黑龍江省海林市朝鮮族中學(xué)2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第1頁(yè)
黑龍江省海林市朝鮮族中學(xué)2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第2頁(yè)
黑龍江省海林市朝鮮族中學(xué)2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第3頁(yè)
黑龍江省海林市朝鮮族中學(xué)2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第4頁(yè)
黑龍江省海林市朝鮮族中學(xué)2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

黑龍江省海林市朝鮮族中學(xué)2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.拋物線上有兩個(gè)點(diǎn),焦點(diǎn),已知,則線段的中點(diǎn)到軸的距離是()A.1 B.C.2 D.2.函數(shù)的圖象大致是()A. B.C. D.3.若數(shù)列的前項(xiàng)和,則此數(shù)列是()A.等差數(shù)列 B.等比數(shù)列C.等差數(shù)列或等比數(shù)列 D.以上說法均不對(duì)4.已知直線l:,則下列結(jié)論正確的是()A.直線l的傾斜角是B.直線l在x軸上的截距為1C.若直線m:,則D.過與直線l平行的直線方程是5.已知橢圓的右焦點(diǎn)為F,短軸的一個(gè)端點(diǎn)為P,直線與橢圓相交于A、B兩點(diǎn).若,點(diǎn)P到直線l的距離不小于,則橢圓C離心率的取值范圍為()A. B.C. D.6.如圖,,是平面上兩點(diǎn),且,圖中的一系列圓是圓心分別為,的兩組同心圓,每組同心圓的半徑分別是1,2,3,…,A,B,C,D,E是圖中兩組同心圓的部分公共點(diǎn).若點(diǎn)A在以,為焦點(diǎn)的橢圓M上,則()A.點(diǎn)B和C都在橢圓M上 B.點(diǎn)C和D都在橢圓M上C.點(diǎn)D和E都在橢圓M上 D.點(diǎn)E和B都在橢圓M上7.某中學(xué)的“希望工程”募捐小組暑假期間走上街頭進(jìn)行了一次募捐活動(dòng),共收到捐款1200元.他們第1天只得到10元,之后采取了積極措施,從第2天起,每一天收到的捐款都比前一天多10元.這次募捐活動(dòng)一共進(jìn)行的天數(shù)為()A.13 B.14C.15 D.168.若拋物線的焦點(diǎn)為,則其標(biāo)準(zhǔn)方程為()A. B.C. D.9.有下列三個(gè)命題:①“若,則互為相反數(shù)”的逆命題;②“若,則”的逆否命題;③“若,則”的否命題.其中真命題的個(gè)數(shù)是A.0 B.1C.2 D.310.在中,,滿足條件的三角形的個(gè)數(shù)為()A.0 B.1C.2 D.無數(shù)多11.已知函數(shù),則()A.1 B.2C.3 D.512.南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》中有如下俯視圖所示的幾何體,后人稱之為“三角垛”.其最上層有1個(gè)球,第二層有3個(gè)球,第三層有6個(gè)球,…,則第十層球的個(gè)數(shù)為()A.45 B.55C.90 D.110二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知正方形邊長(zhǎng)為,長(zhǎng)方形中,,平面與平面互相垂直,是線段的中點(diǎn),則異面直線與所成角的余弦值為______14.已知數(shù)列的各項(xiàng)均為正數(shù),其前項(xiàng)和滿足,則__________;記表示不超過的最大整數(shù),例如,若,設(shè)的前項(xiàng)和為,則__________15.寫出直線一個(gè)方向向量______16.已知拋物線C:y2=2px過點(diǎn)P(1,1):①點(diǎn)P到拋物線焦點(diǎn)的距離為②過點(diǎn)P作過拋物線焦點(diǎn)的直線交拋物線于點(diǎn)Q,則△OPQ的面積為③過點(diǎn)P與拋物線相切的直線方程為x-2y+1=0④過點(diǎn)P作兩條斜率互為相反數(shù)的直線交拋物線于M,N兩點(diǎn),則直線MN的斜率為定值其中正確的是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線:的焦點(diǎn)是圓與軸的一個(gè)交點(diǎn).(1)求拋物線的方程;(2)若過點(diǎn)的直線與拋物線交于不同的兩點(diǎn)A、B,О為坐標(biāo)原點(diǎn),證明:.18.(12分)在平面直角坐標(biāo)系中,已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合(1)求橢圓的離心率;(2)求拋物線的方程;(3)設(shè)是拋物線上一點(diǎn),且,求點(diǎn)的坐標(biāo)19.(12分)請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,是邊長(zhǎng)為的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得四個(gè)點(diǎn)重合于圖中的點(diǎn),正好形成一個(gè)長(zhǎng)方體形狀的包裝盒,、在上是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)(1)求包裝盒的容積關(guān)于的函數(shù)表達(dá)式,并求出函數(shù)的定義域;(2)當(dāng)為多少時(shí),包裝盒的容積最大?最大容積是多少?20.(12分)已知圓關(guān)于直線對(duì)稱,且圓心C在軸上.(1)求圓C的方程;(2)直線與圓C交于A、B兩點(diǎn),若為等腰直角三角形,求直線的方程.21.(12分)如圖,直四棱柱中,底面是邊長(zhǎng)為的正方形,點(diǎn)在棱上.(1)求證:;(2)從條件①、條件②、條件③這三個(gè)條件中選擇兩個(gè)作已知,使得平面,并給出證明.條件①:為的中點(diǎn);條件②:平面;條件③:.(3)在(2)的條件下,求平面與平面夾角的余弦值.22.(10分)已知數(shù)列的前n項(xiàng)和為,,且(1)求數(shù)列的通項(xiàng)公式;(2)令,記數(shù)列的前n項(xiàng)和為,求證:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】利用拋物線的定義,將拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為點(diǎn)到準(zhǔn)線的距離,即可求出線段中點(diǎn)的橫坐標(biāo),即得到答案.【詳解】由已知可得拋物線的準(zhǔn)線方程為,設(shè)點(diǎn)的坐標(biāo)分別為和,由拋物線的定義得,即,線段中點(diǎn)的橫坐標(biāo)為,故線段的中點(diǎn)到軸的距離是.故選:.2、A【解析】根據(jù)函數(shù)的定義域及零點(diǎn)的情況即可得到答案.【詳解】函數(shù)的定義域?yàn)?,則排除選項(xiàng)、,當(dāng)時(shí),,則在上單調(diào)遞減,且,,由零點(diǎn)存在定理可知在上存在一個(gè)零點(diǎn),則排除,故選:.3、D【解析】利用數(shù)列通項(xiàng)與前n項(xiàng)和的關(guān)系和等差數(shù)列及等比數(shù)列的定義判斷.【詳解】當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,所以是等差數(shù)列;當(dāng)時(shí),為非等差數(shù)列,非等比數(shù)列’當(dāng)時(shí),,所以是等比數(shù)列,故選:D4、D【解析】A.將直線方程的一般式化為斜截式可得;B.令y=0可得;C.求出直線m斜率即可判斷;D.設(shè)要求直線的方程為,將代入即可.【詳解】根據(jù)題意,依次分析選項(xiàng):對(duì)于A,直線l:,即,其斜率,則傾斜角是,A錯(cuò)誤;對(duì)于B,直線l:,令y=0,可得,l在x軸上的截距為,B錯(cuò)誤;對(duì)于C,直線m:,其斜率,,故直線m與直線l不垂直,C錯(cuò)誤;對(duì)于D,設(shè)要求直線的方程為,將代入,可得t=0,即要求直線為,D正確;故選:D5、D【解析】設(shè)橢圓的左焦點(diǎn)為,由題可得,由點(diǎn)P到直線l的距離不小于可得,進(jìn)而可求的范圍,即可得出離心率范圍.【詳解】設(shè)橢圓的左焦點(diǎn)為,P為短軸的上端點(diǎn),連接,如圖所示:由橢圓的對(duì)稱性可知,A,B關(guān)于原點(diǎn)對(duì)稱,則,又,∴四邊形為平行四邊形,∴,又,解得:,點(diǎn)P到直線l距離:,解得:,即,∴,∴.故選:D.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查橢圓離心率的求解,解題的關(guān)鍵是由橢圓定義得出,再根據(jù)已知條件得出.6、C【解析】根據(jù)橢圓的定義判斷即可求解.【詳解】因?yàn)椋詸E圓M中,因?yàn)椋?,,所以D,E在橢圓M上.故選:C7、C【解析】由題意可得募捐構(gòu)成了一個(gè)以10元為首項(xiàng),以10元為公差的等差數(shù)列,設(shè)共募捐了天,然后建立關(guān)于的方程,求出即可【詳解】由題意可得,第一天募捐10元,第二天募捐20元,募捐構(gòu)成了一個(gè)以10元為首項(xiàng),以10元為公差的等差數(shù)列,根據(jù)題意,設(shè)共募捐了天,則,解得或(舍去),所以,故選:8、D【解析】由題意設(shè)出拋物線的標(biāo)準(zhǔn)方程,再利用焦點(diǎn)為建立,解方程即可.【詳解】由題意,設(shè)拋物線標(biāo)準(zhǔn)方程為,所以,解得,所以拋物線標(biāo)準(zhǔn)方程為.故選:D9、B【解析】①寫出命題的逆命題,可以進(jìn)行判斷為真命題;②原命題和逆否命題真假性相同,而通過舉例得到原命題為假,故逆否命題也為假;③寫出命題的否命題,通過舉出反例得到否命題為假【詳解】①“若,則互為相反數(shù)”的逆命題是,若互為相反數(shù),則;是真命題;②“若,則”,當(dāng)a=-1,b=-2,時(shí)不滿足,故原命題為假命題,而原命題和逆否命題真假性相同,故得到命題為假;③“若,則”的否命題是若,則,舉例當(dāng)x=5時(shí),不滿足不等式,故得到否命題是假命題;故答案為B.【點(diǎn)睛】這個(gè)題目考查了命題真假的判斷,涉及命題的否定,命題的否命題,逆否命題,逆命題的相關(guān)概念,注意原命題和逆否命題的真假性相同,故需要判斷逆否命題的真假時(shí),只需要判斷原命題的真假10、B【解析】利用正弦定理得到,進(jìn)而或,由,得,即可求解【詳解】由正弦定理得,,或,,,故滿足條件的有且只有一個(gè).故選:B11、C【解析】利用導(dǎo)數(shù)的定義,以及運(yùn)算法則,即可求解.【詳解】,,所以,所以故選:C12、B【解析】根據(jù)題意,發(fā)現(xiàn)規(guī)律并將規(guī)律表達(dá)出來,第層有個(gè)球.【詳解】根據(jù)規(guī)律,可以得知:第一層有個(gè)球;第二層有個(gè)球;第三層有個(gè)球,則根據(jù)規(guī)律可知:第層有個(gè)球設(shè)第層的小球個(gè)數(shù)為,則有:故第十層球的個(gè)數(shù)為:故選:二、填空題:本題共4小題,每小題5分,共20分。13、【解析】建立如圖所示的空間直角坐標(biāo)系,求出,后可求異面直線所成角的余弦值.【詳解】長(zhǎng)方形可得,因?yàn)槠矫媾c平面互相垂直,平面平面,平面,故平面,故可建立如圖所示的空間直角坐標(biāo)系,則,故,,故.故答案為:14、①.;②.60.【解析】先根據(jù)并結(jié)合等差數(shù)列的定義求出;然后討論n的取值范圍,討論出分別取1,2,3,4,5的情況,進(jìn)而求出.【詳解】由題意,,n=1時(shí),,滿足,時(shí),,于是,,因?yàn)?,所?所以,是1為首項(xiàng),2為公差的等差數(shù)列,所以.若,即時(shí),,若,則時(shí),,若,則時(shí),,若,則時(shí),,若,則或22時(shí),,于是,.故答案為:2n-1;60.15、【解析】本題可先將直線的一般式化為斜截式,然后根據(jù)斜率即可得到直線的一個(gè)方向向量.【詳解】由題意可知,直線可以化為,所以直線的斜率為,直線的一個(gè)方向向量可以寫為.故答案為:.16、②③④【解析】由拋物線過點(diǎn)可得拋物線的方程,求出焦點(diǎn)的坐標(biāo)及準(zhǔn)線方程,由拋物線的性質(zhì)可判斷①;求出直線的方程與拋物線聯(lián)立切線的坐標(biāo),進(jìn)而求出三角形的面積,判斷②;設(shè)直線方程為y-1=k(x-1),與y2=x聯(lián)立求得斜率,進(jìn)而可得在處的切線方程,從而判斷③;設(shè)直線的方程為拋物線聯(lián)立求出的坐標(biāo),同理求出的坐標(biāo),進(jìn)而求出直線的斜率,從而可判斷④【詳解】解:由拋物線過點(diǎn),所以,所以,所以拋物線的方程為:;可得拋物線的焦點(diǎn)的坐標(biāo)為:,,準(zhǔn)線方程為:,對(duì)于①,由拋物線的性質(zhì)可得到焦點(diǎn)的距離為,故①錯(cuò)誤;對(duì)于②,可得直線的斜率,所以直線的方程為:,代入拋物線的方程可得:,解得,所以,故②正確;對(duì)于③,依題意斜率存在,設(shè)直線方程為y-1=k(x-1),與y2=x聯(lián)立,得:ky2-y+1-k=0,=1-4k(1-k)=0,4k2-4k+1=0,解得k=,所以切線方程為x-2y+1=0,故③正確;對(duì)于④,設(shè)直線的方程為:,與拋物線聯(lián)立可得,所以,所以,代入直線中可得,即,,直線的方程為:,代入拋物線的方程,可得,代入直線的方程可得,所以,,所以為定值,故④正確故答案為:②③④.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)由圓與軸的交點(diǎn)分別為,可得拋物線的焦點(diǎn)為,從而即可求解;(2)設(shè)直線為,聯(lián)立拋物線方程,由韋達(dá)定理及,求出即可得證.【小問1詳解】解:由題意知,圓與軸的交點(diǎn)分別為,則拋物線的焦點(diǎn)為,所以,所以拋物線方程為;【小問2詳解】證明:設(shè)直線為,聯(lián)立方程,有,所以,所以,所以.18、(1);(2);(3)【解析】(1)由橢圓方程即可求出離心率.(2)求出橢圓的焦點(diǎn)即為拋物線的焦點(diǎn),即可求出答案.(3)由拋物線定義可求出點(diǎn)的坐標(biāo)【小問1詳解】由題意可知,.【小問2詳解】橢圓的右焦點(diǎn)為,故拋物線的焦點(diǎn)為.拋物線的方程為.【小問3詳解】設(shè)的坐標(biāo)為,,解得,.故的坐標(biāo)為.19、(1),定義域?yàn)?;?)當(dāng)時(shí),包裝盒的容積最大是.【解析】(1)設(shè)出包裝盒的高和底面邊長(zhǎng),利用長(zhǎng)方體的表面積得到等量關(guān)系,再利用長(zhǎng)方體的體積公式求出表達(dá)式,再利用實(shí)際意義得到函數(shù)的定義域;(2)求導(dǎo),利用導(dǎo)函數(shù)的符號(hào)變化得到函數(shù)的極值,即最值.小問1詳解】解:設(shè)包裝盒的高為,底面邊長(zhǎng)為,則,,所以=其定義域?yàn)椋弧拘?詳解】解:由(1)得:,,因?yàn)?,所以?dāng)時(shí),;當(dāng)時(shí),;所以當(dāng)時(shí),取得極大值,即當(dāng)時(shí),包裝盒的容積最大是20、(1)(2)或【解析】(1)根據(jù)題意得到等量關(guān)系,求出,,進(jìn)而求出圓的方程;(2)結(jié)合第一問求出的圓心和半徑,及題干條件得到圓心到直線的距離為,列出方程,求出的值,進(jìn)而得到直線方程【小問1詳解】由題意得:直線過圓心,即,且,解得:,,所以圓C的方程為;【小問2詳解】的圓心為,半徑為2,由題意得:,圓心到直線的距離為,即,解得:或,所以直線的方程為:或.21、(1)證明見解析;(2)答案見解析;(3).【解析】(1)連結(jié),,由直四棱柱的性質(zhì)及線面垂直的性質(zhì)可得,再由正方形的性質(zhì)及線面垂直的判定、性質(zhì)即可證結(jié)論.(2)選條件①③,設(shè),連結(jié),,由中位線的性質(zhì)、線面垂直的性質(zhì)可得、,再由線面垂直的判定證明結(jié)論;選條件②③,設(shè),連結(jié),由線面平行的性質(zhì)及平行推論可得,由線面垂直的性質(zhì)有,再由線面垂直的判定證明結(jié)論;(3)構(gòu)建空間直角坐標(biāo)系,求平面、平面的法向量,應(yīng)用空間向量夾角的坐標(biāo)表示求平面與平面夾角的余弦值.【小問1詳解】連結(jié),,由直四棱柱知:平面,又平面,所以,又為正方形,即,又,∴平面,又平面,∴.【小問2詳解】選條件①③,可使平面.證明如下:設(shè),連結(jié),,又,分別是,的中點(diǎn),∴.又,所以.由(1)知:平面,平面,則.又,即平面.選條件②③,可使平面.證明如下:設(shè),連結(jié).因?yàn)槠矫?,平面,平面平面,所以?/p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論