版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省安平中學2024屆高二上數(shù)學期末質量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線的焦點到漸近線的距離為()A. B.C. D.2.已知圓C1:(x+3)2+y2=1和圓C2:(x-3)2+y2=9,動圓M同時與圓C1及圓C2相外切,求動圓圓心M的軌跡方程()A.x2-=1(x≤-1) B.x2-=1C.x2-=1(x1) D.-x2=13.已知向量,且,則的值為()A.4 B.2C.3 D.14.已知橢圓的右焦點為,則正數(shù)的值是()A.3 B.4C.9 D.215.在區(qū)間內隨機地取出兩個數(shù),則兩數(shù)之和小于的概率是()A. B.C. D.6.已知正方形ABCD的邊長為2,E,F(xiàn)分別為CD,CB的中點,分別沿AE,AF將三角形ADE,ABF折起,使得點B,D恰好重合,記為點P,則AC與平面PCE所成角等于()A. B.C. D.7.已知向量,,且,則實數(shù)等于()A1 B.2C. D.8.已知橢圓上一點到左焦點的距離為,是的中點,則()A.1 B.2C.3 D.49.已知函數(shù)的導函數(shù)的圖像如圖所示,則下列判斷正確的是()A.在區(qū)間上,函數(shù)增函數(shù) B.在區(qū)間上,函數(shù)是減函數(shù)C.為函數(shù)的極小值點 D.2為函數(shù)的極大值點10.將的展開式按x的降冪排列,第二項不大于第三項,若,且,則實數(shù)x的取值范圍是()A. B.C. D.11.在某次賽車中,名參賽選手的成績(單位:)全部介于到之間(包括和),將比賽成績分為五組:第一組,第二組,···,第五組,其頻率分布直方圖如圖所示.若成績在內的選手可獲獎,則這名選手中獲獎的人數(shù)為A. B.C. D.12.設,,,則下列不等式中一定成立的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若拋物線經(jīng)過點,則__________.14.已知點,為拋物線:上不同于原點的兩點,且,則的面積的最小值為__________.15.已知圓,直線與圓C交于A,B兩點,且,則______16.過橢圓的右焦點作兩條相互垂直的直線m,n,直線m與橢圓交于A,B兩點,直線n與橢圓交于C,D兩點,若.則下列方程①;②;③;④.其中可以作為直線AB的方程的是______(寫出所有正確答案的序號)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)橢圓的左右焦點分別為,,焦距為,為原點.橢圓上任意一點到,距離之和為.(1)求橢圓的標準方程;(2)過點的斜率為2的直線交橢圓于、兩點,求的面積.18.(12分)已知函數(shù),,其中.(1)試討論函數(shù)的單調性;(2)若,證明:.19.(12分)已知是奇函數(shù).(1)求的值;(2)若,求的值20.(12分)已知函數(shù),.(1)當時,求曲線在點處的切線方程;(2)若在區(qū)間上有唯一的零點.(?。┣蟮娜≈捣秶唬áⅲ┳C明:.21.(12分)已知p:方程所表示的曲線為焦點在x軸上的橢圓;q:當時,函數(shù)恒成立.(1)若p為真,求實數(shù)t的取值范圍;(2)若為假命題,且為真命題,求實數(shù)t的取值范圍22.(10分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若與相交于A、兩點,設,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)題意,由雙曲線的標準方程可得雙曲線的焦點坐標以及漸近線方程,由點到直線的距離公式計算可得答案.【詳解】解:根據(jù)題意,雙曲線的方程為,其焦點坐標為,其漸近線方程為,即,則其焦點到漸近線的距離;故選D.【點睛】本題考查雙曲線的幾何性質,關鍵是求出雙曲線的漸近線與焦點坐標.2、A【解析】根據(jù)雙曲線定義求解【詳解】,則根據(jù)雙曲線定義知的軌跡為的左半支故選:A第II卷(非選擇題3、A【解析】由題意可得,利用空間向量數(shù)量積的坐標表示列方程,解方程即可求解.【詳解】因為,所以,因為向量,,所以,解得,所以的值為,故選:A.4、A【解析】由直接可得.【詳解】由題知,所以,因為,所以.故選:A5、C【解析】利用幾何概型的面積型,確定兩數(shù)之和小于的區(qū)域,進而根據(jù)面積比求概率.【詳解】由題意知:若兩個數(shù)分別為,則,如上圖示,陰影部分即為,∴兩數(shù)之和小于的概率.故選:C6、A【解析】如圖,以PE,PF,PA分別為x,y,z軸建立空間直角坐標系,利用空間向量求解【詳解】由題意得,因為正方形ABCD的邊長為2,E,F(xiàn)分別為CD,CB的中點,所以,所以,所以所以PA,PE,PF三線互相垂直,故以PE,PF,PA分別為x,y,z軸建立空間直角坐標系,則,,,,設,則由,,,得,解得,則設平面的法向量為,則,令,則,因為,所以AC與平面PCE所成角的正弦值,因為AC與平面PCE所成角為銳角,所以AC與平面PCE所成角為,故選:A7、C【解析】利用空間向量垂直的坐標表示計算即可得解【詳解】因向量,,且,則,解得,所以實數(shù)等于.故選:C8、A【解析】由橢圓的定義得,進而根據(jù)中位線定理得.【詳解】解:由橢圓方程得,即,因為由橢圓的定義得,,所以,因為是的中點,是的中點,所以.故選:A9、D【解析】根據(jù)導函數(shù)與原函數(shù)的關系可求解.【詳解】對于A,在區(qū)間,,故A不正確;對于B,在區(qū)間,,故B不正確;對于C、D,由圖可知在區(qū)間上單調遞增,在區(qū)間上單調遞減,且,所以為函數(shù)的極大值點,故C不正確,D正確.故選:D10、A【解析】按照二項展開式展開表示出第二項第三項,解不等式即可.【詳解】由二項展開式,第二項為:,第三項為:,依題意,兩邊約去得到,即,由知,則,同時約去得到.故選:A.11、A【解析】先根據(jù)頻率分布直方圖確定成績在內的頻率,進而可求出結果.【詳解】由題意可得:成績在內的頻率為,又本次賽車中,共名參賽選手,所以,這名選手中獲獎的人數(shù)為.故選A【點睛】本題主要考查頻率分布直方圖,會根據(jù)頻率分布直方圖求頻率即可,屬于常考題型.12、B【解析】利用特殊值法可判斷ACD的正誤,根據(jù)不等式的性質,可判斷B的正誤.【詳解】對于A中,令,,,,滿足,,但,故A錯誤;對于B中,因為,所以由不等式的可加性,可得,所以,故B正確;對于C中,令,,,,滿足,,但,故C錯誤;對于D中,令,,,,滿足,,但,故D錯誤故選:B二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】將點代入拋物線方程即可得出答案.【詳解】解:因為拋物線經(jīng)過點,所以,即.故答案為:2.14、【解析】設,,利用可得即可求得,利用兩點間距離公式求出、,面積,利用基本不等式即可求最值.【詳解】設,,由可得,解得:,,,,,所以,當且僅當時等號成立,所以的面積的最小值為,故答案為:.【點睛】關鍵點點睛:本題解題的關鍵點是設,坐標,采用設而不求的方法,將轉化為,求出參數(shù)之間的關系,再利用基本不等式求的最值.15、-2【解析】將圓的一般方程化為標準方程,結合垂徑定理和勾股定理表示出圓心到弦的距離,再由點到直線的距離公式表示出圓心到弦的距離,解方程即可求得的值.【詳解】解:將圓的方程化為標準方程可得,圓心為,半徑圓C與直線相交于、兩點,且,由垂徑定理和勾股定理得圓心到直線的距離為,由點到直線距離公式得,所以,解得,故答案為:.16、①②【解析】①②結合橢圓方程得到與橢圓參數(shù)的關系,即可判斷;③④聯(lián)立直線與橢圓方程,利用弦長公式求,即可判斷.【詳解】由題設,且右焦點為,①時直線,故,則符合題設;②時,同①知:符合題設;③時直線,聯(lián)立直線AB與橢圓方程并整理得:,則,同理可得,則,不合題設;④時,同③分析知:,不合題設;故答案為:①②.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)題意和橢圓的定義可知a,c,再根據(jù),即可求出b,由此即可求出橢圓的方程;(2)求出直線方程,將其與橢圓方程聯(lián)立,根據(jù)弦長公式求出的長度,再根據(jù)點到直線的距離公式求出點O到直線AB的距離,再根據(jù)面積公式即可求出結果.【小問1詳解】由題意可得,,∴,,,所以橢圓的標準方程為.【小問2詳解】直線l的方程為,代入橢圓方程得,設,,則,,,∴,又∵點O到直線AB的距離,∴,即△OAB的面積為.18、(1)答案見解析(2)證明見解析【解析】(1)先求出函數(shù)的定義域,然后求導,再根據(jù)導數(shù)的正負求出函數(shù)的單調區(qū)間,(2)要證,只要證,由于時,,當時,令,再利用導數(shù)求出其最小值大于零即可【小問1詳解】的定義域為當時,,在上單調遞增;當時,令,解得;令,解得;綜上所述:當時,在上單調遞增,無減區(qū)間;當時,在上單調遞減,在上單調遞增;【小問2詳解】,,即證:,即證:當時,,,當時,令,則在上單調遞增在上單調遞增綜上所述:,即19、(1);(2)4【解析】(1)根據(jù)奇函數(shù)的定義,代入化簡得,進而可得的值;(2)設,可得,根據(jù)奇函數(shù)的性質得,進而可得結果.【詳解】解:(1)因為是奇函數(shù),所以,即,整理得,又,所以(2)設,因為,所以因為是奇函數(shù),所以所以【點睛】本題主要考查了已知函數(shù)的奇偶性求參數(shù)的值,根據(jù)函數(shù)的奇偶性求函數(shù)的值,屬于中檔題.20、(1);(2)(?。?;(ⅱ)證明見解析.【解析】(1)求出,,利用導數(shù)的幾何意義即可求得切線方程;(2)(ⅰ)根據(jù)題意對參數(shù)分類討論,當時,等價轉化,且構造函數(shù),利用零點存在定理,即可求得參數(shù)的取值范圍;(ⅱ)根據(jù)(?。┲兴蟮玫脚c的等量關系,求得并構造函數(shù),利用導數(shù)研究其單調性和最值,則問題得證.【小問1詳解】當時,,則,故,,則曲線在點處的切線方程為.【小問2詳解】(?。┮驗?,故可得,因為,則當時,,則,無零點,不滿足題意;當時,若在有一個零點,即在有一個零點,也即在有一個零點,又,則單調遞增,則只需,解得.綜上所述,若在區(qū)間上有唯一的零點,則;(ⅱ)由(?。┛芍粼趨^(qū)間上有唯一的零點,則,也即,則,令,則,又在都是單調增函數(shù),故是單調增函數(shù),又,故,則在單調遞增,則,故,即證.【點睛】本題考查導數(shù)的幾何意義,利用導數(shù)研究函數(shù)的零點以及最值;處理問題的關鍵是合理轉化函數(shù)零點問題,以及充分利用零點存在定理,熟練掌握構造函數(shù)法,屬綜合困難題.21、(1)(2)【解析】(1)由給定條件結合橢圓標準方程的特征列不等式求解作答.(2)求命題q真時的t值范圍,再借助“或”聯(lián)結的命題為真命題求解作答.【小問1詳解】因方程所表示的曲線為焦點在x軸上的橢圓,則有,解得,所以實數(shù)t的取值范圍是.【小問2詳解】,則有,當且僅當,即時取“=”,即,因當時,函數(shù)恒成立,則,解得,命題q為真命題有,因為假命題,且為真命題,則與一真一假,當p真q假時,,當p假q真時,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 玩具設計師童心未泯創(chuàng)意無限
- 文化創(chuàng)意技術工作總結
- 整形外科護士全年工作總結
- 證券行業(yè)衛(wèi)生規(guī)范
- 《愛勞動講衛(wèi)生》課件
- 2021年高考語文試卷(上海)(春考)(解析卷)
- 2024年濮陽職業(yè)技術學院單招職業(yè)技能測試題庫標準卷
- 2024年美術的教案
- 農村房屋問題協(xié)議書(2篇)
- 出境游全程無憂旅游合同
- 微型頂管施工方案
- 湘教文藝版小學五年級音樂上冊期末測試題
- 老化箱點檢表A4版本
- 略說魯迅全集的五種版本
- 2022年110接警員業(yè)務測試題庫及答案
- 中聯(lián)16T吊車參數(shù)
- DB44∕T 115-2000 中央空調循環(huán)水及循環(huán)冷卻水水質標準
- 嵌入式軟件架構設計
- 《石油天然氣地質與勘探》第3章儲集層和蓋層
- 航道整治課程設計--
- 超星爾雅學習通《科學計算與MATLAB語言》章節(jié)測試含答案
評論
0/150
提交評論