2024屆四川省宜賓市敘州一中高二上數(shù)學(xué)期末預(yù)測試題含解析_第1頁
2024屆四川省宜賓市敘州一中高二上數(shù)學(xué)期末預(yù)測試題含解析_第2頁
2024屆四川省宜賓市敘州一中高二上數(shù)學(xué)期末預(yù)測試題含解析_第3頁
2024屆四川省宜賓市敘州一中高二上數(shù)學(xué)期末預(yù)測試題含解析_第4頁
2024屆四川省宜賓市敘州一中高二上數(shù)學(xué)期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆四川省宜賓市敘州一中高二上數(shù)學(xué)期末預(yù)測試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在平行六面體中,底面是邊長為的正方形,若,且,則的長為()A. B.C. D.2.入冬以來,梁老師準(zhǔn)備了4個(gè)不同的烤火爐,全部分發(fā)給樓的三個(gè)辦公室(每層樓各有一個(gè)辦公室).1,2樓的老師反映辦公室有點(diǎn)冷,所以1,2樓的每個(gè)辦公室至少需要1個(gè)烤火隊(duì),3樓老師表示不要也可以.則梁老師共有多少種分發(fā)烤火爐的方法()A.108 B.36C.50 D.863.雙曲線的漸近線方程為()A. B.C. D.4.已知拋物線:,焦點(diǎn)為,若過的直線交拋物線于、兩點(diǎn),、到拋物線準(zhǔn)線的距離分別為3、7,則長為A.3 B.4C.7 D.105.已知拋物線C:,則過拋物線C的焦點(diǎn),弦長為整數(shù)且不超過2022的直線的條數(shù)是()A.4037 B.4044C.2019 D.20226.已知,,,則點(diǎn)C到直線AB的距離為()A.3 B.C. D.7.在等比數(shù)列中,,公比,則()A. B.6C. D.28.命題“,”的否定是A., B.,C., D.,9.已知橢圓的左頂點(diǎn)為,上頂點(diǎn)為,右焦點(diǎn)為,若,則橢圓的離心率的取值范圍是()A. B.C. D.10.如圖所示,用3種不同的顏色涂入圖中的矩形A,B,C中,要求相鄰的矩形不能使用同一種顏色,則不同的涂法有()ABCA.3種 B.6種C.12種 D.27種11.已知直線,橢圓.若直線l與橢圓C交于A,B兩點(diǎn),則線段AB的中點(diǎn)的坐標(biāo)為()A. B.C. D.12.空間直角坐標(biāo)系中,已知?jiǎng)t點(diǎn)關(guān)于平面的對(duì)稱點(diǎn)的坐標(biāo)為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.由曲線圍成的圖形的面積為________14.如圖,已知,分別是橢圓的左、右焦點(diǎn),現(xiàn)以為圓心作一個(gè)圓恰好經(jīng)過橢圓的中心并且交橢圓于點(diǎn),.若過點(diǎn)的直線是圓的切線,則橢圓的離心率為_________15.已知函數(shù),若存在唯一零點(diǎn),則的取值范圍是__________.16.若p:存在,使是真命題,則實(shí)數(shù)a的取值范圍是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在等差數(shù)列中,,前10項(xiàng)和(1)求列的通項(xiàng)公式;(2)若數(shù)列是首項(xiàng)為1,公比為2的等比數(shù)列,求的前8項(xiàng)和18.(12分)如圖,在正四棱柱中,,,點(diǎn)在棱上,且平面(1)求的值;(2)若,求二面角的余弦值19.(12分)p:函數(shù)在區(qū)間是遞增的;q:方程有實(shí)數(shù)解.(1)若p為真命題,求m的取值范圍;(2)若“”為真,“”為假,求m的取值范圍.20.(12分)如圖,已知圓C與y軸相切于點(diǎn),且被x軸正半軸分成的兩段圓弧長之比為1∶2(1)求圓C的方程;(2)已知點(diǎn),是否存在弦被點(diǎn)P平分?若存在,求直線的方程;若不存在,請(qǐng)說明理由21.(12分)已知函數(shù)(1)討論函數(shù)的單調(diào)性;(2)若,證明:22.(10分)已知直線過點(diǎn),且被兩條平行直線,截得的線段長為.(1)求的最小值;(2)當(dāng)直線與軸平行時(shí),求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由向量線性運(yùn)算得,利用數(shù)量積的定義和運(yùn)算律可求得,由此可求得.【詳解】由題意得:,,且,又,,,,.故選:D.2、C【解析】運(yùn)用分類計(jì)數(shù)原理,結(jié)合組合數(shù)定義進(jìn)行求解即可.【詳解】當(dāng)3樓不要烤火爐時(shí),不同的分發(fā)烤火爐的方法為:;當(dāng)3樓需要1個(gè)烤火爐時(shí),不同的分發(fā)烤火爐的方法為:;當(dāng)3樓需要2個(gè)烤火爐時(shí),不同的分發(fā)烤火爐的方法為:,所以分發(fā)烤火爐的方法總數(shù)為:,故選:C【點(diǎn)睛】關(guān)鍵點(diǎn)睛:運(yùn)用分類計(jì)數(shù)原理是解題的關(guān)鍵.3、A【解析】直接求出,,進(jìn)而求出漸近線方程.【詳解】中,,,所以漸近線方程為,故.故選:A4、D【解析】利用拋物線的定義,把的長轉(zhuǎn)化為點(diǎn)到準(zhǔn)線的距離的和得解【詳解】解:拋物線:,焦點(diǎn)為,過的直線交拋物線于、兩點(diǎn),、到拋物線準(zhǔn)線的距離分別為3、7,則故選D【點(diǎn)睛】本題考查拋物線定義的應(yīng)用,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平和分析推理能力.5、A【解析】根據(jù)已知條件,結(jié)合拋物線的性質(zhì),先求出過焦點(diǎn)的最短弦長,再結(jié)合拋物線的對(duì)稱性,即可求解【詳解】∵拋物線C:,即,由拋物線的性質(zhì)可得,過拋物線焦點(diǎn)中,長度最短的為垂直于y軸的那條弦,則過拋物線C的焦點(diǎn),長度最短的弦的長為,由拋物線的對(duì)稱性可得,弦長在5到2022之間的有共有條,故弦長為整數(shù)且不超過2022的直線的條數(shù)是故選:A6、D【解析】應(yīng)用空間向量的坐標(biāo)運(yùn)算求在上投影長及的模長,再應(yīng)用勾股定理求點(diǎn)C到直線AB的距離.【詳解】因?yàn)?,,所以設(shè)點(diǎn)C到直線AB的距離為d,則故選:D7、D【解析】利用等比數(shù)列的通項(xiàng)公式求解【詳解】由等比數(shù)列的通項(xiàng)公式得:.故選:D8、C【解析】特稱命題的否定是全稱命題,改量詞,且否定結(jié)論,故命題的否定是“”.本題選擇C選項(xiàng).9、B【解析】根據(jù)題意得到,根據(jù),化簡得到,進(jìn)而得到離心率的不等式,即可求解.【詳解】由題意,橢圓的左頂點(diǎn)為,上頂點(diǎn)為,所以,,因?yàn)?,可得,即,又由,可得,可得,解得,又因?yàn)闄E圓的離心率,所以,即橢圓的離心率為.故選:B.【點(diǎn)睛】求解橢圓或雙曲線離心率的三種方法:1、定義法:通過已知條件列出方程組,求得得值,根據(jù)離心率的定義求解離心率;2、齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;3、特殊值法:通過取特殊值或特殊位置,求出離心率.10、C【解析】根據(jù)給定信息,按用色多少分成兩類,再分類計(jì)算作答.【詳解】計(jì)算不同的涂色方法數(shù)有兩類辦法:用3種顏色,每個(gè)矩形涂一種顏色,有種方法,用2色,矩形A,C涂同色,有種方法,由分類加法計(jì)數(shù)原理得(種),所以不同的涂法有12種.故選:C11、B【解析】聯(lián)立直線方程與橢圓方程,消y得到關(guān)于x的一元二次方程,根據(jù)韋達(dá)定理可得,進(jìn)而得出中點(diǎn)的橫坐標(biāo),代入直線方程求出中點(diǎn)的縱坐標(biāo)即可.【詳解】由題意知,,消去y,得,則,,所以A、B兩點(diǎn)中點(diǎn)的橫坐標(biāo)為:,所以中點(diǎn)的縱坐標(biāo)為:,即線段AB的中點(diǎn)的坐標(biāo)為.故選:B12、D【解析】根據(jù)空間直角坐標(biāo)系的對(duì)稱性可得答案.【詳解】根據(jù)空間直角坐標(biāo)系的對(duì)稱性可得關(guān)于平面的對(duì)稱點(diǎn)的坐標(biāo)為,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】曲線圍成的圖形關(guān)于軸,軸對(duì)稱,故只需要求出第一象限的面積即可.【詳解】將或代入方程,方程不發(fā)生改變,故曲線關(guān)于關(guān)于軸,軸對(duì)稱,因此只需求出第一象限的面積即可.當(dāng),時(shí),曲線可化為:,在第一象限為弓形,其面積為,故.故答案為:.14、##【解析】根據(jù)給定條件探求出橢圓長軸長與其焦距的關(guān)系即可計(jì)算作答.【詳解】設(shè)橢圓長軸長為,焦距為,即,依題意,,而直線是圓的切線,即,則有,又點(diǎn)在橢圓上,即,因此,,從而有,所以橢圓的離心率為.故答案為:15、【解析】求得函數(shù)的導(dǎo)數(shù),得到是的唯一零點(diǎn),轉(zhuǎn)化為方程無實(shí)數(shù)根或只存在實(shí)數(shù)根,進(jìn)而轉(zhuǎn)化為和的圖象至多有一個(gè)交點(diǎn)(且如果有交點(diǎn),交點(diǎn)必須在處),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最小值,即可求解.【詳解】由題意,函數(shù),可得,因?yàn)榇嬖谖ㄒ涣泓c(diǎn),所以是的唯一零點(diǎn),則關(guān)于的方程無實(shí)數(shù)根或只存在實(shí)數(shù)根,所以函數(shù)和的圖象至多有一個(gè)交點(diǎn)(且如果有交點(diǎn),交點(diǎn)必須在處),又由,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增,所以,所以,即即的取值范圍是.故答案為:.16、【解析】將問題分離參數(shù)得到存在,使成立,可得結(jié)論.【詳解】存在,使,即存在,使,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)347.【解析】(1)設(shè)等差數(shù)列的公差為,解方程組即得解;(2)先求出,再分組求和得解.【詳解】解:(1)設(shè)等差數(shù)列的公差為,則解得所以(2)由題意,,所以所以的前8項(xiàng)和為18、(1)答案見解析;(2).【解析】如圖,以點(diǎn)為原點(diǎn),,,的方向分別為,,軸的正方向,建立空間直角坐標(biāo)系,(1)設(shè),由平面,可得,從而數(shù)量積為零,可求出的值,進(jìn)而可求得的值;(2)利用空間向量求二面角的余弦值【詳解】解:(1)如圖,以點(diǎn)為原點(diǎn),,,的方向分別為,,軸的正方向,建立空間直角坐標(biāo)系,設(shè),則點(diǎn),,,則,因?yàn)槠矫妫?,所以,解得或?dāng)時(shí),,,;當(dāng)時(shí),,,(2)因?yàn)?,由?)知,平面的一個(gè)法向量為設(shè)平面的法向量為,因?yàn)?,,所以令,則所以,由圖知,二面角的平面角為銳角,所以二面角的余弦值為19、(1)(2)或【解析】(1)依題意在區(qū)間上恒成立,參變分離可得在區(qū)間上恒成立,再利用基本不等式計(jì)算可得;(2)首先求出命題為真時(shí)參數(shù)的取值范圍,再根據(jù)“”為真,“”為假,即可得到真假,或假真,從而得到不等式組,解得即可;【小問1詳解】解:為真命題,即函數(shù)在區(qū)間上是遞增的∴在區(qū)間上恒成立,∴在區(qū)間上恒成立,∵,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,∴的取值范圍為.【小問2詳解】解:為真命題,即方程有實(shí)數(shù)解∴即∴或∵“”為真,“”為假∴真假,或假真∴或,解得或,∴的取值范圍為或;20、(1).(2).【解析】(1)由已知得圓心C在直線上,設(shè)圓C與x軸的交點(diǎn)分別為E、F,則有,,圓心C的坐標(biāo)為(2,1),由此求得圓C的標(biāo)準(zhǔn)方程;(2)假設(shè)存在弦被點(diǎn)P平分,有,由此求得直線AB的斜率可得其方程再檢驗(yàn),直線AB與圓C是否相交即可.小問1詳解】解:因?yàn)閳AC與y軸相切于點(diǎn),所以圓心C在直線上,設(shè)圓C與x軸的交點(diǎn)分別為E、F,由圓C被x軸分成的兩段弧長之比為2∶1,得,所以,圓心C的坐標(biāo)為(2,1),所以圓C的方程為;【小問2詳解】解:因?yàn)辄c(diǎn),有,所以點(diǎn)P在圓C的內(nèi)部,假設(shè)存在弦被點(diǎn)P平分,則,又,所以,所以直線AB的方程為,即,檢驗(yàn),圓心C到直線AB的距離為,所以直線AB與圓C相交,所以存在弦被點(diǎn)P平分,此時(shí)直線的方程為.21、(1)當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;(2)見詳解【解析】(1)對(duì)函數(shù)進(jìn)行求導(dǎo),然后根據(jù)參數(shù)進(jìn)行分類討論;(2)構(gòu)造函數(shù),求函數(shù)的最小值即可證出.【詳解】(1)的定義域?yàn)椋?當(dāng)時(shí),在上恒成立,所以在上單調(diào)遞增;當(dāng)時(shí),時(shí),;時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增.綜上所述,當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.(2)當(dāng)時(shí),.令,,則.,令,.恒成立,所以在上單調(diào)遞增.因?yàn)椋源嬖谖ㄒ坏?,使得,?①當(dāng)時(shí),,即,所以在上單調(diào)遞減;當(dāng)時(shí),,即,所以在上單調(diào)遞增.所以,,②方法一:把①代入②得,.設(shè),.則恒成立,所以在上單調(diào)遞減,所以.因?yàn)?,所以,即,所以,所以時(shí),.方法二:設(shè),.則,所以在上單調(diào)遞增,所以,所以.因?yàn)?,所以,所以,所以時(shí),.【點(diǎn)睛】不等式證明問題是近年高考命題的熱點(diǎn),利用導(dǎo)數(shù)證明不等式的方法主要有兩個(gè):(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論