貴州省銅仁市思南中學(xué)2023年高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第1頁(yè)
貴州省銅仁市思南中學(xué)2023年高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第2頁(yè)
貴州省銅仁市思南中學(xué)2023年高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第3頁(yè)
貴州省銅仁市思南中學(xué)2023年高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第4頁(yè)
貴州省銅仁市思南中學(xué)2023年高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

貴州省銅仁市思南中學(xué)2023年高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.用數(shù)學(xué)歸納法證明“”時(shí),由假設(shè)證明時(shí),不等式左邊需增加的項(xiàng)數(shù)為()A. B.C. D.2.設(shè),,,…,,,則()A. B.C. D.3.已知橢圓的左、右頂點(diǎn)分別為,上、下頂點(diǎn)分別為.點(diǎn)為上不在坐標(biāo)軸上的任意一點(diǎn),且四條直線的斜率之積大于,則的離心率的取值范圍是()A. B.C. D.4.已知橢圓的左右焦點(diǎn)分別為,,過(guò)C上的P作y軸的垂線,垂足為Q,若四邊形是菱形,則C的離心率為()A. B.C. D.5.執(zhí)行如圖所示的程序框圖,若輸出的的值為,則判斷框中應(yīng)填入()A.? B.?C.? D.?6.若,則()A B.C. D.7.已知是上的單調(diào)增函數(shù),則的取值范圍是A.﹣1b2 B.﹣1b2C.b﹣2或b2 D.b﹣1或b28.直線的斜率是方程的兩根,則與的位置關(guān)系是()A.平行 B.重合C.相交但不垂直 D.垂直9.設(shè)數(shù)列的前項(xiàng)和為,數(shù)列是公比為2的等比數(shù)列,且,則()A.255 B.257C.127 D.12910.已知空間向量,,若,則實(shí)數(shù)的值是()A. B.0C.1 D.211.已知圓與圓,則兩圓的位置關(guān)系是()A.外切 B.內(nèi)切C.相交 D.相離12.在正三棱錐S-ABC中,AB=4,D、E分別是SA、AB中點(diǎn),且DE⊥CD,則三棱錐S-ABC外接球的體積為()A.π B.πC.π D.π二、填空題:本題共4小題,每小題5分,共20分。13.在空間四邊形ABCD中,AD=2,BC=2,E,F(xiàn)分別是AB,CD的中點(diǎn),EF=,則異面直線AD與BC所成角的大小為____.14.,利用課本中推導(dǎo)等差數(shù)列前項(xiàng)和的公式的方法,可求得______15.曲線在點(diǎn)處的切線方程為_____________________.16.如果方程表示焦點(diǎn)在軸上的橢圓,那么實(shí)數(shù)的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知圓:,過(guò)圓外一點(diǎn)作圓的兩條切線,,,為切點(diǎn),設(shè)為圓上的一個(gè)動(dòng)點(diǎn).(1)求的取值范圍;(2)求直線的方程.18.(12分)已知橢圓的離心率為,且其左頂點(diǎn)到右焦點(diǎn)的距離為.(1)求橢圓的方程;(2)設(shè)點(diǎn)、在橢圓上,以線段為直徑的圓過(guò)原點(diǎn),試問(wèn)是否存在定點(diǎn),使得到直線的距離為定值?若存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)理由.19.(12分)在平面直角坐標(biāo)系中,已知圓,點(diǎn)P在圓上,過(guò)點(diǎn)P作x軸的垂線,垂足為是的中點(diǎn),當(dāng)P在圓M上運(yùn)動(dòng)時(shí)N形成的軌跡為C(1)求C的軌跡方程;(2)若點(diǎn),試問(wèn)在x軸上是否存在點(diǎn)M,使得過(guò)點(diǎn)M的動(dòng)直線交C于兩點(diǎn)時(shí),恒有?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由20.(12分)在一次重大軍事聯(lián)合演習(xí)中,以點(diǎn)為中心的海里以內(nèi)海域被設(shè)為警戒區(qū)域,任何船只不得經(jīng)過(guò)該區(qū)域.已知點(diǎn)正北方向海里處有一個(gè)雷達(dá)觀測(cè)站,某時(shí)刻測(cè)得一艘勻速直線行駛的船只位于點(diǎn)北偏東,且與點(diǎn)相距海里的位置,經(jīng)過(guò)小時(shí)又測(cè)得該船已行駛到位于點(diǎn)北偏東,且與點(diǎn)相距海里的位置(1)求該船的行駛速度(單位:海里/小時(shí));(2)該船能否不改變方向繼續(xù)直線航行?請(qǐng)說(shuō)明理由21.(12分)已知雙曲線C的方程為(),離心率為.(1)求雙曲線的標(biāo)準(zhǔn)方程;(2)過(guò)的直線交曲線于兩點(diǎn),求的取值范圍.22.(10分)已知,2,4,6中的三個(gè)數(shù)為等差數(shù)列的前三項(xiàng),且100不在數(shù)列中,102在數(shù)列中.(1)求數(shù)列的通項(xiàng);(2)設(shè),求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】當(dāng)成立,寫出左側(cè)的表達(dá)式,當(dāng)時(shí),寫出對(duì)應(yīng)的關(guān)系式,觀察計(jì)算即可【詳解】從到成立時(shí),左邊增加的項(xiàng)為,因此增加的項(xiàng)數(shù)是,故選:C2、B【解析】根據(jù)已知條件求得的規(guī)律,從而確定正確選項(xiàng).【詳解】,,,,,……,以此類推,,所以.故選:B3、A【解析】設(shè),求得,得到,求得,結(jié)合,即可求解.【詳解】由橢圓的方程,可得,設(shè),則,由,因?yàn)樗臈l直線的斜率之積大于,即,所以,則離心率,又因?yàn)闄E圓離心率,所以橢圓的離心率的取值范圍是.故選:A.4、C【解析】根據(jù)題意求出P點(diǎn)坐標(biāo),代入橢圓方程中,可整理得到關(guān)于a,c的等式,進(jìn)一步整理為關(guān)于e的方程,解得答案.【詳解】如圖示:由題意可知,因?yàn)樗倪呅问橇庑?,所以,則,所以P點(diǎn)坐標(biāo)為,將P點(diǎn)坐標(biāo)為代入得:,整理得,故,由于,解得,所以,故選:C.5、C【解析】本題為計(jì)算前項(xiàng)和,模擬程序,實(shí)際計(jì)算求和即可得到的值.【詳解】由題意可知:輸出的的值為數(shù)列的前項(xiàng)和.易知,則,令,解得.即前7項(xiàng)的和.為故判斷框中應(yīng)填入“?”.故選:C.6、D【解析】直接利用向量的坐標(biāo)運(yùn)算求解即可【詳解】因?yàn)?,所以,故選:D7、A【解析】利用三次函數(shù)的單調(diào)性,通過(guò)其導(dǎo)數(shù)進(jìn)行研究,求出導(dǎo)數(shù),利用其導(dǎo)數(shù)恒大于0即可解決問(wèn)題【詳解】∵∴∵函數(shù)是上的單調(diào)增函數(shù)∴在上恒成立∴,即.∴故選A.【點(diǎn)睛】可導(dǎo)函數(shù)在某一區(qū)間上是單調(diào)函數(shù),實(shí)際上就是在該區(qū)間上(或)(在該區(qū)間的任意子區(qū)間都不恒等于0)恒成立,然后分離參數(shù),轉(zhuǎn)化為求函數(shù)的最值問(wèn)題,從而獲得參數(shù)的取值范圍,本題是根據(jù)相應(yīng)的二次方程的判別式來(lái)進(jìn)行求解.8、C【解析】由韋達(dá)定理可得方程的兩根之積為,從而可知直線、的斜率之積為,進(jìn)而可判斷兩直線的位置關(guān)系【詳解】設(shè)方程的兩根為、,則直線、的斜率,故與相交但不垂直故選:C9、C【解析】由題設(shè)可得,再由即可求值.【詳解】由數(shù)列是公比為2的等比數(shù)列,且,∴,即,∴.故選:C.10、C【解析】根據(jù)空間向量垂直的性質(zhì)進(jìn)行求解即可.【詳解】因?yàn)?,所以,因此?故選:C11、A【解析】求得兩圓的圓心和半徑,再根據(jù)圓心距與半徑之和半徑之差的關(guān)系,即可判斷位置關(guān)系.【詳解】對(duì)圓,其圓心,半徑;對(duì)圓,其圓心,半徑;又,故兩圓外切.故選:A.12、C【解析】取中點(diǎn),連接,證明平面,得證,然后證明平面,得兩兩垂直,以為棱把三棱錐補(bǔ)成一個(gè)正方體,正方體的對(duì)角線是其外接球的直徑,而正方體的外接球也是正三棱錐的外接球,由此計(jì)算可得【詳解】取中點(diǎn),連接,則,,,平面,所以平面,又平面,所以,D、E分別是SA、AB的中點(diǎn),則,又,所以,,平面,所以平面,而平面,所以,,是正三棱錐,因此,因此可以為棱把三棱錐補(bǔ)成一個(gè)正方體,正方體的對(duì)角線是其外接球的直徑,而正方體的外接球也是正三棱錐的外接球,由,得,所以所求外接球直徑為,半徑為,球體積為故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知找到異面直線所成角的平面角,再運(yùn)用余弦定理可得答案.【詳解】解:設(shè)BD的中點(diǎn)為O,連接EO,F(xiàn)O,所以,則∠EOF(或其補(bǔ)角)就是異面直線AD,BC所成的角的平面角,又因?yàn)镋O=AD=1,F(xiàn)O=BC=,EF=.根據(jù)余弦定理得=-,所以∠EOF=150°,異面直線AD與BC所成角的大小為30°.故答案為:30°.14、2020【解析】先證得,利用倒序相加法求得表達(dá)式值.【詳解】解:由題意可知,令S=則S=兩式相加得,故填:【點(diǎn)睛】本題考查借助倒序相加求函數(shù)值的和,屬于中檔題,解題關(guān)鍵是找到的規(guī)律15、【解析】首先判定點(diǎn)在曲線上,然后利用導(dǎo)數(shù)的幾何意義求得答案.【詳解】由題意可知點(diǎn)在曲線上,而,故曲線在點(diǎn)處的切線斜率為,所以切線方程:,即,故答案為:16、【解析】化簡(jiǎn)橢圓的方程為標(biāo)準(zhǔn)形式,列出不等式,即可求解.【詳解】由題意,方程可化為,因?yàn)榉匠瘫硎窘裹c(diǎn)在軸上的橢圓,可得,解得,實(shí)數(shù)的取值范圍是.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)求出PM,就可以求PQ的范圍;(2)使用待定系數(shù)法求出切線的方程,再求求切點(diǎn)的坐標(biāo),從而可以求切點(diǎn)的連線的方程.【小問(wèn)1詳解】如下圖所示,因?yàn)閳A的方程可化為,所以圓心,半徑,且,所以,故取值范圍為.【小問(wèn)2詳解】可知切線,中至少一條的斜率存在,設(shè)為,則此切線為即,由圓心到此切線的距離等于半徑,即,得所以兩條切線的方程為和,于是由聯(lián)立方程組得兩切點(diǎn)的坐標(biāo)為和所以故直線的方程為即18、(1);(2)存在,.【解析】(1)由題設(shè)可知求出,再結(jié)合,從而可求出橢圓的方程,(2)①若直線與軸垂直,由對(duì)稱性可知,代入橢圓方程可求得結(jié)果,②若直線不與軸垂直,設(shè)直線的方程為,將直線方程與橢圓方程聯(lián)立方程組,消去,然后利用根與系數(shù)的關(guān)系,設(shè),,再由條件,得,從而得,再利用點(diǎn)到直線的距離公式可求得結(jié)果【詳解】(1)由題設(shè)可知解得,,,所以橢圓的方程為:;(2)設(shè),,①若直線與軸垂直,由對(duì)稱性可知,將點(diǎn)代入橢圓方程,解得,原點(diǎn)到該直線的距離;②若直線不與軸垂直,設(shè)直線的方程為,由消去得,則由條件,即,由韋達(dá)定理得,整理得,則原點(diǎn)到該直線的距離;故存在定點(diǎn),使得到直線的距離為定值.19、(1);(2)不存在,理由見(jiàn)解析.【解析】(1)設(shè),根據(jù)中點(diǎn)坐標(biāo)公式用N的坐標(biāo)表示P的坐標(biāo),將P的坐標(biāo)代入圓M的方程化簡(jiǎn)即可得N的軌跡方程;(2)假設(shè)存在,設(shè)M為(m,0),設(shè)直線l斜率為k,表示其方程,l方程和橢圓方程聯(lián)立,根據(jù)韋達(dá)定理得根與系數(shù)關(guān)系,由,得,代入根與系數(shù)的關(guān)系求k與m關(guān)系即可判斷.【小問(wèn)1詳解】設(shè),因?yàn)镹為的中點(diǎn),,又P點(diǎn)在圓上,,即C軌跡方程為;【小問(wèn)2詳解】不存在滿足條件的點(diǎn)M,理由如下:假設(shè)存在滿足條件的點(diǎn)M,設(shè)點(diǎn)M的坐標(biāo)為,直線的斜率為k,則直線的方程為,由消去y并整理,得,設(shè),則由,得,即,將代入上式并化簡(jiǎn),得將式代入上式,有,解得,而,求得點(diǎn)M在橢圓外,若與橢圓無(wú)交點(diǎn)不滿足條件,所以不存在這樣的點(diǎn)M【點(diǎn)睛】本題關(guān)鍵是由得,將幾何關(guān)系轉(zhuǎn)化為代數(shù)關(guān)系進(jìn)行計(jì)算.20、(1)海里/小時(shí);(2)該船要改變航行方向,理由見(jiàn)解析.【解析】(1)設(shè)一個(gè)單位為海里,建立以為坐標(biāo)原點(diǎn),正東、正北方向分別為、軸的正方向建立平面直角坐標(biāo)系,計(jì)算出,即可求得該船的行駛速度;(2)求出直線的方程,計(jì)算出點(diǎn)到直線的距離,可得出結(jié)論.【小問(wèn)1詳解】解:設(shè)一個(gè)單位為海里,建立以為坐標(biāo)原點(diǎn),正東、正北方向分別為、軸的正方向建立如下圖所示的平面直角坐標(biāo)系,則坐標(biāo)平面中,,且,,則、、,,所以,所以、兩地的距離為海里,所以該船行駛的速度為海里/小時(shí).【小問(wèn)2詳解】解:直線的斜率為,所以直線的方程為,即,所以點(diǎn)到直線的距離為,所以直線會(huì)與以為圓心,以個(gè)單位長(zhǎng)為半徑的圓相交,因此該船要改變航行方向,否則會(huì)進(jìn)入警戒區(qū)域21、(1);(2).【解析】(1)根據(jù)題意,結(jié)合離心率易,知雙曲線為等軸雙曲線,進(jìn)而可求解;(2)根據(jù)題意,分直線斜率否存在兩種情形討論,結(jié)合設(shè)而不求法以及向量數(shù)量積的坐標(biāo)公式,即可求解.【小問(wèn)1詳解】根據(jù)題意,由離心率為,知雙曲線是等軸雙曲線,所以,故雙曲線的標(biāo)準(zhǔn)方程為.【小問(wèn)2詳解】當(dāng)直線斜率存在時(shí),設(shè)直線的方程為,則由消去,得到,∵直線與雙曲線交于M、N兩點(diǎn),,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論