版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廈門市重點中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末監(jiān)測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在四面體OABC中,,,,則與AC所成角的大小為()A.30° B.60°C.120° D.150°2.已知直線過點,且與直線垂直,則直線的方程為()A. B.C. D.3.若直線與平行,則實數(shù)m等于()A.0 B.1C.4 D.0或44.設(shè),若,則()A. B.C. D.5.若復(fù)數(shù)z滿足(其中為虛數(shù)單位),則()A. B.C. D.6.已知函數(shù).設(shè)命題的定義域為,命題的值域為.若為真,為假,則實數(shù)的取值范圍是()A. B.C. D.7.已知函數(shù)的圖象如圖所示,則其導(dǎo)函數(shù)的圖象大致形狀為()A. B.C. D.8.已知直線交圓于A,B兩點,若點滿足,則直線l被圓C截得線段的長是()A.3 B.2C. D.49.已知正三棱柱中,,點為中點,則異面直線與所成角的余弦值為()A. B.C. D.10.執(zhí)行如圖所示的程序框圖,則輸出的A. B.C. D.11.已知直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.C. D.12.在x軸與y軸上截距分別為,2的直線的傾斜角為()A.45° B.135°C.90° D.180°二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù).(1)若的解集為,求a,b的值;(2)若,a,b均正實數(shù),求的最小值;(3)若,當時,若不等式恒成立,求實數(shù)b的值.14.已知球面上的三點A,B,C滿足,,,球心到平面ABC的距離為,則球的表面積為______15.已知雙曲線:的右焦點為,過點向雙曲線的一條漸近線引垂線,垂足為,交另一條漸近線于,若,則雙曲線的漸近線方程為__________16.雙曲線上的一點到一個焦點的距離等于1,那么點到另一個焦點的距離為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:的左右焦點分別為,,點P是橢圓C上位于第二象限的任一點,直線l是的外角平分線,過左焦點作l的垂線,垂足為N,延長交直線于點M,(其中O為坐標原點),橢圓C的離心率為(1)求橢圓C的標準方程;(2)過右焦點的直線交橢圓C于A,B兩點,點T在線段AB上,且,點B關(guān)于原點的對稱點為R,求面積的取值范圍.18.(12分)已知函數(shù),其中為常數(shù),且(1)求證:時,;(2)已知a,b,p,q為正實數(shù),滿足,比較與的大小關(guān)系.19.(12分)已知圓C的圓心為,且圓C經(jīng)過點(1)求圓C的一般方程;(2)若圓與圓C恰有兩條公切線,求實數(shù)m的取值范圍20.(12分)已知斜率為的直線與橢圓:交于,兩點(1)若線段的中點為,求的值;(2)若,求證:原點到直線的距離為定值21.(12分)如圖,在四棱錐中P﹣ABCD中,底面ABCD是邊長為2的正方形,BC⊥平面PAB,PA⊥AB,PA=2(1)求證:PA⊥平面ABCD;(2)求平面PAD與平面PBC所成角的余弦值22.(10分)年月日,中國向世界莊嚴宣告,中國脫貧攻堅戰(zhàn)取得了全面勝利,現(xiàn)行標準下萬農(nóng)村貧困人口全部脫貧,個貧困縣全部摘帽,萬個貧困村全部出列,區(qū)域性整體貧困得到解決,完成了消除絕對貧困的艱巨任務(wù),困擾中華民族幾千年的絕對貧困問題得到了歷史性的解決!為了鞏固脫貧成果,某農(nóng)科所實地考察,研究發(fā)現(xiàn)某脫貧村適合種植、兩種經(jīng)濟作物,可以通過種植這兩種經(jīng)濟作物鞏固脫貧成果,通過大量考察研究得到如下統(tǒng)計數(shù)據(jù):經(jīng)濟作物的畝產(chǎn)量約為公斤,其收購價格處于上漲趨勢,最近五年的價格如下表:年份編號年份單價(元/公斤)經(jīng)濟作物的收購價格始終為元/公斤,其畝產(chǎn)量的頻率分布直方圖如下:(1)若經(jīng)濟作物的單價(單位:元/公斤)與年份編號具有線性相關(guān)關(guān)系,請求出關(guān)于的回歸直線方程,并估計年經(jīng)濟作物的單價;(2)用上述頻率分布直方圖估計經(jīng)濟作物的平均畝產(chǎn)量(每組數(shù)據(jù)以區(qū)間的中點值為代表),若不考慮其他因素,試判斷年該村應(yīng)種植經(jīng)濟作物還是經(jīng)濟作物?并說明理由附:,
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】以為空間的一個基底,求出空間向量求的夾角即可判斷作答.【詳解】在四面體OABC中,不共面,則,令,依題意,,設(shè)與AC所成角的大小為,則,而,解得,所以與AC所成角的大小為.故選:B2、A【解析】求出直線斜率,利用點斜式可得出直線的方程.【詳解】直線的斜率為,則直線的斜率為,故直線的方程為,即.故選:A.3、A【解析】由兩條直線平行的充要條件即可求解.【詳解】解:因為直線與平行,所以,解得,故選:A.4、B【解析】先求出,再利用二倍角公式、和差角公式即可求解.【詳解】因為,且,所以.所以,,所以.故選:B5、B【解析】利用復(fù)數(shù)的除法化簡復(fù)數(shù),利用復(fù)數(shù)的模長公式可求得結(jié)果.【詳解】,因此,.故選:B6、C【解析】根據(jù)一元二次不等式恒成立和二次函數(shù)值域可求得為真命題時的取值范圍,根據(jù)和的真假性可知一真一假,分類討論可得結(jié)果.【詳解】若命題為真,則在上恒成立,,;若命題為真,則的值域包含,則或,;為真,為假,一真一假,若真假,則;若假真,則;綜上所述:實數(shù)的取值范圍為.故選:C.7、A【解析】利用f(x)先單調(diào)遞增的速度由快到慢,再由慢到快,結(jié)合導(dǎo)數(shù)的幾何意義判斷即可.【詳解】由f(x)的圖象可知,函數(shù)f(x)先單調(diào)遞增的速度由快到慢,再由慢到快,由導(dǎo)數(shù)的幾何意義可知,先減后增,且恒大于0,故符合題意的只有選項A.故選:A.8、B【解析】由題設(shè)知為圓的圓心且A、B在圓上,根據(jù)已知及向量數(shù)量積的定義求的大小,進而判斷△的形狀,即可得直線l被圓C截得線段的長.【詳解】∵點為圓的圓心且A、B在圓上,又,∴,∴,又,∴,故△為等邊三角形,∴直線l被圓C截得線段的長是2故選:B9、A【解析】根據(jù)異面直線所成角的定義,取中點為,則為異面直線和所成角或其補角,再解三角形即可求出【詳解】如圖所示:設(shè)中點為,則在三角形中,為中點,為中位線,所以有,,所以為異面直線和所成角或其補角,在三角形中,,所以由余弦定理有,故選:A.10、B【解析】根據(jù)輸入的條件執(zhí)行循環(huán),并且每一次都要判斷結(jié)論是或否,直至退出循環(huán).【詳解】,,,;,【點睛】本題考查程序框圖,執(zhí)行循環(huán),屬于基礎(chǔ)題.11、C【解析】作出輔助線,找到異面直線與所成角,進而利用余弦定理及勾股定理求出各邊長,最后利用余弦定理求出余弦值.【詳解】如圖所示,把三棱柱補成四棱柱,異面直線與所成角為,由勾股定理得:,,∴故選:C12、A【解析】按照斜率公式計算斜率,即可求得傾斜角.【詳解】由題意直線過,設(shè)直線斜率為,傾斜角為,則,故.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、(1),;(2);(3)【解析】(1)根據(jù)韋達定理解求得答案;(2)根據(jù)題意,,進而化簡,然后結(jié)合基本不等式解得答案;(3)討論,和x=2三種情況,進而分參轉(zhuǎn)化為求函數(shù)的最值問題,最后求得答案.【小問1詳解】由已知可知方程的兩個根為,2,由韋達定理得,,故,.【小問2詳解】由題意得,,所以,當且僅當時取等號.【小問3詳解】若,,不等式恒成立.當時,,此時,即對于恒成立,單調(diào)遞減,此時,,所以;當時,,此時,即即對于恒成立,在單調(diào)遞減,此時,所以;當x=2時,.綜上所述:.14、【解析】由題意可知為直角三角形,求出外接圓的半徑,可求出球的半徑,然后求球的表面積.【詳解】由題意,,,,則,可知,所以外接圓的半徑為,因為球心到平面的距離為,所以球的半徑為:,所以球的表面積為:.故答案為:.15、【解析】由題意得雙曲線的右焦點F(c,0),設(shè)一漸近線OM的方程為,則另一漸近線ON的方程為.設(shè),∵,∴,∴,解得∴點M的坐標為,又,∴,整理得,∴雙曲線的漸近線方程為答案:點睛:(1)已知雙曲線的標準方程求雙曲線的漸近線方程時,只要令雙曲線的標準方程中“1”為“0”就得到兩漸近線方程,即方程就是雙曲線的兩條漸近線方程(2)求雙曲線的漸進線方程的關(guān)鍵是求出的關(guān)系,并根據(jù)焦點的位置確定出漸近線的形式,并進一步得到其方程16、【解析】首先將已知的雙曲線方程轉(zhuǎn)化為標準方程,然后根據(jù)雙曲線的定義知雙曲線上的點到兩個焦點的距離之差的絕對值為,即可求出點到另一個焦點的距離為17.考點:雙曲線的定義.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)題意可得到的值,結(jié)合橢圓的離心率,即可求得b,求得答案;(2)由可得,進一步推得,于是設(shè)直線方程和橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系,求得弦長,表示出三角形AOB的面積,利用換元法結(jié)合二次函數(shù)的性質(zhì)求其范圍.【小問1詳解】由題意可知:為的中點,為的中點,為的中位線,,,又,故,即,,又,,,橢圓的標準方程為;【小問2詳解】由題意可知,,,①當過的直線與軸垂直時,,,②當過的直線不與軸垂直時,可設(shè),,直線方程為,聯(lián)立,可得:.,,,由弦長公式可知,到距離為,故,令,則原式變?yōu)?,令,原式變?yōu)楫敃r,故,由①②可知.【點睛】本題考查了橢圓方程的求解,以及直線和橢圓相交時的三角形的面積問題,考查學(xué)生的計算能力和數(shù)學(xué)素養(yǎng),解答的關(guān)鍵是計算三角形面積時要理清運算的思路,準確計算.18、(1)證明見解析(2)【解析】(1)根據(jù)導(dǎo)數(shù)判斷出函數(shù)的單調(diào)性求出其最大值,即可證出;(2)由(1)知:,再變形即可得出小問1詳解】因為,∴在上單調(diào)遞減,又因,故當時,;當時,,所以在上單調(diào)遞增,在上單調(diào)遞減,所以.【小問2詳解】由(1)知:,兩邊同乘以a得:,∴,即.19、(1)(2)【解析】(1)設(shè)圓C的一般方程為.由圓C的圓心和圓C經(jīng)過點求解;(2)根據(jù)圓與圓C恰有兩條公切線,由圓O與圓C相交求解.【小問1詳解】解:設(shè)圓C的一般方程為∵圓C的圓心,∴即又圓C經(jīng)過點,∴解得經(jīng)檢驗得圓C的一般方程為;【小問2詳解】由(1)知圓C的圓心為,半徑為5∵圓與圓C恰有兩條公切線,∴圓O與圓C相交∴∵,∴∴m的取值范圍是20、(1);(2)證明見解析.【解析】(1)設(shè)出兩點的坐標,利用點差法即可求出的值;(2)設(shè)出直線的方程,與橢圓方程聯(lián)立,寫韋達;根據(jù),求出,從而可證明原點到直線的距離為定值【小問1詳解】設(shè),則,,兩式相減,得,即,所以,即,又因為線段的中點為,所以,即;【小問2詳解】設(shè)斜率為的直線為,,由,得,所以,,因為,所以,即,所以,所以,即,所以,原點到直線的距離為.所以原點到直線的距離為定值.21、(1)證明見解析;(2).【解析】(1)根據(jù)線面垂直的判定定理來證得平面.(2)建立空間直角坐標系,利用向量法來求得平面與平面所成角的余弦值.【小問1詳解】由于平面,所以,由于,所以平面.【小問2詳解】建立如圖所示空間直角坐標系,平面的法向量為,,設(shè)平面的法向量為,則,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《教育法規(guī)概論》課件
- 《霍尼韋爾培訓(xùn)講義》課件
- 2025權(quán)利轉(zhuǎn)讓合同模板
- 《黃金業(yè)務(wù)》課件
- 《解讀創(chuàng)傷外科》課件
- 《信息編碼與數(shù)據(jù)表》課件
- 核電站工程文明施工合同
- 硫磺礦開采土石方施工合同
- 辦公室設(shè)施更新施工合同樣本
- 室內(nèi)裝修雜工施工合同
- 美育的知與行智慧樹知到期末考試答案2024年
- 就業(yè)指南針智慧樹知到期末考試答案2024年
- 2024年合肥百姓公共服務(wù)云平臺有限公司招聘筆試沖刺題(帶答案解析)
- 急性十二指腸球部潰瘍并出血個案護理
- 專業(yè)美容院設(shè)計裝修
- 第四單元+和諧與夢想+復(fù)習(xí)課件 統(tǒng)編版道德與法治九年級上冊
- 護理組長經(jīng)驗分享
- 事業(yè)單位面試題-人際關(guān)系類
- Linux配置與管理智慧樹知到期末考試答案2024年
- 防失智老人走失試理論試題及答案
- 腎活檢術(shù)后護理查房
評論
0/150
提交評論