![貴州省甕安第二中學(xué)2024屆數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第1頁](http://file4.renrendoc.com/view/fed4d263039084135c949aa3348893db/fed4d263039084135c949aa3348893db1.gif)
![貴州省甕安第二中學(xué)2024屆數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第2頁](http://file4.renrendoc.com/view/fed4d263039084135c949aa3348893db/fed4d263039084135c949aa3348893db2.gif)
![貴州省甕安第二中學(xué)2024屆數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第3頁](http://file4.renrendoc.com/view/fed4d263039084135c949aa3348893db/fed4d263039084135c949aa3348893db3.gif)
![貴州省甕安第二中學(xué)2024屆數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第4頁](http://file4.renrendoc.com/view/fed4d263039084135c949aa3348893db/fed4d263039084135c949aa3348893db4.gif)
![貴州省甕安第二中學(xué)2024屆數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第5頁](http://file4.renrendoc.com/view/fed4d263039084135c949aa3348893db/fed4d263039084135c949aa3348893db5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
貴州省甕安第二中學(xué)2024屆數(shù)學(xué)高二上期末聯(lián)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線和互相平行,則實數(shù)()A. B.C.或 D.或2.數(shù)列滿足,且,則的值為()A.2 B.1C. D.-13.已知雙曲線的焦距為,且雙曲線的一條漸近線與直線平行,則雙曲線的方程為()A. B.C. D.4.直線的斜率為()A.135° B.45°C.1 D.-15.設(shè)橢圓()的左焦點為F,O為坐標原點.過點F且斜率為的直線與C的一個交點為Q(點Q在x軸上方),且,則C的離心率為()A. B.C. D.6.設(shè),則的一個必要不充分條件為()A. B.C. D.7.設(shè)x∈R,則x<3是0<x<3的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件8.將正整數(shù)1,2,3,4,…按如圖所示的方式排成三角形數(shù)組,則第19行從左往右數(shù)第5個數(shù)是()A.381 B.361C.329 D.4009.傾斜角為45°,在y軸上的截距為2022的直線方程是()A. B.C. D.10.已知橢圓和雙曲線有共同的焦點,分別是它們的在第一象限和第三象限的交點,且,記橢圓和雙曲線的離心率分別為,則等于()A.4 B.2C.2 D.311.若直線與平行,則實數(shù)m等于()A.0 B.1C.4 D.0或412.在等比數(shù)列中,若,則公比()A. B.C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知滿足的雙曲線(a,b>0,c為半焦距)為黃金雙曲線,則黃金雙曲線的離心率為______14.點P是棱長為1的正方體ABCD﹣A1B1C1D1的底面A1B1C1D1上一點,則的取值范圍是__.15.函數(shù)的圖象在點P()處的切線方程是,則_____16.設(shè)函數(shù)f(x)在R上滿足f(x)+xf′(x)>0,若a=(30.3)f(30.3),b=(logπ3)·f(logπ3),則a與b的大小關(guān)系為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,△ABC中,,,在三角形內(nèi)挖去一個半圓(圓心O在邊BC上,半圓與AC、AB分別相切于點C,M,與BC交于點N),將△ABC繞直線BC旋轉(zhuǎn)一周得到一個旋轉(zhuǎn)體(1)求該幾何體中間一個空心球表面積的大?。唬?)求圖中陰影部分繞直線BC旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積18.(12分)為了解某校今年高一年級女生的身體素質(zhì)狀況,從該校高一年級女生中抽取了一部分學(xué)生進行“擲鉛球”的項目測試,成績低于5米為不合格,成績在5至7米(含5米不含7米)的為及格,成績在7米至11米(含7米和11米,假定該校高一女生擲鉛球均不超過11米)為優(yōu)秀.把獲得的所有數(shù)據(jù),分成五組,畫出的頻率分布直方圖如圖所示.已知有4名學(xué)生的成績在9米到11米之間(1)求實數(shù)的值及參加“擲鉛球”項目測試的人數(shù);(2)若從此次測試成績最好和最差的兩組中隨機抽取2名學(xué)生再進行其它項目的測試,求所抽取的2名學(xué)生自不同組的概率19.(12分)已知的展開式中前三項的二項式系數(shù)之和為46,(1)求n;(2)求展開式中系數(shù)最大的項20.(12分)已知函數(shù)(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)在中,角,,所對的邊分別為,,,且滿足,,求面積的最大值21.(12分)已知橢圓的下焦點為、上焦點為,其離心率.過焦點且與x軸不垂直的直線l交橢圓于A、B兩點(1)求實數(shù)m的值;(2)求△ABO(O為原點)面積的最大值22.(10分)在平面直角坐標系中,△的三個頂點分別是點.(1)求△的外接圓O的標準方程;(2)過點作直線平行于直線,判斷直線與圓O的位置關(guān)系,并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)題意,結(jié)合兩直線的平行,得到且,即可求解.【詳解】由題意,直線和互相平行,可得且,即且,解得或.故選:C.2、D【解析】根據(jù)數(shù)列的遞推關(guān)系式,求得數(shù)列的周期性,結(jié)合周期性得到,即可求解.【詳解】解:由題意,數(shù)列滿足,且,可得,可得數(shù)列是以三項為周期的周期數(shù)列,所以.故選:D.3、B【解析】根據(jù)焦點在x軸上的雙曲線漸近線斜率為±可求a,b關(guān)系,再結(jié)合a,b,c關(guān)系即可求解﹒【詳解】∵雙曲線1(a>0,b>0)的焦距為2,且雙曲線的一條漸近線與直線2x+y=0平行,∴,∴b=2a,∵c2=a2+b2,∴a=1,b=2,∴雙曲線的方程為故選:B4、D【解析】由斜截式直接看出直線斜率.【詳解】由題意得:直線斜率為-1,故選:D5、D【解析】連接Q和右焦點,可知|OQ|=,可得∠FQ=90°,由得,寫出兩直線方程,聯(lián)立可得Q點坐標,Q點坐標代入橢圓標準方程可得a、b、c關(guān)系﹒【詳解】設(shè)橢圓右焦點為,連接Q,∵,,∴|OQ|=,∴∠FQ=90°,∵,∴,F(xiàn)Q過F(-c,0),Q過(c,0),則,由,∵Q在橢圓上,∴,又,解得,∴離心率故選:D6、C【解析】利用必要條件和充分條件的定義判斷.【詳解】A選項:,,,所以是的充分不必要條件,A錯誤;B選項:,,所以是的非充分非必要條件,B錯誤;C選項:,,,所以是必要不充分條件,C正確;D選項:,,,所以是的非充分非必要條件,D錯誤.故選:C.7、B【解析】利用充分條件、必要條件的定義可得出結(jié)論.【詳解】,因此,“”是“”必要不充分條件.故選:B.8、C【解析】觀察規(guī)律可知,從第一行起,每一行最后一個數(shù)是連續(xù)的完全平方數(shù),據(jù)此容易得出答案.【詳解】由圖中數(shù)字排列規(guī)律可知:第1行從左往右最后1個數(shù)是,第2行從左往右最后1個數(shù)是,第3行從左往右最后1個數(shù)是,……第18行從左往右最后1個數(shù)為,第19行從左往右第5個數(shù)是故選:C.9、A【解析】根據(jù)直線斜率與傾斜角的關(guān)系,結(jié)合直線斜截式方程進行求解即可.【詳解】因為直線的傾斜角為45°,所以該直線的斜率為,又因為該直線在y軸上的截距為2022,所以該直線的方程為:,故選:A10、A【解析】設(shè)橢圓的長半軸長為,雙曲線的實半軸長為,由定義可得,,在中利用余弦定理可得,即可求出結(jié)果.【詳解】設(shè)橢圓的長半軸長為,雙曲線的實半軸長為,不妨設(shè)在第一象限,根據(jù)橢圓和雙曲線定義,得,,,由可得,又,在中,,即,化簡得,兩邊同除以,得.故選:A.【點睛】關(guān)鍵點睛:本題考查共焦點的橢圓與雙曲線的離心率問題,解題的關(guān)鍵是利用定義以及焦點三角形的關(guān)系列出齊次方程式進行求解.11、A【解析】由兩條直線平行的充要條件即可求解.【詳解】解:因為直線與平行,所以,解得,故選:A.12、C【解析】由題得,化簡即得解.【詳解】因為,所以,所以,解得.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據(jù)題設(shè)及雙曲線離心率公式可得,結(jié)合雙曲線離心率的性質(zhì)即可求離心率.【詳解】由題設(shè),,整理得:,所以,而,故.故答案為:.14、[﹣,0]【解析】建立空間直角坐標系,設(shè)出點P的坐標為(x,y,z),則由題意可得0≤x≤1,0≤y≤1,z=1,計算?x2﹣x,利用二次函數(shù)的性質(zhì)求得它的值域即可【詳解】解:以點D為原點,以DA所在的直線為x軸,以DC所在的直線為y軸,以DD1所在的直線為z軸,建立空間直角坐標系,如圖所示;則點A(1,0,0),C1(0,1,1),設(shè)點P的坐標為(x,y,z),由題意可得0≤x≤1,0≤y≤1,z=1;∴(1﹣x,﹣y,﹣1),(﹣x,1﹣y,0),∴?x(1﹣x)﹣y(1﹣y)+0=x2﹣x+y2﹣y,由二次函數(shù)的性質(zhì)可得,當x=y(tǒng)時,?取得最小值為;當x=0或1,且y=0或1時,?取得最大值為0,則?的取值范圍是[,0]故答案為:[,0]【點睛】本題主要考查了向量在幾何中的應(yīng)用與向量的數(shù)量積運算問題,是綜合性題目15、【解析】根據(jù)導(dǎo)數(shù)的幾何意義,結(jié)合切線方程,即可求解.【詳解】根據(jù)導(dǎo)數(shù)的幾何意義可知,,且,所以.故答案為:16、a>b【解析】構(gòu)造函數(shù)F(x)=xf(x),利用F(x)的單調(diào)性求解即可.【詳解】設(shè)函數(shù)F(x)=xf(x),∴F′(x)=f(x)+xf′(x)>0,∴F(x)=xf(x)在R上為增函數(shù),又∵30.3>1,logπ3<1,∴30.3>logπ3,∴F(30.3)>F(logπ3),∴(30.3)f(30.3)>(logπ3)f(logπ3),∴a>b.故答案為:a>b.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】根據(jù)旋轉(zhuǎn)體的軸截面圖,根據(jù)已知條件求球的半徑與長,再利用球體、圓錐的面積、體積公式計算即可.【小問1詳解】連接,則,設(shè),在中,,;【小問2詳解】,∴圓錐球.18、(1)0.05,40;(2)【解析】(1)因為由頻率分布直方圖可得共五組的頻率和為1所以可得一個關(guān)于的等式,即可求出的值.再根據(jù)已知有4名學(xué)生的成績在9米到11米之間,可以求出本次參加“擲鉛球”項目測試的人數(shù).本小題要根據(jù)所給的圖表及直方圖作答,頻率的計算易漏乘以組距.(2)因為若此次測試成績最好的共有4名同學(xué).成績最差的共有2名同學(xué).所以從6名同學(xué)中抽取2名同學(xué)共有15中情況,其中兩人在同組情況由8中.所以可以計算出所求的概率.試題解析:(Ⅰ)由題意可知解得所以此次測試總?cè)藬?shù)為答:此次參加“擲鉛球”的項目測試的人數(shù)為40人(Ⅱ)設(shè)從此次測試成績最好和最差的兩組中隨機抽取2名學(xué)生自不同組的事件為A:由已知,測試成績在有2人,記為;在有4人,記為.從這6人中隨機抽取2人有,共15種情況事件A包括共8種情況.所以答:隨機抽取的2名學(xué)生自不同組的概率為考點:1.頻率分布直方圖.2.概率問題.3.列舉分類的思想.19、(1)9(2)【解析】(1)根據(jù)要求列出方程,求出的值;(2)求出二項式展開式的通項,列出不等式組,求出的取值范圍,從而求出,得到系數(shù)最大項.【小問1詳解】由題意得:,解得:或,因為,所以(舍去),從而【小問2詳解】二項式的展開式通項為:,則系數(shù)為,要求其最大值,則只要滿足,即9!r!9-r!?2r≥9!r-1!10-r20、(1)(2)【解析】(1)由三角恒等變換公式化簡,根據(jù)三角函數(shù)性質(zhì)求解(2)由余弦定理與面積公式,結(jié)合基本不等式求解【小問1詳解】由己知可得,由,解得:,故的單調(diào)遞減區(qū)間是【小問2詳解】,,故,得,由余弦定理得:,得,當且僅當時等號成立,故,面積最大值為21、(1)2;(2)﹒【解析】(1)根據(jù)已知條件得,,結(jié)合離心率,即可解得答案(2)設(shè)直線的方程,與橢圓方程聯(lián)立,利用弦長公式以及三角形的面積公式,基本不等式即可得出答案【小問1詳解】由題意可得,,,∵離心率,∴,∵,∴,解得【小問2詳解】由(1)知,橢圓,上焦點,設(shè),,,,直線的方程為:,聯(lián)立,得,∴,,∴,∴,∴,當且僅當,即時等號成立,∴為原點)面積的最大值為22、(1);(2)直線與圓O相切,理由見解析.【解析】(1)法1:設(shè)外接圓為,由點在圓
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國防火面料行業(yè)發(fā)展趨勢預(yù)測及投資戰(zhàn)略咨詢報告
- 2024-2026年中國手寫板行業(yè)市場供需格局及行業(yè)前景展望報告
- 堆浸行業(yè)深度研究報告
- 臨滄稅務(wù)咨詢合同范本
- 2025年度文化娛樂場所租賃及運營管理合同
- 傳媒公司拍攝合同范本
- 532裝修合同范本
- 城區(qū)房屋租賃合同范本
- 2025年膨化食品生產(chǎn)線行業(yè)深度研究分析報告
- 礦山生產(chǎn)承包合同范本
- 《鈉離子電池用電解液編制說明》
- 廣東省梅州市梅縣區(qū)2023-2024學(xué)年八年級上學(xué)期期末數(shù)學(xué)試題
- 護理人員的職業(yè)安全防護
- 2024數(shù)據(jù)中心綜合布線工程設(shè)計
- 胸外科講課全套
- 醫(yī)療器械GSP相關(guān)
- 2023年海南省公務(wù)員錄用考試《行測》真題卷及答案解析
- 電力工程施工售后保障方案
- 中國心力衰竭診斷和治療指南2024解讀(完整版)
- 多源數(shù)據(jù)整合
- 新人教版高中數(shù)學(xué)必修第二冊第六章平面向量及其應(yīng)用教案 (一)
評論
0/150
提交評論