版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
內(nèi)蒙古阿拉善2023年下學期高三數(shù)學試題第三次模擬考試試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復數(shù),,其中是虛數(shù)單位,則的最大值為()A. B. C. D.2.拋擲一枚質(zhì)地均勻的硬幣,每次正反面出現(xiàn)的概率相同,連續(xù)拋擲5次,至少連續(xù)出現(xiàn)3次正面朝上的概率是()A. B. C. D.3.設命題:,,則為A., B.,C., D.,4.已知函數(shù)且,則實數(shù)的取值范圍是()A. B. C. D.5.已知函數(shù),則不等式的解集是()A. B. C. D.6.過拋物線的焦點作直線與拋物線在第一象限交于點A,與準線在第三象限交于點B,過點作準線的垂線,垂足為.若,則()A. B. C. D.7.已知,則“m⊥n”是“m⊥l”的A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件8.已知集合,,則()A. B.C. D.9.已知集合,,若AB,則實數(shù)的取值范圍是()A. B. C. D.10.已知,則的取值范圍是()A.[0,1] B. C.[1,2] D.[0,2]11.已知函數(shù),,且在上是單調(diào)函數(shù),則下列說法正確的是()A. B.C.函數(shù)在上單調(diào)遞減 D.函數(shù)的圖像關(guān)于點對稱12.設復數(shù)滿足為虛數(shù)單位),則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一個算法的偽代碼如圖所示,執(zhí)行此算法,最后輸出的T的值為________.14.在平面直角坐標系中,已知圓及點,設點是圓上的動點,在中,若的角平分線與相交于點,則的取值范圍是_______.15.某商場一年中各月份的收入、支出情況的統(tǒng)計如圖所示,下列說法中正確的是______.①2至3月份的收入的變化率與11至12月份的收入的變化率相同;②支出最高值與支出最低值的比是6:1;③第三季度平均收入為50萬元;④利潤最高的月份是2月份.16.已知等差數(shù)列滿足,,則的值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若函數(shù),求的極值;(2)證明:.(參考數(shù)據(jù):)18.(12分)在中,角的對邊分別為,且.(1)求角的大??;(2)若,求邊上的高.19.(12分)已知函數(shù)(1)求函數(shù)的單調(diào)遞增區(qū)間(2)記函數(shù)的圖象為曲線,設點是曲線上不同兩點,如果在曲線上存在點,使得①;②曲線在點M處的切線平行于直線AB,則稱函數(shù)存在“中值和諧切線”,當時,函數(shù)是否存在“中值和諧切線”請說明理由20.(12分)如圖,已知橢圓C:x24+y2=1,F(xiàn)為其右焦點,直線l:y=kx+m(km<0)與橢圓交于P(x1(I)試用x1表示|PF|(II)證明:原點O到直線l的距離為定值.21.(12分)已知函數(shù)(為實常數(shù)).(1)討論函數(shù)在上的單調(diào)性;(2)若存在,使得成立,求實數(shù)的取值范圍.22.(10分)橢圓的左、右焦點分別為,橢圓上兩動點使得四邊形為平行四邊形,且平行四邊形的周長和最大面積分別為8和.(1)求橢圓的標準方程;(2)設直線與橢圓的另一交點為,當點在以線段為直徑的圓上時,求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由復數(shù)的幾何意義可得表示復數(shù),對應的兩點間的距離,由兩點間距離公式即可求解.【詳解】由復數(shù)的幾何意義可得,復數(shù)對應的點為,復數(shù)對應的點為,所以,其中,故選C【點睛】本題主要考查復數(shù)的幾何意義,由復數(shù)的幾何意義,將轉(zhuǎn)化為兩復數(shù)所對應點的距離求值即可,屬于基礎題型.2、A【解析】
首先求出樣本空間樣本點為個,再利用分類計數(shù)原理求出三個正面向上為連續(xù)的3個“1”的樣本點個數(shù),再求出重復數(shù)量,可得事件的樣本點數(shù),根據(jù)古典概型的概率計算公式即可求解.【詳解】樣本空間樣本點為個,具體分析如下:記正面向上為1,反面向上為0,三個正面向上為連續(xù)的3個“1”,有以下3種位置1____,__1__,____1.剩下2個空位可是0或1,這三種排列的所有可能分別都是,但合并計算時會有重復,重復數(shù)量為,事件的樣本點數(shù)為:個.故不同的樣本點數(shù)為8個,.故選:A【點睛】本題考查了分類計數(shù)原理與分步計數(shù)原理,古典概型的概率計算公式,屬于基礎題3、D【解析】
直接利用全稱命題的否定是特稱命題寫出結(jié)果即可.【詳解】因為全稱命題的否定是特稱命題,所以,命題:,,則為:,.故本題答案為D.【點睛】本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎題.4、B【解析】
構(gòu)造函數(shù),判斷出的單調(diào)性和奇偶性,由此求得不等式的解集.【詳解】構(gòu)造函數(shù),由解得,所以的定義域為,且,所以為奇函數(shù),而,所以在定義域上為增函數(shù),且.由得,即,所以.故選:B【點睛】本小題主要考查利用函數(shù)的單調(diào)性和奇偶性解不等式,屬于中檔題.5、B【解析】
由導數(shù)確定函數(shù)的單調(diào)性,利用函數(shù)單調(diào)性解不等式即可.【詳解】函數(shù),可得,時,,單調(diào)遞增,∵,故不等式的解集等價于不等式的解集..∴.故選:B.【點睛】本題主要考查了利用導數(shù)判定函數(shù)的單調(diào)性,根據(jù)單調(diào)性解不等式,屬于中檔題.6、C【解析】
需結(jié)合拋物線第一定義和圖形,得為等腰三角形,設準線與軸的交點為,過點作,再由三角函數(shù)定義和幾何關(guān)系分別表示轉(zhuǎn)化出,,結(jié)合比值與正切二倍角公式化簡即可【詳解】如圖,設準線與軸的交點為,過點作.由拋物線定義知,所以,,,,所以.故選:C【點睛】本題考查拋物線的幾何性質(zhì),三角函數(shù)的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于中檔題7、B【解析】
構(gòu)造長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,然后再在這兩個面中根據(jù)題意恰當?shù)倪x取直線為m,n即可進行判斷.【詳解】如圖,取長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,直線=直線。若令AD1=m,AB=n,則m⊥n,但m不垂直于若m⊥,由平面平面可知,直線m垂直于平面β,所以m垂直于平面β內(nèi)的任意一條直線∴m⊥n是m⊥的必要不充分條件.故選:B.【點睛】本題考點有兩個:①考查了充分必要條件的判斷,在確定好大前提的條件下,從m⊥n?m⊥?和m⊥?m⊥n?兩方面進行判斷;②是空間的垂直關(guān)系,一般利用長方體為載體進行分析.8、A【解析】
根據(jù)對數(shù)性質(zhì)可知,再根據(jù)集合的交集運算即可求解.【詳解】∵,集合,∴由交集運算可得.故選:A.【點睛】本題考查由對數(shù)的性質(zhì)比較大小,集合交集的簡單運算,屬于基礎題.9、D【解析】
先化簡,再根據(jù),且AB求解.【詳解】因為,又因為,且AB,所以.故選:D【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎題.10、D【解析】
設,可得,構(gòu)造()22,結(jié)合,可得,根據(jù)向量減法的模長不等式可得解.【詳解】設,則,,∴()2?2||22=4,所以可得:,配方可得,所以,又則[0,2].故選:D.【點睛】本題考查了向量的運算綜合,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.11、B【解析】
根據(jù)函數(shù),在上是單調(diào)函數(shù),確定,然后一一驗證,A.若,則,由,得,但.B.由,,確定,再求解驗證.C.利用整體法根據(jù)正弦函數(shù)的單調(diào)性判斷.D.計算是否為0.【詳解】因為函數(shù),在上是單調(diào)函數(shù),所以,即,所以,若,則,又因為,即,解得,而,故A錯誤.由,不妨令,得由,得或當時,,不合題意.當時,,此時所以,故B正確.因為,函數(shù),在上是單調(diào)遞增,故C錯誤.,故D錯誤.故選:B【點睛】本題主要考查三角函數(shù)的性質(zhì)及其應用,還考查了運算求解的能力,屬于較難的題.12、B【解析】
易得,分子分母同乘以分母的共軛復數(shù)即可.【詳解】由已知,,所以.故選:B.【點睛】本題考查復數(shù)的乘法、除法運算,考查學生的基本計算能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由程序中的變量、各語句的作用,結(jié)合流程圖所給的順序,模擬程序的運行,即可得到答案.【詳解】根據(jù)題中的程序框圖可得:,執(zhí)行循環(huán)體,,不滿足條件,執(zhí)行循環(huán)體,,此時,滿足條件,退出循環(huán),輸出的值為.故答案為:【點睛】本題主要考查了程序和算法,依次寫出每次循環(huán)得到的,的值是解題的關(guān)鍵,屬于基本知識的考查.14、【解析】
由角平分線成比例定理推理可得,進而設點表示向量構(gòu)建方程組表示點P坐標,代入圓C方程即可表示動點Q的軌跡方程,再由將所求視為該圓上的點與原點間的距離,所以其最值為圓心到原點的距離加減半徑.【詳解】由題可構(gòu)建如圖所示的圖形,因為AQ是的角平分線,由角平分線成比例定理可知,所以.設點,點,即,則,所以.又因為點是圓上的動點,則,故點Q的運功軌跡是以為圓心為半徑的圓,又即為該圓上的點與原點間的距離,因為,所以故答案為:【點睛】本題考查與圓有關(guān)的距離的最值問題,常常轉(zhuǎn)化到圓心的距離加減半徑,還考查了求動點的軌跡方程,屬于中檔題.15、①②③【解析】
通過圖片信息直接觀察,計算,找出答案即可.【詳解】對于①,2至月份的收入的變化率為20,11至12月份的變化率為20,故相同,正確.對于②,支出最高值是2月份60萬元,支出最低值是5月份的10萬元,故支出最高值與支出最低值的比是6:1,正確.對于③,第三季度的7,8,9月每個月的收入分別為40萬元,50萬元,60萬元,故第三季度的平均收入為50萬元,正確.對于④,利潤最高的月份是3月份和10月份都是30萬元,高于2月份的利潤是80﹣60=20萬元,錯誤.故答案為①②③.【點睛】本題考查利用圖象信息,分析歸納得出正確結(jié)論,屬于基礎題目.16、11【解析】
由等差數(shù)列的下標和性質(zhì)可得,由即可求出公差,即可求解;【詳解】解:設等差數(shù)列的公差為,,又因為,解得故答案為:【點睛】本題考查等差數(shù)列的通項公式及等差數(shù)列的性質(zhì)的應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(1)見證明【解析】
(1)求出函數(shù)的導數(shù),解關(guān)于導函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;(1)問題轉(zhuǎn)化為證ex﹣x1﹣xlnx﹣1>0,根據(jù)xlnx≤x(x﹣1),問題轉(zhuǎn)化為只需證明當x>0時,ex﹣1x1+x﹣1>0恒成立,令k(x)=ex﹣1x1+x﹣1,(x≥0),根據(jù)函數(shù)的單調(diào)性證明即可.【詳解】(1),,當,,當,,在上遞增,在上遞減,在取得極大值,極大值為,無極大值.(1)要證f(x)+1<ex﹣x1.即證ex﹣x1﹣xlnx﹣1>0,先證明lnx≤x﹣1,取h(x)=lnx﹣x+1,則h′(x)=,易知h(x)在(0,1)遞增,在(1,+∞)遞減,故h(x)≤h(1)=0,即lnx≤x﹣1,當且僅當x=1時取“=”,故xlnx≤x(x﹣1),ex﹣x1﹣xlnx≥ex﹣1x1+x﹣1,故只需證明當x>0時,ex﹣1x1+x﹣1>0恒成立,令k(x)=ex﹣1x1+x﹣1,(x≥0),則k′(x)=ex﹣4x+1,令F(x)=k′(x),則F′(x)=ex﹣4,令F′(x)=0,解得:x=1ln1,∵F′(x)遞增,故x∈(0,1ln1]時,F(xiàn)′(x)≤0,F(xiàn)(x)遞減,即k′(x)遞減,x∈(1ln1,+∞)時,F(xiàn)′(x)>0,F(xiàn)(x)遞增,即k′(x)遞增,且k′(1ln1)=5﹣8ln1<0,k′(0)=1>0,k′(1)=e1﹣8+1>0,由零點存在定理,可知?x1∈(0,1ln1),?x1∈(1ln1,1),使得k′(x1)=k′(x1)=0,故0<x<x1或x>x1時,k′(x)>0,k(x)遞增,當x1<x<x1時,k′(x)<0,k(x)遞減,故k(x)的最小值是k(0)=0或k(x1),由k′(x1)=0,得=4x1﹣1,k(x1)=﹣1+x1﹣1=﹣(x1﹣1)(1x1﹣1),∵x1∈(1ln1,1),∴k(x1)>0,故x>0時,k(x)>0,原不等式成立.【點睛】本題考查了函數(shù)的單調(diào)性,極值問題,考查導數(shù)的應用以及不等式的證明,考查轉(zhuǎn)化思想,屬于中檔題.18、(1);(2)【解析】
(1)利用正弦定理將邊化成角,可得,展開并整理可得,從而可求出角;(2)由余弦定理得,進而可得,由,可求出的值,設邊上的高為,可得的面積為,從而可求出.【詳解】(1)由題意,由正弦定理得.因為,所以,所以,展開得,整理得.因為,所以,故,即.(2)由余弦定理得,則,得,故,故的面積為.設邊上的高為,有,故,所以邊上的高為.【點睛】本題考查正弦、余弦定理在解三角形中的應用,考查三角形的面積公式的應用,考查學生的計算求解能力,屬于中檔題.19、(1)見解析(2)不存在,見解析【解析】
(1)求出函數(shù)的導數(shù),通過討論的范圍求出函數(shù)的單調(diào)區(qū)間即可;(2)求出函數(shù)的導數(shù),結(jié)合導數(shù)的幾何意義,再令,轉(zhuǎn)化為方程有解問題,即可說明.【詳解】(1)函數(shù)的定義域為,所以當時,;,所以函數(shù)在上單調(diào)遞增當時,①當時,函數(shù)在上遞增②,顯然無增區(qū)間;③當時,,函數(shù)在上遞增,綜上當函數(shù)在上單調(diào)遞增.當時函數(shù)在上單調(diào)遞增;當時函數(shù)無單調(diào)遞增區(qū)間當時函數(shù)在上單調(diào)遞增(2)假設函數(shù)存在“中值相依切線”設是曲線上不同的兩個點,且則曲線在點處的切線的斜率為,.令,則,單調(diào)遞增,,故無解,假設不成立綜上,假設不成立,所以不存在“中值相依切線”【點睛】本題考查了函數(shù)的單調(diào)性,導數(shù)的幾何意義,考查導數(shù)的應用以及分類討論和轉(zhuǎn)化思想,屬于中檔題.20、(I)|FP|=2-32x【解析】
(I)直接利用兩點間距離公式化簡得到答案.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幕墻工程協(xié)議范本
- 油漆廠事故死亡賠償協(xié)議
- 設備保修合同樣本
- 商業(yè)大廈屋面瓦更換合同
- 電子電器施工合同
- 教育機構(gòu)琴行兼職合同
- 抗震救災臨時設施施工合同
- 如何預防流感
- 湖北省宜昌市(2024年-2025年小學五年級語文)人教版小升初真題((上下)學期)試卷及答案
- 《管理者技能修煉》課件
- 訂單協(xié)調(diào)管理流程
- 全橋逆變電路濾波電路設計步驟
- 蒲公英總黃酮的提取及其抑菌性能
- jmeter性能測試及性能調(diào)優(yōu)
- 4gl語言開發(fā)原則及規(guī)范--簡化版
- 工程量確認單樣本(管線)
- 區(qū)最新關(guān)于生活垃圾分類工作推進會上的講話稿
- 除塵器安裝專業(yè)監(jiān)理實施細則
- 八年級黃金矩形(數(shù)學活動)ppt課件
- 銷售技巧個頂尖電梯銷售技巧
- 《幼兒園衛(wèi)生保健后勤材料資料》幼兒園保健醫(yī)生每日檢查工作記錄表
評論
0/150
提交評論