福建省泉州市洛江區(qū)馬甲中學2023-2024學年數(shù)學高二上期末預測試題含解析_第1頁
福建省泉州市洛江區(qū)馬甲中學2023-2024學年數(shù)學高二上期末預測試題含解析_第2頁
福建省泉州市洛江區(qū)馬甲中學2023-2024學年數(shù)學高二上期末預測試題含解析_第3頁
福建省泉州市洛江區(qū)馬甲中學2023-2024學年數(shù)學高二上期末預測試題含解析_第4頁
福建省泉州市洛江區(qū)馬甲中學2023-2024學年數(shù)學高二上期末預測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省泉州市洛江區(qū)馬甲中學2023-2024學年數(shù)學高二上期末預測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為原點,點,以為直徑的圓的方程為()A. B.C. D.2.在等比數(shù)列中,是和的等差中項,則公比的值為()A.-2 B.1C.2或-1 D.-2或13.已知點在拋物線的準線上,則該拋物線的焦點坐標是()A. B.C. D.4.已知,,若,則實數(shù)的值為()A. B.C. D.5.4位同學報名參加四個課外活動小組,每位同學限報其中的一個小組,則不同的報名方法共有()A.24種 B.81種C.64種 D.256種6.口袋中裝有大小形狀相同的紅球3個,白球3個,小明從中不放回的逐一取球,已知在第一次取得紅球的條件下,第二次取得白球的概率為()A.0.4 B.0.5C.0.6 D.0.757.如圖所示,用3種不同的顏色涂入圖中的矩形A,B,C中,要求相鄰的矩形不能使用同一種顏色,則不同的涂法有()ABCA.3種 B.6種C.12種 D.27種8.算盤是中國傳統(tǒng)計算工具,是中國人在長期使用算籌的基礎上發(fā)明的,“珠算”一詞最早見于東漢徐岳所撰的《數(shù)術記遺》,其中有云:“珠算控帶四時,經(jīng)緯三才.”北周甄鸞為此作注,大意是:把木板刻為3部分,上、下兩部分是停游珠用的,中間一部分是作定位用的.下圖是一把算盤的初始狀態(tài),自右向左,分別是個位、十位、百位…,上面一粒珠(簡稱上珠)代表5,下面一粒珠(簡稱下珠)是1,即五粒下珠的大小等于同組一粒上珠的大?。F(xiàn)在從個位和十位這兩組中隨機選擇往下?lián)芤涣I现椋蠐?粒下珠,得到的數(shù)為質數(shù)(除了1和本身沒有其它的約數(shù))的概率是()A. B.C. D.9.在平面上給定相異兩點,設點在同一平面上且滿足,當且時,點的軌跡是一個圓,這個軌跡最先由古希臘數(shù)學家阿波羅尼斯發(fā)現(xiàn),故我們稱這個圓為阿波羅尼斯圓.現(xiàn)有雙曲線,為雙曲線的左、右頂點,為雙曲線的虛軸端點,動點滿足,面積的最大值為,面積的最小值為,則雙曲線的離心率為()A. B.C. D.10.在四棱錐中,底面是正方形,為的中點,若,則()A. B.C. D.11.設命題,,則為().A., B.,C., D.,12.已知平面法向量為,,則直線與平面的位置關系為A. B.C.與相交但不垂直 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知蜥蜴的體溫與陽光照射的關系可近似為,其中為蜥蜴的體溫(單位:℃)為太陽落山后的時間(單位:).當________時,蜥蜴體溫的瞬時變化率為14.拋物線的準線方程是,則實數(shù)___________.15.若平面內兩條直線,平行,則實數(shù)______16.雙曲線離心率__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在幾何體中,底面是邊長為2的正三角形,平面,,且,是的中點(1)求證:平面;(2)求異面直線與所成的角的余弦值18.(12分)已知數(shù)列滿足,,,n為正整數(shù).(1)證明:數(shù)列是等比數(shù)列,并求通項公式;(2)證明:數(shù)列中的任意三項,,都不成等差數(shù)列;(3)若關于正整數(shù)n的不等式的解集中有且僅有三個元素,求實數(shù)m的取值范圍;19.(12分)已知數(shù)列的前n項和為滿足(1)求證:是等比數(shù)列,并求數(shù)列通項公式;(2)若,數(shù)列的前項和為.求證:20.(12分)在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=2,A1A=4,點D是BC的中點;(I)求異面直線A1B,AC1所成角的余弦值;(II)求直線AB1與平面C1AD所成角的正弦值21.(12分)設:函數(shù)的定義域為;:不等式對任意的恒成立(1)如果是真命題,求實數(shù)的取值范圍;(2)如果“”為真命題,“”為假命題,求實數(shù)的取值范圍22.(10分)已知橢圓經(jīng)過點,(1)求橢圓的方程;(2)已知直線的傾斜角為銳角,與圓相切,與橢圓交于、兩點,且的面積為,求直線的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】求圓的圓心和半徑,根據(jù)圓的標準方程即可求解﹒【詳解】由題知圓心為,半徑,∴圓方程為﹒故選:A﹒2、D【解析】由題可得,即求.【詳解】由題意,得,所以,因為,所以,解得或.故選:D.3、C【解析】首先表示出拋物線的準線,根據(jù)點在拋物線的準線上,即可求出參數(shù),即可求出拋物線的焦點.【詳解】解:拋物線的準線為因為在拋物線的準線上故其焦點為故選:【點睛】本題考查拋物線的簡單幾何性質,屬于基礎題.4、A【解析】由,得,從而可得答案.【詳解】解:因為,所以,即,解得.故選:A.5、D【解析】利用分步乘法計數(shù)原理進行計算.【詳解】每位同學均有四種選擇,故不同的報名方法有種.故選:D6、C【解析】求出第一次取得紅球的事件、第一次取紅球第二次取白球的事件概率,再利用條件概率公式計算作答.【詳解】記“第一次取得紅球”為事件A,“第二次取得白球”為事件B,則,,于是得,所以在第一次取得紅球的條件下,第二次取得白球的概率為0.6.故選:C7、C【解析】根據(jù)給定信息,按用色多少分成兩類,再分類計算作答.【詳解】計算不同的涂色方法數(shù)有兩類辦法:用3種顏色,每個矩形涂一種顏色,有種方法,用2色,矩形A,C涂同色,有種方法,由分類加法計數(shù)原理得(種),所以不同的涂法有12種.故選:C8、B【解析】根據(jù)古典概型概率計算公式,計算出所求的概率.【詳解】依題有,算盤所表示的數(shù)可能有:17,26,8,35,62,71,80,53,其中是質數(shù)的有:17,71,53,故所求事件的概率為故選:B9、C【解析】先求動點的軌跡方程,再根據(jù)面積的最大值求得,根據(jù)的面積最小值求,由此可求雙曲線的離心率.【詳解】設,,,依題意得,即,兩邊平方化簡得,所以動點的軌跡是圓心為,半徑的圓,當位于圓的最高點時的面積最大,所以,解得;當位于圓的最左端時的面積最小,所以,解得,故雙曲線的離心率為.故選:C.10、C【解析】由為的中點,根據(jù)向量的運算法則,可得,即可求解.【詳解】由底面是正方形,E為的中點,且,根據(jù)向量的運算法則,可得.故選:C.11、B【解析】根據(jù)全稱命題和特稱命題互為否定,即可得到結果.【詳解】因為命題,,所以為,.故選:B.12、A【解析】.本題選擇A選項.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】求得導函數(shù),令,計算即可得出結果.【詳解】,,令,得:.解得:.時刻min時,蜥蜴的體溫的瞬時變化率為故答案為:5.14、##【解析】將拋物線方程化為標準方程,根據(jù)其準線方程即可求得實數(shù).【詳解】拋物線化為標準方程:,其準線方程是,而所以,即,故答案為:15、-1或2【解析】根據(jù)兩直線平行,利用直線平行的條件列出方程解得答案.【詳解】∵,∴,解得或,經(jīng)驗證都符合題意,故答案為:-1或216、【解析】由已知得到a,b,再利用及即可得到答案.【詳解】由已知,可得,所以,所以.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)設為中點,連接,,證明四邊形為平行四邊形即可;(2)確定異面直線與所成的角為,計算三角形各邊長,根據(jù)余弦定理計算得到答案.【小問1詳解】設為中點,連接,,∵為中點,是的中點,,,故,且,故,且,∴四邊形為平行四邊形,∴,平面,平面,故平面.【小問2詳解】∵,故異面直線與所成的角為,在中:,,.根據(jù)余弦定理:,所以異面直線與所成的角的余弦值為.18、(1)證明見解析;(2)證明見解析(3)【解析】(1)將所給等式變形為,根據(jù)等比數(shù)列的定義即可證明結論;(2)假設存在,,成等差數(shù)列,根據(jù)等差數(shù)列的性質可推出矛盾,故說明假設錯誤。從而證明原結論;(3)求出n=1,2,3,4時的情況,再結合時,,即可求得結果.【小問1詳解】由已知可知,顯然有,否則數(shù)列不可能是等比數(shù)列;因為,,故可得,由得:,即有,所以數(shù)列等比數(shù)列,且;【小問2詳解】假設存在,,成等差數(shù)列,則,即,整理得,即,而是奇數(shù),故上式左側是奇數(shù),右側是一個偶數(shù),不可能相等,故數(shù)列中的任意三項,,都不成等差數(shù)列;【小問3詳解】關于正整數(shù)n的不等式,即,當n=1時,;當n=2時,;當n=3時,;當n=4時,,并且當時,,因關于正整數(shù)n的不等式的解集中有且僅有三個元素,故.19、(1)證明見解析,(2)證明見解析【解析】(1)令可求得的值,令,由可得,兩式作差可得,利用等比數(shù)列的定義可證得結論成立,確定該數(shù)列的首項和公比,可求得數(shù)列的通項公式;(2)求得,利用錯位相減法可求得,結合數(shù)列的單調性可證得結論成立.【小問1詳解】證明:當時,,解得,當時,由可得,上述兩個等式作差得,所以,,則,因為,則,可得,,,以此類推,可知對任意的,,所以,,因此,數(shù)列是等比數(shù)列,且首項為,公比為,所以,,解得.【小問2詳解】證明:,則,其中,所以,數(shù)列為單調遞減數(shù)列,則,,,上式下式,得,所以,,因此,.20、(I)(II)【解析】(I)以,,為x,y,z軸建立空間直角坐標系A﹣xyz,可得和的坐標,可得cos<,>,可得答案;(II)由(I)知,=(2,0,﹣4),=(1,1,0),設平面C1AD的法向量為=(x,y,z),由可得=(1,﹣1,),設直線AB1與平面C1AD所成的角為θ,則sinθ=|cos<,>|=,進而可得答案解:(I)以,,x,y,z軸建立空間直角坐標系A﹣xyz,則可得B(2,0,0),A1(0,0,4),C1(0,2,4),D(1,1,0),∴=(2,0,﹣4),=(0,2,4),∴cos<,>==∴異面直線A1B,AC1所成角的余弦值為:;(II)由(I)知,=(2,0,﹣4),=(1,1,0),設平面C1AD的法向量為=(x,y,z),則可得,即,取x=1可得=(1,﹣1,),設直線AB1與平面C1AD所成的角為θ,則sinθ=|cos<,>|=∴直線AB1與平面C1AD所成角的正弦值為:考點:異面直線及其所成的角;直線與平面所成的角21、(1)(2)【解析】(1)由對數(shù)函數(shù)性質,轉化為對任意的恒成立,結合二次函數(shù)的性質,即可求解;(2)利用基本不等式,求得當命題是真命題,得到,結合“”為真命題,“”為假命題,分類討論,即可求解.【小問1詳解】解:因為是真命題,所以對任意的恒成立,當時,不等式,顯然在不能恒成立;當時,則滿足解得,故實數(shù)的取值范圍為【小問2詳解】解:因為,所以,當

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論