(shè),設(shè)拋物線的準(zhǔn)線與軸的交點為,過點作準(zhǔn)線與軸的垂線,垂足分別為,過點分別作準(zhǔn)線和軸的垂線,垂足分別為,進一步可以得到,進而求出,同理求出,最后解得答案.【詳解】設(shè)直線與軸的夾角為,根據(jù)拋物線的對稱性,不妨設(shè),如圖所示.設(shè)拋物線的準(zhǔn)線與軸的交點為,過點作準(zhǔn)線與軸的垂線,垂足分別為,過點分別作準(zhǔn)線和軸的垂線,垂足分別為.由拋物線的定義可知,,同理:,于是,,則拋物線的準(zhǔn)線方程為:.故答案為:.14、【解析】延長交于點,利用角平分線結(jié)合中位線和雙曲線定義求得的關(guān)系,然后利用,及漸近線方程即可求得結(jié)果.【詳解】延長交于點,∵是的平分線,,,又是中點,所以,且,又,,,又,雙曲線E的漸近線方程為故答案為:.15、【解析】根據(jù)正四棱柱的性質(zhì)、矩形的性質(zhì),線面垂直的判定定理,結(jié)合勾股定理進行求解即可.【詳解】當(dāng)位于點時,因為是正方形,所以,由正四棱柱的性質(zhì)可知,平面,因為平面,所以,因為平面,所以平面,平面,所以,因此當(dāng)位于點時,滿足題意,當(dāng)點位于邊點時,若,在矩形中,,因為,所以,因此,所以有,此時,又平面,所以平面,故點的軌跡在線段上,,所以線段長度的最大值為.故答案為:關(guān)鍵點睛:利用特殊點判斷出點的軌跡是解題的關(guān)鍵.16、【解析】當(dāng)圓心與點的距離最小時,切線長,最小,則四邊形的面積最小,此時是點到已知直線的垂線段.然后利用點到直線的距離公式求出圓心到直線的距離,再結(jié)合弦長公式和面積公式進行計算即可.【詳解】解:根據(jù)題意可知:當(dāng)圓心與點的距離最小時,切線長,最小,則四邊形的面積最小,此時是點到已知直線的垂線段.圓心到直線的距離為四邊形面積的最小值為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由,且成等比數(shù)列列式求解出和,然后寫出;(2)由,用錯位相減法求和即可.【詳解】(1)∵,∴①又∵成等比數(shù)列,∴,②∵,由①②解得:,,∴(2)∵,,∴兩式相減,得∴【點睛】本題考查了等差數(shù)列基本量的計算,錯位相減法求和,屬于中檔題.18、(1)證明見解析(2)【解析】(1)過點C作于點H,由平面幾何知識證明,然后由線面垂直的性質(zhì)得線線垂直,從而得線面垂直,然后可得面面垂直;(2)建立如圖所示的空間直角坐標(biāo)系,用空間向量法求二面角【小問1詳解】在梯形ABCD中,過點C作于點H.由,,,,可知,,,.所以,即,①因為平面ABCD,平面ABCD,所以,②由①②及,平面PAC,得平面PAC.又由平面PCD,所以平面平面PAC.【小問2詳解】因為AB,AD,AP兩兩垂直,所以以A為原點,以AB,AD,AP所在的直線分別為x,y,z軸建立空間直角坐標(biāo)系,可得A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,3),,.設(shè)平面PCD的法向量為,則,取,則,,則.平面PAB的一個法向量為,所以,所以平面PCD與平面PAB所成的銳二面角的余弦值為.19、(1)答案見解析;(2);失效費為6.3萬元【解析】(1)根據(jù)相關(guān)系數(shù)公式計算出相關(guān)系數(shù)可得結(jié)果;(2)根據(jù)公式求出和可得關(guān)于的線性回歸方程,再代入可求出結(jié)果.【詳解】(1)由題意,知,,∴結(jié)合參考數(shù)據(jù)知:因為與的相關(guān)系數(shù)近似為0.99,所以與的線性相關(guān)程度相當(dāng)大,從而可以用線性回歸模型擬合與的關(guān)系(2)∵,∴∴關(guān)于的線性回歸方程為,將代入線性回歸方程得萬元,∴估算該種機械設(shè)備使用8年的失效費為6.3萬元20、(1)證明見解析(2)【解析】(1)根據(jù)直線的方程可得直線經(jīng)過定點,而點到圓心的距離小于半徑,故點在圓的內(nèi)部,由此即可證明結(jié)果(2)由圓的性質(zhì)可知,當(dāng)過圓心時,取最大值,當(dāng)和過的直徑垂直時,取最小值,由此即可求出結(jié)果.【小問1詳解】證明:由于直線,即令,解得,所以恒過點,所以,所以點在圓內(nèi),所以直線與圓恒有兩個交點;【小問2詳解】解:當(dāng)過圓心時,取最大值,即圓的直徑,由圓的半徑,所以的最大值為;當(dāng)和過的直徑垂直時,取最小值,此時圓心到的距離,所以,故的最小值為綜上,的取值范圍.21、(1)3(2)【解析】(1)求出直線與直線的交點坐標(biāo),代入直線的方程可得值;(2)設(shè),代入已知等式可求得值,得坐標(biāo)【小問1詳解】由得,即所以,【小問2詳解】由(1)直線方程是,在直線上,設(shè),則,解得,所以點坐標(biāo)為22、(1)證明見解析(2)【解析】(1)先通過平面平面得到,再結(jié)合,可得平面,進而可得結(jié)論;(2)取的中點,的中點,連接,,以點為坐標(biāo)原點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教版數(shù)學(xué)七年級下冊第41課時《用加減法解二元一次方程組(三)》聽評課記錄
- 湘教版數(shù)學(xué)八年級上冊2.5《第6課時 全等三角形的性質(zhì)和判定的應(yīng)用》聽評課記錄1
- 聽評課記錄英語九年級
- 人教版(廣西版)九年級數(shù)學(xué)上冊聽評課記錄21.2 解一元二次方程
- 生態(tài)自然保護游合同
- 狂犬疫苗打完免責(zé)協(xié)議書(2篇)
- 蘇科版數(shù)學(xué)八年級下冊《10.2 分式的基本性質(zhì)》聽評課記錄
- 部編版道德與法治七年級上冊第三單元第七課《親情之愛第三框讓家更美好》聽課評課記錄
- 【2022年新課標(biāo)】部編版七年級上冊道德與法治第三單元師長情誼6-7課共5課時聽課評課記錄
- 五年級數(shù)學(xué)上冊蘇教版《認(rèn)識平方千米》聽評課記錄
- 2025年個人學(xué)習(xí)領(lǐng)導(dǎo)講話心得體會和工作措施例文(6篇)
- 2025大連機場招聘109人易考易錯模擬試題(共500題)試卷后附參考答案
- 2020-2025年中國中小企業(yè)行業(yè)市場調(diào)研分析及投資戰(zhàn)略咨詢報告
- 2025-2030年中國電動高爾夫球車市場運行狀況及未來發(fā)展趨勢分析報告
- 物流中心原材料入庫流程
- 河南省濮陽市2024-2025學(xué)年高一上學(xué)期1月期末考試語文試題(含答案)
- 長沙市2025屆中考生物押題試卷含解析
- 2024年08月北京中信銀行北京分行社會招考(826)筆試歷年參考題庫附帶答案詳解
- 2024年芽苗菜市場調(diào)查報告
- 蘇教版二年級數(shù)學(xué)下冊全冊教學(xué)設(shè)計
- 職業(yè)技術(shù)學(xué)院教學(xué)質(zhì)量監(jiān)控與評估處2025年教學(xué)質(zhì)量監(jiān)控督導(dǎo)工作計劃
評論
0/150
提交評論