蘇科版七年級下冊數(shù)學(xué)-期末試卷真題匯編解析版_第1頁
蘇科版七年級下冊數(shù)學(xué)-期末試卷真題匯編解析版_第2頁
蘇科版七年級下冊數(shù)學(xué)-期末試卷真題匯編解析版_第3頁
蘇科版七年級下冊數(shù)學(xué)-期末試卷真題匯編解析版_第4頁
蘇科版七年級下冊數(shù)學(xué)-期末試卷真題匯編解析版_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

【精選】蘇科版七年級下冊數(shù)學(xué)期末試卷真題匯編[解析版]一、解答題1.如圖,直線HDGE,點(diǎn)A在直線HD上,點(diǎn)C在直線GE上,點(diǎn)B在直線HD、GE之間,∠DAB=120°.(1)如圖1,若∠BCG=40°,求∠ABC的度數(shù);(2)如圖2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比較∠B,∠F的大小;(3)如圖3,點(diǎn)P是線段AB上一點(diǎn),PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的數(shù)量關(guān)系,并說明理由.2.已知,,.(1)如圖1,求證:;(2)如圖2,作的平分線交于點(diǎn),點(diǎn)為上一點(diǎn),連接,若的平分線交線段于點(diǎn),連接,若,過點(diǎn)作交的延長線于點(diǎn),且,求的度數(shù).3.如圖①,將一張長方形紙片沿對折,使落在的位置;(1)若的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);(2)如圖②,再將紙片沿對折,使得落在的位置.①若,的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);②若,的度數(shù)比的度數(shù)大,試計算的度數(shù).4.已知,定點(diǎn),分別在直線,上,在平行線,之間有一動點(diǎn).(1)如圖1所示時,試問,,滿足怎樣的數(shù)量關(guān)系?并說明理由.(2)除了(1)的結(jié)論外,試問,,還可能滿足怎樣的數(shù)量關(guān)系?請畫圖并證明(3)當(dāng)滿足,且,分別平分和,①若,則__________°.②猜想與的數(shù)量關(guān)系.(直接寫出結(jié)論)5.(1)(問題)如圖1,若,,.求的度數(shù);(2)(問題遷移)如圖2,,點(diǎn)在的上方,問,,之間有何數(shù)量關(guān)系?請說明理由;(3)(聯(lián)想拓展)如圖3所示,在(2)的條件下,已知,的平分線和的平分線交于點(diǎn),用含有的式子表示的度數(shù).二、解答題6.為了安全起見在某段鐵路兩旁安置了兩座可旋轉(zhuǎn)探照燈.如圖1所示,燈射線從開始順時針旋轉(zhuǎn)至便立即回轉(zhuǎn),燈射線從開始順時針旋轉(zhuǎn)至便立即回轉(zhuǎn),兩燈不停交又照射巡視.若燈轉(zhuǎn)動的速度是每秒2度,燈轉(zhuǎn)動的速度是每秒1度.假定主道路是平行的,即,且.(1)填空:_________;(2)若燈射線先轉(zhuǎn)動30秒,燈射線才開始轉(zhuǎn)動,在燈射線到達(dá)之前,燈轉(zhuǎn)動幾秒,兩燈的光束互相平行?(3)如圖2,若兩燈同時轉(zhuǎn)動,在燈射線到達(dá)之前.若射出的光束交于點(diǎn),過作交于點(diǎn),且,則在轉(zhuǎn)動過程中,請?zhí)骄颗c的數(shù)量關(guān)系是否發(fā)生變化?若不變,請求出其數(shù)量關(guān)系;若改變,請說明理由.7.已知直線,M,N分別為直線,上的兩點(diǎn)且,P為直線上的一個動點(diǎn).類似于平面鏡成像,點(diǎn)N關(guān)于鏡面所成的鏡像為點(diǎn)Q,此時.(1)當(dāng)點(diǎn)P在N右側(cè)時:①若鏡像Q點(diǎn)剛好落在直線上(如圖1),判斷直線與直線的位置關(guān)系,并說明理由;②若鏡像Q點(diǎn)落在直線與之間(如圖2),直接寫出與之間的數(shù)量關(guān)系;(2)若鏡像,求的度數(shù).8.長江汛期即將來臨,防汛指揮部在一危險地帶兩岸各安置了一探照燈,便于夜間查看江水及兩岸河堤的情況,如圖,燈A射線自順時針旋轉(zhuǎn)至便立即回轉(zhuǎn),燈B射線自順時針旋轉(zhuǎn)至便立即回轉(zhuǎn),兩燈不停交叉照射巡視,若燈A轉(zhuǎn)動的速度是a°/秒,燈B轉(zhuǎn)動的速度是b°/秒,且a、b滿足.假定這一帶長江兩岸河堤是平行的,即,且(1)求a、b的值;(2)若燈B射線先轉(zhuǎn)動45秒,燈A射線才開始轉(zhuǎn)動,當(dāng)燈B射線第一次到達(dá)時運(yùn)動停止,問A燈轉(zhuǎn)動幾秒,兩燈的光束互相平行?(3)如圖,兩燈同時轉(zhuǎn)動,在燈A射線到達(dá)之前.若射出的光束交于點(diǎn)C,過C作交于點(diǎn)D,則在轉(zhuǎn)動過程中,與的數(shù)量關(guān)系是否發(fā)生變化?若不變,請求出其數(shù)量關(guān)系;若改變,請求出其取值范圍.9.如圖1,為直線上一點(diǎn),過點(diǎn)作射線,將一直角三角板()的直角頂點(diǎn)放在點(diǎn)處,一邊在射線上,另一邊與都在直線的上方,將圖1中的三角板繞點(diǎn)以每秒3°的速度沿順時針方向旋轉(zhuǎn)一周.(1)幾秒后與重合?(2)如圖2,經(jīng)過秒后,,求此時的值.(3)若三角板在轉(zhuǎn)動的同時,射線也繞點(diǎn)以每秒6°的速度沿順時針方向旋轉(zhuǎn)一周,那么經(jīng)過多長時間與重合?請畫圖并說明理由.(4)在(3)的條件下,求經(jīng)過多長時間平分?請畫圖并說明理由.10.如圖,兩個形狀,大小完全相同的含有30°、60°的三角板如圖放置,PA、PB與直線MN重合,且三角板PAC,三角板PBD均可以繞點(diǎn)P逆時針旋轉(zhuǎn).(1)①如圖1,∠DPC=度.②我們規(guī)定,如果兩個三角形只要有一組邊平行,我們就稱這兩個三角形為“孿生三角形”,如圖1,三角板BPD不動,三角板PAC從圖示位置開始每秒10°逆時針旋轉(zhuǎn)一周(0°旋轉(zhuǎn)360°),問旋轉(zhuǎn)時間t為多少時,這兩個三角形是“孿生三角形”.(2)如圖3,若三角板PAC的邊PA從PN處開始繞點(diǎn)P逆時針旋轉(zhuǎn),轉(zhuǎn)速3°/秒,同時三角板PBD的邊PB從PM處開始繞點(diǎn)P逆時針旋轉(zhuǎn),轉(zhuǎn)速2°/秒,在兩個三角板旋轉(zhuǎn)過程中,(PC轉(zhuǎn)到與PM重合時,兩三角板都停止轉(zhuǎn)動).設(shè)兩個三角板旋轉(zhuǎn)時間為t秒,以下兩個結(jié)論:①為定值;②∠BPN+∠CPD為定值,請選擇你認(rèn)為對的結(jié)論加以證明.三、解答題11.如圖①,將一副直角三角板放在同一條直線AB上,其中∠ONM=30°,∠OCD=45°.(1)將圖①中的三角板OMN沿BA的方向平移至圖②的位置,MN與CD相交于點(diǎn)E,求∠CEN的度數(shù);(2)將圖①中的三角板OMN繞點(diǎn)O按逆時針方向旋轉(zhuǎn),使∠BON=30°,如圖③,MN與CD相交于點(diǎn)E,求∠CEN的度數(shù);(3)將圖①中的三角板OMN繞點(diǎn)O按每秒30°的速度按逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,在第____________秒時,直線MN恰好與直線CD垂直.(直接寫出結(jié)果)12.如圖,直線m與直線n互相垂直,垂足為O、A、B兩點(diǎn)同時從點(diǎn)O出發(fā),點(diǎn)A沿直線m向左運(yùn)動,點(diǎn)B沿直線n向上運(yùn)動.(1)若∠BAO和∠ABO的平分線相交于點(diǎn)Q,在點(diǎn)A,B的運(yùn)動過程中,∠AQB的大小是否會發(fā)生變化?若不發(fā)生變化,請求出其值,若發(fā)生變化,請說明理由.(2)若AP是∠BAO的鄰補(bǔ)角的平分線,BP是∠ABO的鄰補(bǔ)角的平分線,AP、BP相交于點(diǎn)P,AQ的延長線交PB的延長線于點(diǎn)C,在點(diǎn)A,B的運(yùn)動過程中,∠P和∠C的大小是否會發(fā)生變化?若不發(fā)生變化,請求出∠P和∠C的度數(shù);若發(fā)生變化,請說明理由.13.Rt△ABC中,∠C=90°,點(diǎn)D、E分別是△ABC邊AC、BC上的點(diǎn),點(diǎn)P是一動點(diǎn).令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若點(diǎn)P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2=°;(2)若點(diǎn)P在邊AB上運(yùn)動,如圖(2)所示,則∠α、∠1、∠2之間的關(guān)系為:;(3)若點(diǎn)P運(yùn)動到邊AB的延長線上,如圖(3)所示,則∠α、∠1、∠2之間有何關(guān)系?猜想并說明理由.(4)若點(diǎn)P運(yùn)動到△ABC形外,如圖(4)所示,則∠α、∠1、∠2之間的關(guān)系為:.14.如圖1,已知線段AB、CD相交于點(diǎn)O,連接AC、BD,我們把形如圖1的圖形稱之為“8字形”.如圖2,∠CAB和∠BDC的平分線AP和DP相交于點(diǎn)P,并且與CD、AB分別相交于M、N.試解答下列問題:(1)仔細(xì)觀察,在圖2中有個以線段AC為邊的“8字形”;(2)在圖2中,若∠B=96°,∠C=100°,求∠P的度數(shù);(3)在圖2中,若設(shè)∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間存在著怎樣的數(shù)量關(guān)系(用α、β表示∠P),并說明理由;(4)如圖3,則∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)為.15.已知,,點(diǎn)為射線上一點(diǎn).(1)如圖1,寫出、、之間的數(shù)量關(guān)系并證明;(2)如圖2,當(dāng)點(diǎn)在延長線上時,求證:;(3)如圖3,平分,交于點(diǎn),交于點(diǎn),且:,,,求的度數(shù).【參考答案】一、解答題1.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見解析.【分析】(1)過點(diǎn)B作BMHD,則HDGEBM,根據(jù)平行線的性質(zhì)求得∠ABM與∠CBM,便可求得最后解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見解析.【分析】(1)過點(diǎn)B作BMHD,則HDGEBM,根據(jù)平行線的性質(zhì)求得∠ABM與∠CBM,便可求得最后結(jié)果;(2)過B作BPHDGE,過F作FQHDGE,由平行線的性質(zhì)得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分線的性質(zhì)和已知角的度數(shù)分別求得∠HAF,∠FCG,最后便可求得結(jié)果;(3)過P作PKHDGE,先由平行線的性質(zhì)證明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根據(jù)角平分線求得∠NPC與∠PCN,由后由三角形內(nèi)角和定理便可求得結(jié)果.【詳解】解:(1)過點(diǎn)B作BMHD,則HDGEBM,如圖1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)過B作BPHDGE,過F作FQHDGE,如圖2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)過P作PKHDGE,如圖3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=∠HAP+∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP,即:∠N=90°﹣∠HAP.【點(diǎn)睛】本題考查了角平分線的定義,平行線性質(zhì)和判定:兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯角相等.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用,理清各角度之間的關(guān)系是解題的關(guān)鍵,也是本題的難點(diǎn).2.(1)見解析;(2)【分析】(1)根據(jù)平行線的性質(zhì)得出,再根據(jù)等量代換可得,最后根據(jù)平行線的判定即可得證;(2)過點(diǎn)E作,延長DC至Q,過點(diǎn)M作,根據(jù)平行線的性質(zhì)及等量代換可得出,再根據(jù)平角的解析:(1)見解析;(2)【分析】(1)根據(jù)平行線的性質(zhì)得出,再根據(jù)等量代換可得,最后根據(jù)平行線的判定即可得證;(2)過點(diǎn)E作,延長DC至Q,過點(diǎn)M作,根據(jù)平行線的性質(zhì)及等量代換可得出,再根據(jù)平角的含義得出,然后根據(jù)平行線的性質(zhì)及角平分線的定義可推出;設(shè),根據(jù)角的和差可得出,結(jié)合已知條件可求得,最后根據(jù)垂線的含義及平行線的性質(zhì),即可得出答案.【詳解】(1)證明:;(2)過點(diǎn)E作,延長DC至Q,過點(diǎn)M作,,,AF平分FH平分設(shè),.【點(diǎn)睛】本題考查了平行線的判定及性質(zhì),角平分線的定義,能靈活根據(jù)平行線的性質(zhì)和判定進(jìn)行推理是解此題的關(guān)鍵.3.(1);(2)①;②【分析】(1)由平行線的性質(zhì)得到,由折疊的性質(zhì)可知,∠2=∠BFE,再根據(jù)平角的定義求解即可;(2)①由(1)知,,根據(jù)平行線的性質(zhì)得到,再由折疊的性質(zhì)及平角的定義解析:(1);(2)①;②【分析】(1)由平行線的性質(zhì)得到,由折疊的性質(zhì)可知,∠2=∠BFE,再根據(jù)平角的定義求解即可;(2)①由(1)知,,根據(jù)平行線的性質(zhì)得到,再由折疊的性質(zhì)及平角的定義求解即可;②由(1)知,∠BFE=,由可知:,再根據(jù)條件和折疊的性質(zhì)得到,即可求解.【詳解】解:(1)如圖,由題意可知,∴,∵,∴,,由折疊可知.(2)①由題(1)可知,∵,,再由折疊可知:,;②由可知:,由(1)知,,又的度數(shù)比的度數(shù)大,,,,.【點(diǎn)睛】此題考查了平行線的性質(zhì),屬于綜合題,有一定難度,熟記“兩直線平行,同位角相等”、“兩直線平行,內(nèi)錯角相等”及折疊的性質(zhì)是解題的關(guān)鍵.4.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點(diǎn)是平行線,之間解析:(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點(diǎn)是平行線,之間有一動點(diǎn),因此需要對點(diǎn)的位置進(jìn)行分類討論:如圖1,當(dāng)點(diǎn)在的左側(cè)時,,,滿足數(shù)量關(guān)系為:;(2)當(dāng)點(diǎn)在的右側(cè)時,,,滿足數(shù)量關(guān)系為:;(3)①若當(dāng)點(diǎn)在的左側(cè)時,;當(dāng)點(diǎn)在的右側(cè)時,可求得;②結(jié)合①可得,由,得出;可得,由,得出.【詳解】解:(1)如圖1,過點(diǎn)作,,,,,,;(2)如圖2,當(dāng)點(diǎn)在的右側(cè)時,,,滿足數(shù)量關(guān)系為:;過點(diǎn)作,,,,,,;(3)①如圖3,若當(dāng)點(diǎn)在的左側(cè)時,,,,分別平分和,,,;如圖4,當(dāng)點(diǎn)在的右側(cè)時,,,;故答案為:或30;②由①可知:,;,.綜合以上可得與的數(shù)量關(guān)系為:或.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),平行公理和及推論等知識點(diǎn),作輔助線后能求出各個角的度數(shù),是解此題的關(guān)鍵.5.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根據(jù)平行線的性質(zhì)與判定可求解;(2)過P點(diǎn)作PN∥AB,則PN∥CD,可得∠FPN=∠PEA+∠FPE,進(jìn)而可得∠PF解析:(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根據(jù)平行線的性質(zhì)與判定可求解;(2)過P點(diǎn)作PN∥AB,則PN∥CD,可得∠FPN=∠PEA+∠FPE,進(jìn)而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令A(yù)B與PF交點(diǎn)為O,連接EF,根據(jù)三角形的內(nèi)角和定理可得∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【詳解】解:(1)如圖1,過點(diǎn)P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:過P點(diǎn)作PN∥AB,則PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令A(yù)B與PF交點(diǎn)為O,連接EF,如圖3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=∠PEA+∠OEF,∠GFE=∠PFC+∠OFE,∴∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=(∠PFC?α)+∠PFC+180°?∠PFC=180°?α,∴∠G=180°?(∠GEF+∠GFE)=180°?180°+α=α.【點(diǎn)睛】本題主要考查平行線的性質(zhì)與判定,靈活運(yùn)用平行線的性質(zhì)與判定是解題的關(guān)鍵.二、解答題6.(1)72°;(2)30秒或110秒;(3)不變,∠BAC=2∠BCD【分析】(1)根據(jù)∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度數(shù);(2)設(shè)A燈轉(zhuǎn)動t秒,解析:(1)72°;(2)30秒或110秒;(3)不變,∠BAC=2∠BCD【分析】(1)根據(jù)∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度數(shù);(2)設(shè)A燈轉(zhuǎn)動t秒,兩燈的光束互相平行,分兩種情況進(jìn)行討論:當(dāng)0<t<90時,根據(jù)2t=1?(30+t),可得t=30;當(dāng)90<t<150時,根據(jù)1?(30+t)+(2t-180)=180,可得t=110;(3)設(shè)燈A射線轉(zhuǎn)動時間為t秒,根據(jù)∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,據(jù)此可得∠BAC和∠BCD關(guān)系不會變化.【詳解】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,∴∠BAN=180°×=72°,故答案為:72;(2)設(shè)A燈轉(zhuǎn)動t秒,兩燈的光束互相平行,①當(dāng)0<t<90時,如圖1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1?(30+t),解得t=30;②當(dāng)90<t<150時,如圖2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1?(30+t)+(2t-180)=180,解得t=110,綜上所述,當(dāng)t=30秒或110秒時,兩燈的光束互相平行;(3)∠BAC和∠BCD關(guān)系不會變化.理由:設(shè)燈A射線轉(zhuǎn)動時間為t秒,∵∠CAN=180°-2t,∴∠BAC=72°-(180°-2t)=2t-108°,又∵∠ABC=108°-t,∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°,∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD關(guān)系不會變化.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)以及角的和差關(guān)系的運(yùn)用,解決問題的關(guān)鍵是運(yùn)用分類思想進(jìn)行求解,解題時注意:兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補(bǔ).7.(1)①,證明見解析,②,(2)或.【分析】(1)①根據(jù)和鏡像證出,即可判斷直線與直線的位置關(guān)系,②過點(diǎn)Q作QF∥CD,根據(jù)平行線的性質(zhì)證即可;(2)過點(diǎn)Q作QF∥CD,根據(jù)點(diǎn)P的位置不同,解析:(1)①,證明見解析,②,(2)或.【分析】(1)①根據(jù)和鏡像證出,即可判斷直線與直線的位置關(guān)系,②過點(diǎn)Q作QF∥CD,根據(jù)平行線的性質(zhì)證即可;(2)過點(diǎn)Q作QF∥CD,根據(jù)點(diǎn)P的位置不同,分類討論,依據(jù)平行線的性質(zhì)求解即可.【詳解】(1)①,證明:∵,∴,∵,∴,∴;②過點(diǎn)Q作QF∥CD,∵,∴,∴,,∴,∵,∴;(2)如圖,當(dāng)點(diǎn)P在N右側(cè)時,過點(diǎn)Q作QF∥CD,同(1)得,,∴,,∵,∴,∴,∵,∴,∴,如圖,當(dāng)點(diǎn)P在N左側(cè)時,過點(diǎn)Q作QF∥CD,同(1)得,,同理可得,,∵,∴,∴,∵,∴,∴;綜上,的度數(shù)為或.【點(diǎn)睛】本題考查了平行線的性質(zhì)與判定,解題關(guān)鍵是恰當(dāng)?shù)淖鬏o助線,熟練利用平行線的性質(zhì)推導(dǎo)角之間的關(guān)系.8.(1),;(2)15秒或63秒;(3)不發(fā)生變化,【分析】(1)利用非負(fù)數(shù)的性質(zhì)解決問題即可.(2)分三種情形,利用平行線的性質(zhì)構(gòu)建方程即可解決問題.(3)由參數(shù)表示,即可判斷.【詳解】解析:(1),;(2)15秒或63秒;(3)不發(fā)生變化,【分析】(1)利用非負(fù)數(shù)的性質(zhì)解決問題即可.(2)分三種情形,利用平行線的性質(zhì)構(gòu)建方程即可解決問題.(3)由參數(shù)表示,即可判斷.【詳解】解:(1)∵,∴,,;(2)設(shè)燈轉(zhuǎn)動秒,兩燈的光束互相平行,①當(dāng)時,,解得;②當(dāng)時,,解得;③當(dāng)時,,解得,(不合題意)綜上所述,當(dāng)t=15秒或63秒時,兩燈的光束互相平行;(3)設(shè)燈轉(zhuǎn)動時間為秒,,,又,,而,,,即.【點(diǎn)睛】本題考查平行線的性質(zhì)和判定,非負(fù)數(shù)的性質(zhì)等知識,解題的關(guān)鍵是理解題意,學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考??碱}型.9.(1)10秒;(2)20秒;(3)20秒,畫圖見解析;(4)秒,畫圖見解析【分析】(1)用角的度數(shù)除以轉(zhuǎn)動速度即可得;(2)求出∠AON=60°,結(jié)合旋轉(zhuǎn)速度可得時間t;(3)設(shè)∠AON=3解析:(1)10秒;(2)20秒;(3)20秒,畫圖見解析;(4)秒,畫圖見解析【分析】(1)用角的度數(shù)除以轉(zhuǎn)動速度即可得;(2)求出∠AON=60°,結(jié)合旋轉(zhuǎn)速度可得時間t;(3)設(shè)∠AON=3t,則∠AOC=30°+6t,由題意列出方程,解方程即可;(4)根據(jù)轉(zhuǎn)動速度關(guān)系和OC平分∠MOB,由題意列出方程,解方程即可.【詳解】解:(1)∵30÷3=10,∴10秒后ON與OC重合;(2)∵M(jìn)N∥AB∴∠BOM=∠M=30°,∵∠AON+∠BOM=90°,∴∠AON=60°,∴t=60÷3=20∴經(jīng)過t秒后,MN∥AB,t=20秒.(3)如圖3所示:∵∠AON+∠BOM=90°,∠BOC=∠BOM,∵三角板繞點(diǎn)O以每秒3°的速度,射線OC也繞O點(diǎn)以每秒6°的速度旋轉(zhuǎn),設(shè)∠AON=3t,則∠AOC=30°+6t,∵OC與OM重合,∵∠AOC+∠BOC=180°,可得:(30°+6t)+(90°-3t)=180°,解得:t=20秒;即經(jīng)過20秒時間OC與OM重合;(4)如圖4所示:∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板繞點(diǎn)O以每秒3°的速度,射線OC也繞O點(diǎn)以每秒6°的速度旋轉(zhuǎn),設(shè)∠AON=3t,∠AOC=30°+6t,∵∠BOM+∠AON=90°,∴∠BOC=∠COM=∠BOM=(90°-3t),由題意得:180°-(30°+6t)=(90°-3t),解得:t=秒,即經(jīng)過秒OC平分∠MOB.【點(diǎn)睛】此題考查了平行線的判定與性質(zhì),角的計算以及方程的應(yīng)用,關(guān)鍵是應(yīng)該認(rèn)真審題并仔細(xì)觀察圖形,找到各個量之間的關(guān)系求出角的度數(shù)是解題的關(guān)鍵.10.(1)①90;②t為或或或或或或;(2)①正確,②錯誤,證明見解析.【分析】(1)①由平角的定義,結(jié)合已知條件可得:從而可得答案;②當(dāng)時,有兩種情況,畫出符合題意的圖形,利用平行線的性質(zhì)與角的和解析:(1)①90;②t為或或或或或或;(2)①正確,②錯誤,證明見解析.【分析】(1)①由平角的定義,結(jié)合已知條件可得:從而可得答案;②當(dāng)時,有兩種情況,畫出符合題意的圖形,利用平行線的性質(zhì)與角的和差求解旋轉(zhuǎn)角,可得旋轉(zhuǎn)時間;當(dāng)時,有兩種情況,畫出符合題意的圖形,利用平行線的性質(zhì)與角的和差關(guān)系求解旋轉(zhuǎn)角,可得旋轉(zhuǎn)時間;當(dāng)時,有兩種情況,畫出符合題意的圖形,利用平行線的性質(zhì)與角的和差關(guān)系求解旋轉(zhuǎn)角,可得旋轉(zhuǎn)時間;當(dāng)時,畫出符合題意的圖形,利用平行線的性質(zhì)與角的和差關(guān)系求解旋轉(zhuǎn)角,可得旋轉(zhuǎn)時間;當(dāng)時的旋轉(zhuǎn)時間與相同;(2)分兩種情況討論:當(dāng)在上方時,當(dāng)在下方時,①分別用含的代數(shù)式表示,從而可得的值;②分別用含的代數(shù)式表示,得到是一個含的代數(shù)式,從而可得答案.【詳解】解:(1)①∵∠DPC=180°﹣∠CPA﹣∠DPB,∠CPA=60°,∠DPB=30°,∴∠DPC=180﹣30﹣60=90°,故答案為90;②如圖1﹣1,當(dāng)BD∥PC時,∵PC∥BD,∠DBP=90°,∴∠CPN=∠DBP=90°,∵∠CPA=60°,∴∠APN=30°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時間為3秒;如圖1﹣2,當(dāng)PC∥BD時,∵∠PBD=90°,∴∠CPB=∠DBP=90°,∵∠CPA=60°,∴∠APM=30°,∵三角板PAC繞點(diǎn)P逆時針旋轉(zhuǎn)的角度為180°+30°=210°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時間為21秒,如圖1﹣3,當(dāng)PA∥BD時,即點(diǎn)D與點(diǎn)C重合,此時∠ACP=∠BPD=30°,則AC∥BP,∵PA∥BD,∴∠DBP=∠APN=90°,∴三角板PAC繞點(diǎn)P逆時針旋轉(zhuǎn)的角度為90°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時間為9秒,如圖1﹣4,當(dāng)PA∥BD時,∵∠DPB=∠ACP=30°,∴AC∥BP,∵PA∥BD,∴∠DBP=∠BPA=90°,∴三角板PAC繞點(diǎn)P逆時針旋轉(zhuǎn)的角度為90°+180°=270°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時間為27秒,如圖1﹣5,當(dāng)AC∥DP時,∵AC∥DP,∴∠C=∠DPC=30°,∴∠APN=180°﹣30°﹣30°﹣60°=60°,∴三角板PAC繞點(diǎn)P逆時針旋轉(zhuǎn)的角度為60°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時間為6秒,如圖1﹣6,當(dāng)時,∴三角板PAC繞點(diǎn)P逆時針旋轉(zhuǎn)的角度為∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時間為秒,如圖1﹣7,當(dāng)AC∥BD時,∵AC∥BD,∴∠DBP=∠BAC=90°,∴點(diǎn)A在MN上,∴三角板PAC繞點(diǎn)P逆時針旋轉(zhuǎn)的角度為180°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時間為18秒,當(dāng)時,如圖1-3,1-4,旋轉(zhuǎn)時間分別為:,綜上所述:當(dāng)t為或或或或或或時,這兩個三角形是“孿生三角形”;(2)如圖,當(dāng)在上方時,①正確,理由如下:設(shè)運(yùn)動時間為t秒,則∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=30°﹣2t,∠APN=3t.∴∠CPD=180°﹣∠DPM﹣∠CPA﹣∠APN=90°﹣t,∴②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD隨著時間在變化,不為定值,結(jié)論錯誤.當(dāng)在下方時,如圖,①正確,理由如下:設(shè)運(yùn)動時間為t秒,則∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=∠APN=3t.∴∠CPD=∴②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD隨著時間在變化,不為定值,結(jié)論錯誤.綜上:①正確,②錯誤.【點(diǎn)睛】本題考查的是角的和差倍分關(guān)系,平行線的性質(zhì)與判定,角的動態(tài)定義(旋轉(zhuǎn)角)的理解,掌握分類討論的思想是解題的關(guān)鍵.三、解答題11.(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形內(nèi)角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根據(jù)兩直線平行,同旁內(nèi)角解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形內(nèi)角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)即可求出∠CEN的度數(shù).(3)畫出圖形,求出在MN⊥CD時的旋轉(zhuǎn)角,再除以30°即得結(jié)果.【詳解】解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°;(2)∵∠BON=30°,∠N=30°,∴∠BON=∠N,∴MN∥CB.∴∠OCD+∠CEN=180°,∵∠OCD=45°∴∠CEN=180°-45°=135°;(3)如圖,MN⊥CD時,旋轉(zhuǎn)角為360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒時,直線MN恰好與直線CD垂直.【點(diǎn)睛】本題以學(xué)生熟悉的三角板為載體,考查了三角形的內(nèi)角和、平行線的判定和性質(zhì)、垂直的定義和旋轉(zhuǎn)的性質(zhì),前兩小題難度不大,難點(diǎn)是第(3)小題,解題的關(guān)鍵是畫出適合題意的幾何圖形,弄清求旋轉(zhuǎn)角的思路和方法,本題的第一種情況是將旋轉(zhuǎn)角∠DOM放在四邊形DOMF中,用四邊形內(nèi)角和求解,第二種情況是用周角減去∠DOM的度數(shù).12.(1)∠AQB的大小不發(fā)生變化,∠AQB=135°;(2)∠P和∠C的大小不變,∠P=45°,∠C=45°.【分析】第(1)題因垂直可求出∠ABO與∠BAO的和,由角平分線和角的和差可求出∠BA解析:(1)∠AQB的大小不發(fā)生變化,∠AQB=135°;(2)∠P和∠C的大小不變,∠P=45°,∠C=45°.【分析】第(1)題因垂直可求出∠ABO與∠BAO的和,由角平分線和角的和差可求出∠BAQ與∠ABQ的和,最后在△ABQ中,根據(jù)三角形的內(nèi)角各定理可求∠AQB的大小.第(2)題求∠P的大小,用鄰補(bǔ)角、角平分線、平角、直角和三角形內(nèi)角和定理等知識求解.【詳解】解:(1)∠AQB的大小不發(fā)生變化,如圖1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分別是∠BAO和∠ABO的角平分線,∴∠BAQ=∠BAC,∠ABQ=∠ABO,∴∠BAQ+∠ABQ=(∠ABO+∠BAO)=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如圖2所示:①∠P的大小不發(fā)生變化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分別是∠BAE和∠ABP的角平分線,∴∠PAB=∠EAB,∠PBA=∠ABF,∴∠PAB+∠PBA=(∠EAB+∠ABF)=×270°=135°,又∵在△PAB中,∠P+∠PAB+∠PBA=180°,∴∠P=180°﹣135°=45°.②∠C的大小不變,其原因如下:∵∠AQB=135°,∠AQB+∠BQC=180°,∴∠BQC=180°﹣135°,又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180°∠ABQ=∠QBO=∠ABO,∠PBA=∠PBF=∠ABF,∴∠PBQ=∠ABQ+∠PBA=90°,又∵∠PBC=∠PBQ+∠CBQ=180°,∴∠QBC=180°﹣90°=90°.又∵∠QBC+∠C+∠BQC=180°,∴∠C=180°﹣90°﹣45°=45°【點(diǎn)睛】本題考查三角形內(nèi)角和定理,垂直,角平分線,平角,直角和角的和差等知識點(diǎn),同時,也是一個以靜求動的一個點(diǎn)型題目,有益于培養(yǎng)學(xué)生的思維幾何綜合題.13.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補(bǔ)角的定義,得出∠1+∠2解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補(bǔ)角的定義,得出∠1+∠2=∠C+∠α,進(jìn)而得出即可;(2)利用(1)中所求的結(jié)論得出∠α、∠1、∠2之間的關(guān)系即可;(3)利用三角外角的性質(zhì),得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形內(nèi)角和定理以及鄰補(bǔ)角的性質(zhì)可得出∠α、∠1、∠2之間的關(guān)系.試題分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案為140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案為∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如圖③,設(shè)DP與BE的交點(diǎn)為M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如圖④,設(shè)PE與AC的交點(diǎn)為F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案為∠2=90°+∠1-∠α點(diǎn)睛:本題考查了三角形內(nèi)角和定理和外角的性質(zhì)、對頂角相等的性質(zhì),熟練掌握三角形外角的性質(zhì)是解決問題的關(guān)鍵.14.(1)3;(2)98°;(3)∠P=(β+2α),理由見解析;(4)360°.【分析】(1)以M為交點(diǎn)的“8字形”有1個,以O(shè)為交點(diǎn)的“8字形”有2個;(2)根據(jù)角平分線的定義得到∠CAP=∠解析:(1)3;(2)98°;(3)∠P=(β+2α),理由見解析;(4)360°.【分析】(1)以M為交點(diǎn)的“8字形”有1個,以O(shè)為交點(diǎn)的“8字形”有2個;(2)根據(jù)角平分線的定義得到∠CAP=∠BAP,∠BDP=∠CDP,再根據(jù)三角形內(nèi)角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,兩等式相減得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入計算即可;(3)與(2)的證明方法一樣得到∠P=(2∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論