版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山東省德州市武城縣第二中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末統(tǒng)考試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等比數(shù)列的前n項(xiàng)和為,,,則()A. B.C. D.2.若,,且,則()A. B.C. D.3.已知命題“若,則”,命題“若,則”,則下列命題中為真命題的是()A. B.C. D.4.曲線在點(diǎn)處的切線方程為()A. B.C. D.5.已知在空間直角坐標(biāo)系(O為坐標(biāo)原點(diǎn))中,點(diǎn)關(guān)于x軸的對稱點(diǎn)為點(diǎn)B,則z軸與平面OAB所成的線面角為()A. B.C. D.6.已知命題,則為()A. B.C. D.7.如圖,在棱長為的正方體中,為線段的中點(diǎn),為線段的中點(diǎn),則直線到直線的距離為()A. B.C. D.8.如圖,在空間四邊形中,()A. B.C. D.9.等差數(shù)列的前項(xiàng)和為,若,,則()A.12 B.18C.21 D.2710.設(shè)雙曲線的方程為,過拋物線的焦點(diǎn)和點(diǎn)的直線為.若的一條漸近線與平行,另一條漸近線與垂直,則雙曲線的方程為()A. B.C. D.11.已知圓,過點(diǎn)P的直線l被圓C所截,且截得最長弦的長度與最短弦的長度比值為5∶4,若O為坐標(biāo)原點(diǎn),則最大值為()A.3 B.4C.5 D.612.拋物線的焦點(diǎn)坐標(biāo)A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.?dāng)?shù)列的前項(xiàng)和為,則的通項(xiàng)公式為________.14.曲線在點(diǎn)處的切線方程為_____________________.15.已知,若三個數(shù)成等差數(shù)列,則_________;若三個數(shù)成等比數(shù)列,則__________16.若直線與曲線沒有公共點(diǎn),則實(shí)數(shù)的取值范圍是____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在矩形中,是的中點(diǎn),是上,,且,如圖,將沿折起至:(1)指出二面角的平面角,并說明理由;(2)若,求證:平面平面;(3)若是線段的中點(diǎn),求證:直線平面;18.(12分)某校高二年級共有男生490人和女生510人,現(xiàn)采用分層隨機(jī)抽樣的方法從該校高二年級中抽取100名學(xué)生,測得他們的身高數(shù)據(jù)(1)男生和女生應(yīng)各抽取多少人?(2)若樣本中男生和女生的平均身高分別為173.6、162.2厘米,請估計(jì)該校高二年級學(xué)生的平均身高19.(12分)如圖,在四棱錐中中,平面ABCD,底面ABCD是邊長為2的正方形,.(1)求證:平面;(2)求二面角的平面角的余弦值.20.(12分)函數(shù).(1)當(dāng)時(shí),解不等式;(2)若不等式對任意恒成立,求實(shí)數(shù)a的取值范圍.21.(12分)在①,②,③這三個條件中任選一個,補(bǔ)充在下面橫線上,并解答.在中,內(nèi)角,,的對邊分別為,,,且___________.(1)求角的大??;(2)已知,,點(diǎn)在邊上,且,求線段的長.注:如果選擇多個條件分別解答,按第一個解答計(jì)分.22.(10分)設(shè),分別是橢圓:的左、右焦點(diǎn),的離心率為,點(diǎn)是上一點(diǎn).(1)求橢圓的方程;(2)過點(diǎn)的直線交橢圓E于A,B兩點(diǎn),且,求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由,可得等比數(shù)列公比q=2,利用等比數(shù)列求和公式和通項(xiàng)公式即可求.【詳解】設(shè)等比數(shù)列的公比為q,則,.故選:A.2、A【解析】由于對數(shù)函數(shù)的存在,故需要對進(jìn)行放縮,結(jié)合(需證明),可放縮為,利用等號成立可求出,進(jìn)而得解.【詳解】令,,故在上單調(diào)遞減,在上單調(diào)遞增,,故,即,當(dāng)且僅當(dāng),等號成立.所以,當(dāng)且僅當(dāng)時(shí),等號成立,又,所以,即,所以,又,所以,,故故選:A3、D【解析】利用指數(shù)函數(shù)的單調(diào)性可判斷命題的真假,利用特殊值法可判斷命題的真假,結(jié)合復(fù)合命題的真假可判斷出各選項(xiàng)中命題的真假.【詳解】對于命題,由于函數(shù)為上的增函數(shù),當(dāng)時(shí),,命題為真命題;對于命題,若,取,,則,命題為假命題.所以,、、均為假命題,為真命題.故選:D.【點(diǎn)睛】本題考查簡單命題和復(fù)合命題真假的判斷,考查推理能力,屬于基礎(chǔ)題.4、A【解析】利用切點(diǎn)和斜率求得切線方程.【詳解】由,有曲線在點(diǎn)處的切線方程為,整理為故選:A5、B【解析】根據(jù)點(diǎn)關(guān)于坐標(biāo)軸對稱的性質(zhì),結(jié)合空間向量夾角公式進(jìn)行求解即可.【詳解】因?yàn)辄c(diǎn)關(guān)于x軸的對稱點(diǎn)為,所以,設(shè)平面OAB的一個法向量為,則得所以,令,得,所以又z軸的一個方向向量為,設(shè)z軸與平面OAB所成的線面角為,則,所以所求的線面角為,故選:B6、C【解析】將全稱命題否定為特稱命題即可【詳解】由題意,根據(jù)全稱命題與特稱命題的關(guān)系,可得命題,則,故選:C.7、C【解析】連接,,,,在平面中,作,為垂足,將兩平行線的距離轉(zhuǎn)化成點(diǎn)到直線的距離,結(jié)合余弦定理即同角三角函數(shù)基本關(guān)系,求得,因此可得,進(jìn)而可得直線到直線的距離;【詳解】解:如圖,連接,,,,在平面中,作,為垂足,因?yàn)?,分別為,的中點(diǎn),因?yàn)?,,所以,所以,同理,所以四邊形是平行四邊形,所以,所以即為直線到直線的距離,在三角形中,由余弦定理得因?yàn)?,所以是銳角,所以,在直角三角形中,,故直線到直線的距離為;故選:C8、A【解析】利用空間向量加減法法則直接運(yùn)算即可.【詳解】根據(jù)向量的加法、減法法則得.故選:A.9、B【解析】根據(jù)等差數(shù)列的前項(xiàng)和為具有的性質(zhì),即成等差數(shù)列,由此列出等式,求得答案.【詳解】因?yàn)闉榈炔顢?shù)列的前n項(xiàng)和,且,,所以成等差數(shù)列,所以,即,解得=18,故選:B.10、D【解析】由拋物線的焦點(diǎn)可求得直線的方程為,即得直線的斜率為,再根據(jù)雙曲線的漸近線的方程為,可得,即可求出,得到雙曲線的方程【詳解】由題可知,拋物線焦點(diǎn)為,所以直線的方程為,即直線的斜率為,又雙曲線的漸近線的方程為,所以,,因?yàn)?,解得故選:【點(diǎn)睛】本題主要考查拋物線的簡單幾何性質(zhì),雙曲線的幾何性質(zhì),以及直線與直線的位置關(guān)系的應(yīng)用,屬于基礎(chǔ)題11、C【解析】由題意,點(diǎn)P在圓C內(nèi),且最長弦的長度為直徑長10,則最短弦的長度為8,進(jìn)而可得,所以點(diǎn)P的軌跡為以C為圓心,半徑為3的圓,從而即可求解.【詳解】解:由題意,圓,所以圓C是以為圓心,半徑為5的圓,因?yàn)檫^點(diǎn)P的直線l被圓C所截,且截得最長弦的長度與最短弦的長度比值為5∶4,所以點(diǎn)P在圓C內(nèi),且最長弦的長度為直徑長10,則最短弦的長度為8,所以由弦長公式有,所以點(diǎn)P的軌跡為以C為圓心,半徑為3的圓,所以,故選:C.12、B【解析】由拋物線方程知焦點(diǎn)在x軸正半軸,且p=4,所以焦點(diǎn)坐標(biāo)為,所以選B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】討論和兩種情況,進(jìn)而利用求得答案.【詳解】由題意,時(shí),,時(shí),,則,于是,故答案為:14、【解析】首先判定點(diǎn)在曲線上,然后利用導(dǎo)數(shù)的幾何意義求得答案.【詳解】由題意可知點(diǎn)在曲線上,而,故曲線在點(diǎn)處的切線斜率為,所以切線方程:,即,故答案為:15、①.4②.【解析】由等差中項(xiàng)與等比中項(xiàng)計(jì)算即可.【詳解】若a,b,c三個數(shù)成等差數(shù)列.所以.若a,b,c三個數(shù)成等比數(shù)列.所以故答案為:4,.16、;【解析】可化簡曲線的方程為,作出其圖形,數(shù)形結(jié)合求臨界值即可求解.【詳解】由可得,所以曲線為以為圓心,的下半圓,作出圖形如圖:當(dāng)直線過點(diǎn)時(shí),,可得,當(dāng)直線與半圓相切時(shí),則圓心到直線的距離,可得:或(舍),若直線與曲線沒有公共點(diǎn),由圖知:或,所以實(shí)數(shù)的取值范圍是:,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)為二面角的平面角,理由見解析(2)證明見解析(3)證明見解析【解析】(1)根據(jù),結(jié)合二面角定義得到答案.(2)證明平面得到,得到平面,得到證明.(3)延長,交于點(diǎn),連接,證明即可.【小問1詳解】連接,則,,故為二面角的平面角.【小問2詳解】,,,故平面,平面,故,又,,故平面,平面,故平面平面.【小問3詳解】延長,交于點(diǎn),連接,易知,故故是的中點(diǎn),是線段的中點(diǎn),故,平面,且平面,故直線平面.18、(1)應(yīng)抽取男生49人,女生51人;(2).【解析】(1)利用分層抽樣計(jì)算男生和女生應(yīng)抽取的人數(shù);(2)利用平均數(shù)的計(jì)算公式計(jì)算求解.【小問1詳解】解:應(yīng)抽取男生人,女生應(yīng)抽取100-49=51人.【小問2詳解】解:估計(jì)該校高二年級學(xué)生的平均身高為.19、(1)證明見解析(2)【解析】(1)根據(jù)平面得到,結(jié)合得到證明。(2)建立空間直角坐標(biāo)系,計(jì)算各點(diǎn)坐標(biāo),計(jì)算平面的法向量,根據(jù)向量的夾角公式得到答案?!拘?詳解】由于平面,平面,所以,由于,又,所以平面【小問2詳解】兩兩垂直,建立如圖所示空間直角坐標(biāo)系,,,,,,設(shè)平面的一個法向量為設(shè)平面的一個法向量為,由,得,故可取所以所以二面角的平面角的余弦值20、(1);(2).【解析】(1)由題設(shè),原不等式等價(jià)于,分類討論即可得出結(jié)論;(2)不等式對任意恒成立,即,即可求實(shí)數(shù)a的取值范圍.【詳解】(1)當(dāng)時(shí),原不等式等價(jià)于,當(dāng)時(shí),,解得,即;當(dāng)時(shí),恒成立,即;當(dāng)時(shí),,解得,即;綜上,不等式的解集為;(2),,即或,解得,∴a取值范圍是.21、(1)(2)【解析】(1)若選①,則根據(jù)正弦定理,邊化角,結(jié)合二倍角公式,求得,可得答案;若選②,則根據(jù)余弦定理和三角形面積公式,將化簡,求得,可得答案;若選③,則切化弦,化簡可得到的值,求得答案;(2)由余弦定理求出,進(jìn)而求得,設(shè),,在中用余弦定理列出方程,求得答案.【小問1詳解】若選①,則根據(jù)正弦定理可得:,由于,,故,則;若選②,則,即,則,而,故;若選③,則,即,則,而,故;【小問2詳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)一年級20以內(nèi)連加連減口算練習(xí)題1080道非常好
- 《現(xiàn)代農(nóng)業(yè)綠色食品》課件
- 《項(xiàng)目融資b》課件
- 《烴的燃燒規(guī)律總結(jié)》課件
- 如何預(yù)防兒童齲齒
- 《胸腔引流導(dǎo)管》課件
- 園林綠化行業(yè)客服工作心得
- 電子工程師電子設(shè)備設(shè)計(jì)與調(diào)試
- 旅游景點(diǎn)保安工作總結(jié)
- 《紅細(xì)胞與貧血》課件
- 2023-2024學(xué)年人教版高中信息技術(shù)必修二第二章第二節(jié)《 信息系統(tǒng)的開發(fā)過程》教案
- 2024六年級英語上冊 Module 9 Unit 1 Do you want to visit the UN building教案 外研版(三起)
- 2024年廣東省高中學(xué)業(yè)水平合格性考試語文試卷真題(含答案解析)
- 混凝土股東合同范本
- 人教版九年級英語知識點(diǎn)復(fù)習(xí)課件全冊
- 2024年7月國家開放大學(xué)??啤掇k公室管理》期末紙質(zhì)考試試題及答案
- 2024年自然資源部直屬企事業(yè)單位公開招聘考試筆試(高頻重點(diǎn)提升專題訓(xùn)練)共500題附帶答案詳解
- 五金材料采購?fù)稑?biāo)方案(技術(shù)方案)
- 客運(yùn)站春運(yùn)安全行車教育
- 乳腺腔鏡手術(shù)介紹
- 服裝的生產(chǎn)方案
評論
0/150
提交評論