2024屆云南省昆明市云南農(nóng)大附中數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2024屆云南省昆明市云南農(nóng)大附中數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2024屆云南省昆明市云南農(nóng)大附中數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2024屆云南省昆明市云南農(nóng)大附中數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2024屆云南省昆明市云南農(nóng)大附中數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆云南省昆明市云南農(nóng)大附中數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的左、右焦點分別為,點在的左支上,過點作的一條漸近線的垂線,垂足為,則的最小值為()A. B.C. D.2.曲線y=x3+11在點P(1,12)處的切線與y軸交點的縱坐標是()A.﹣9 B.﹣3C.9 D.153.已知,是橢圓C的兩個焦點,P是C上的一點,若以為直徑的圓過點P,且,則C的離心率為()A. B.C. D.4.已知直線的一個方向向量為,則直線的傾斜角為()A. B.C. D.5.已知雙曲線的一條漸近線方程是,它的一個焦點在拋物線的準線上,則雙曲線的方程為()A. B.C. D.6.如圖,在直三棱柱中,且,點E為中點.若平面過點E,且平面與直線AB所成角和平面與平面所成銳二面角的大小均為30°,則這樣的平面有()A.1個 B.2個C.3個 D.4個7.已知命題P:,,則命題P的否定為()A., B.,C., D.,8.若直線先向右平移一個單位,再向下平移一個單位,然后與圓相切,則c的值為()A.8或-2 B.6或-4C.4或-6 D.2或-89.過拋物線的焦點作互相垂直的弦,則的最小值為()A.16 B.18C.32 D.6410.在中,B=30°,BC=2,AB=,則邊AC的長等于()A. B.1C. D.211.已知三維數(shù)組,,且,則實數(shù)()A.-2 B.-9C. D.212.數(shù)列滿足,且,則的值為()A.2 B.1C. D.-1二、填空題:本題共4小題,每小題5分,共20分。13.若斜率為的直線與橢圓交于,兩點,且的中點坐標為,則___________.14.已知雙曲線中心在坐標原點,左右焦點分別為,漸近線分別為,過點且與垂直的直線分別交于兩點,且,則雙曲線的離心率為________15.已知滿足約束條件,則的最小值為___________16.已知直線在兩坐標軸上的截距分別為,,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直三棱柱中,,E、F分別是、的中點(1)求證:平面;(2)求證:平面18.(12分)已知數(shù)列是公差不為0的等差數(shù)列,首項,且成等比數(shù)列(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列滿足,求數(shù)列的前n項和19.(12分)已知數(shù)列的前n項和,遞增等比數(shù)列滿足,且.(1)求數(shù)列,的通項公式;(2)求數(shù)列的前n項和為.20.(12分)已知函數(shù),求函數(shù)在上的最大值與最小值.21.(12分)已知等差數(shù)列滿足,(1)求的通項公式;(2)若等比數(shù)列的前n項和為,且,,,求滿足的n的最大值22.(10分)已知圓心C的坐標為,且是圓C上一點(1)求圓C的標準方程;(2)過點的直線l被圓C所截得的弦長為,求直線l的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用雙曲線定義可得到,將的最小值變?yōu)榈淖钚≈祮栴},數(shù)形結(jié)合得解.【詳解】由題意得,故,如圖所示:到漸近線的距離,則,當且僅當,,三點共線時取等號,∴的最小值為.故選:D2、C【解析】y′=3x2,則y′|x=1=3,所以曲線在P點處的切線方程為y-12=3(x-1)即y=3x+9,它在y軸上的截距為9.3、B【解析】根據(jù)題意,在中,設(shè),則,進而根據(jù)橢圓定義得,進而可得離心率.【詳解】在中,設(shè),則,又由橢圓定義可知則離心率,故選:B.【點睛】本題考查橢圓離心率的計算,考查運算求解能力,是基礎(chǔ)題.本題解題的關(guān)鍵在于根據(jù)已知條件,結(jié)合橢圓的定義,在焦點三角形中根據(jù)邊角關(guān)系求解.4、A【解析】由直線斜率與方向向量的關(guān)系算出斜率,然后可得.【詳解】記直線的傾斜角為,由題知,又,所以,即.故選:A5、A【解析】根據(jù)雙曲線漸近線方程得a和b的關(guān)系,根據(jù)焦點在拋物線準線上得c的值,結(jié)合a、b、c關(guān)系即可求解.【詳解】∵雙曲線的一條漸近線方程是,∴,∵準線方程是,∴,∵,∴,,∴雙曲線標準方程為:.故選:A.6、B【解析】構(gòu)造出長方體,取中點連接然后利用臨界位置分情況討論即可.【詳解】如圖,構(gòu)造出長方體,取中點,連接則所有過點與成角的平面,均與以為軸的圓錐相切,過點繞且與成角,當與水平面垂直且在面的左側(cè)(在長方體的外面)時,與面所成角為75°(與面成45°,與成30°),過點繞旋轉(zhuǎn),轉(zhuǎn)一周,90°顯然最大,到了另一個邊界(在面與之間)為15度,即與面所成角從75°→90°→15°→90°→75°變化,此過程中,有兩次角為30

,綜上,這樣的平面α有2個,故選:B.7、B【解析】根據(jù)特稱命題的否定變換形式即可得出結(jié)果【詳解】命題:,,則命題的否定為,故選:B8、A【解析】求出平移后的直線方程,再利用直線與圓相切并借助點到直線距離公式列式計算作答.【詳解】將直線先向右平移一個單位,再向下平移一個單位所得直線方程為,因直線與圓相切,從而得,即,解得或,所以c的值為8或-2.故選:A9、B【解析】根據(jù)拋物線方程求出焦點坐標,分別設(shè)出,所在直線方程,與拋物線方程聯(lián)立,利用根與系數(shù)的關(guān)系及弦長公式求得,,然后利用基本不等式求最值.【詳解】拋物線的焦點,設(shè)直線的直線方程為,則直線的方程為.,,,.由,得,,同理可得..當且僅當,即時取等號.所以的最小值為.故選:B10、B【解析】利用余弦定理即得【詳解】由余弦定理,得,解得AC=1故選:B.11、D【解析】由空間向量的數(shù)量積運算即可求解【詳解】∵,,,,,,且,∴,解得故選:D12、D【解析】根據(jù)數(shù)列的遞推關(guān)系式,求得數(shù)列的周期性,結(jié)合周期性得到,即可求解.【詳解】解:由題意,數(shù)列滿足,且,可得,可得數(shù)列是以三項為周期的周期數(shù)列,所以.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】根據(jù)給定條件設(shè)出點A,B的坐標,再借助“點差法”即可計算得解.【詳解】依題意,線段的中點在橢圓C內(nèi),設(shè),,由兩式相減得:,而,于是得,即,所以.故答案為:14、【解析】判斷出三角形的形狀,求得點坐標,由此列方程求得,進而求得雙曲線的離心率.【詳解】依題意設(shè)雙曲線方程為,雙曲線的漸近線方程為,右焦點,不妨設(shè).由于,所以是線段的中點,由于,所以是線段的垂直平均分,所以三角形是等腰三角形,則.直線的斜率為,則直線的斜率為,所以直線的方程為,由解得,則,即,化簡得,所以雙曲線的離心率為.故答案為:15、【解析】根據(jù)題意,作出可行域,進而根據(jù)幾何意義求解即可.【詳解】解:作出可行域如圖,將變形為,所以根據(jù)幾何意義,當直線過點時,有最小值,所以聯(lián)立方程得,所以的最小值為故答案為:16、##【解析】根據(jù)截距定義,分別令,可得.【詳解】由直線,令得,即令,得,即,故.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解析】(1)連接,交于點M,連接ME,則M為中點.根據(jù)三角形的中位線定理和平行四邊形的判斷和性質(zhì)可證得,再由線面平行的判定定理可得證;(2)由線面垂直的性質(zhì)和判定可得證.【詳解】證明:(1)連接,交于點M,連接ME,則M為中點因為E、F分別是與的中點,所以,則,從而為平行四邊形,則又因為平面平面,所以平面(2)由平面,因為平面,所以而,M為的中點,所以因為,所以平面,由(1)有,故平面18、(1);(2)【解析】(1)設(shè)數(shù)列的公差為d,根據(jù)等比中項的概念即可求出公差,再根據(jù)等差數(shù)列的通項公式即可求出答案;(2)由(1)得,再根據(jù)分組求和法即可求出答案【詳解】解:(1)設(shè)數(shù)列的公差為d,由已知得,,即,解得或,又,∴,∴;(2)由(1)得,【點睛】本題主要考查等差數(shù)列的通項公式,考查數(shù)列的分組求和法,考查計算能力,屬于基礎(chǔ)題19、(1),(2)【解析】(1)先求,再由求出,設(shè)等比數(shù)列的公比為q,由條件可得,解出結(jié)合條件可得答案.(2)由(1)可得,利用錯位相減法可求【小問1詳解】,當時,,也滿足上式,∴,則.設(shè)等比數(shù)列的公比為q,由得,解得或.因為是遞增等比數(shù)列,所以,.【小問2詳解】①①①②:∴20、最大值為,最小值為【解析】利用導數(shù)可求得的單調(diào)性,進而可得極值,比較極值和端點值的大小即可求解.【詳解】由可得:,則當時,;當時,;所以在上單調(diào)遞減,在上單調(diào)遞增,,又因為,,所以,綜上所述:函數(shù)在上的最大值為,最小值為.21、(1)(2)10【解析】(1)設(shè)等差數(shù)列公差為d,根據(jù)已知條件列關(guān)于和d的方程組即可求解;(2)設(shè)等比數(shù)列公比為q,根據(jù)已知條件求出和q,根據(jù)等比數(shù)列求和公式即可求出,再解關(guān)于n的不等式即可.【小問1詳解】由題意得,解得,∴【小問2詳解】∵,,又,∴,公比,∴,令,得,令,所以n的最大值為1022、(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論