版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
一、解答題1.如圖所示,A(1,0)、點(diǎn)B在y軸上,將三角形OAB沿x軸負(fù)方向平移,平移后的圖形為三角形DEC,且點(diǎn)C的坐標(biāo)為(﹣3,2).(1)直接寫出點(diǎn)E的坐標(biāo);(2)在四邊形ABCD中,點(diǎn)P從點(diǎn)B出發(fā),沿“BC→CD”移動.若點(diǎn)P的速度為每秒1個單位長度,運(yùn)動時間為t秒,回答下列問題:①當(dāng)t=秒時,點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);②求點(diǎn)P在運(yùn)動過程中的坐標(biāo),(用含t的式子表示,寫出過程);③當(dāng)點(diǎn)P運(yùn)動到CD上時,設(shè)∠CBP=x°,∠PAD=y°,∠BPA=z°,試問x,y,z之間的數(shù)量關(guān)系能否確定?若能,請用含x,y的式子表示z,寫出過程;若不能,說明理由.2.如圖1,MN∥PQ,點(diǎn)C、B分別在直線MN、PQ上,點(diǎn)A在直線MN、PQ之間.(1)求證:∠CAB=∠MCA+∠PBA;(2)如圖2,CD∥AB,點(diǎn)E在PQ上,∠ECN=∠CAB,求證:∠MCA=∠DCE;(3)如圖3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度數(shù).3.(1)(問題)如圖1,若,,.求的度數(shù);(2)(問題遷移)如圖2,,點(diǎn)在的上方,問,,之間有何數(shù)量關(guān)系?請說明理由;(3)(聯(lián)想拓展)如圖3所示,在(2)的條件下,已知,的平分線和的平分線交于點(diǎn),用含有的式子表示的度數(shù).4.已知直線AB//CD,點(diǎn)P、Q分別在AB、CD上,如圖所示,射線PB按逆時針方向以每秒12°的速度旋轉(zhuǎn)至PA便立即回轉(zhuǎn),并不斷往返旋轉(zhuǎn);射線QC按逆時針方向每秒3°旋轉(zhuǎn)至QD停止,此時射線PB也停止旋轉(zhuǎn).(1)若射線PB、QC同時開始旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)時間10秒時,PB'與QC'的位置關(guān)系為;(2)若射線QC先轉(zhuǎn)15秒,射線PB才開始轉(zhuǎn)動,當(dāng)射線PB旋轉(zhuǎn)的時間為多少秒時,PB′//QC′.5.如圖,直線AB∥直線CD,線段EF∥CD,連接BF、CF.(1)求證:∠ABF+∠DCF=∠BFC;(2)連接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求證:CE平分∠BCD;(3)在(2)的條件下,G為EF上一點(diǎn),連接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度數(shù).6.(1)如圖①,若∠B+∠D=∠E,則直線AB與CD有什么位置關(guān)系?請證明(不需要注明理由).(2)如圖②中,AB//CD,又能得出什么結(jié)論?請直接寫出結(jié)論.(3)如圖③,已知AB//CD,則∠1+∠2+…+∠n-1+∠n的度數(shù)為.7.小學(xué)的時候我們已經(jīng)學(xué)過分?jǐn)?shù)的加減法法則:“同分母分?jǐn)?shù)相加減,分母不變,分子相加減;異分母分?jǐn)?shù)相加減,先通分,轉(zhuǎn)化為同分母分?jǐn)?shù),再加減.”如:,反之,這個式子仍然成立,即:.(1)問題發(fā)現(xiàn)觀察下列等式:①,②,③,…,猜想并寫出第個式子的結(jié)果:.(直接寫出結(jié)果,不說明理由)(2)類比探究將(1)中的的三個等式左右兩邊分別相加得:,類比該問題的做法,請直接寫出下列各式的結(jié)果:①;②;(3)拓展延伸計算:.8.觀察下面的變形規(guī)律:;;;….解答下面的問題:(1)仿照上面的格式請寫出=;(2)若n為正整數(shù),請你猜想=;(3)基礎(chǔ)應(yīng)用:計算:.(4)拓展應(yīng)用1:解方程:=2016(5)拓展應(yīng)用2:計算:.9.如圖1,把兩個邊長為1的小正方形沿對角線剪開,所得的4個直角三角形拼成一個面積為2的大正方形.由此得到了一種能在數(shù)軸上畫出無理數(shù)對應(yīng)點(diǎn)的方法.(1)圖2中A、B兩點(diǎn)表示的數(shù)分別為___________,____________;(2)請你參照上面的方法:①把圖3中的長方形進(jìn)行剪裁,并拼成一個大正方形.在圖3中畫出裁剪線,并在圖4的正方形網(wǎng)格中畫出拼成的大正方形,該正方形的邊長___________.(注:小正方形邊長都為1,拼接不重疊也無空隙)②在①的基礎(chǔ)上,參照圖2的畫法,在數(shù)軸上分別用點(diǎn)M、N表示數(shù)a以及.(圖中標(biāo)出必要線段的長)10.對數(shù)運(yùn)算是高中常用的一種重要運(yùn)算,它的定義為:如果ax=N(a>0,且a≠1),那么數(shù)x叫做以a為底N的對數(shù),記作:x=logaN,例如:32=9,則log39=2,其中a=10的對數(shù)叫做常用對數(shù),此時log10N可記為lgN.當(dāng)a>0,且a≠1,M>0,N>0時,loga(M?N)=logaM+logaN.(I)解方程:logx4=2;(Ⅱ)log28=(Ⅲ)計算:(lg2)2+lg2?1g5+1g5﹣2018=(直接寫答案)11.觀察下列各式,并用所得出的規(guī)律解決問題:(1),,,……,,,……由此可見,被開方數(shù)的小數(shù)點(diǎn)每向右移動______位,其算術(shù)平方根的小數(shù)點(diǎn)向______移動______位.(2)已知,,則_____;______.(3),,,……小數(shù)點(diǎn)的變化規(guī)律是_______________________.(4)已知,,則______.12.已知,在計算:的過程中,如果存在正整數(shù),使得各個數(shù)位均不產(chǎn)生進(jìn)位,那么稱這樣的正整數(shù)為“本位數(shù)”.例如:2和30都是“本位數(shù)”,因為沒有進(jìn)位,沒有進(jìn)位;15和91都不是“本位數(shù)”,因為,個位產(chǎn)生進(jìn)位,,十位產(chǎn)生進(jìn)位.則根據(jù)上面給出的材料:(1)下列數(shù)中,如果是“本位數(shù)”請在后面的括號內(nèi)打“√”,如果不是“本位數(shù)”請在后面的括號內(nèi)畫“×”.106();111();400();2015().(2)在所有的四位數(shù)中,最大的“本位數(shù)”是,最小的“本位數(shù)”是.(3)在所有三位數(shù)中,“本位數(shù)”一共有多少個?13.已知A(0,a)、B(b,0),且+(b﹣4)2=0.(1)直接寫出點(diǎn)A、B的坐標(biāo);(2)點(diǎn)C為x軸負(fù)半軸上一點(diǎn)滿足S△ABC=15.①如圖1,平移直線AB經(jīng)過點(diǎn)C,交y軸于點(diǎn)E,求點(diǎn)E的坐標(biāo);②如圖2,若點(diǎn)F(m,10)滿足S△ACF=10,求m.(3)如圖3,D為x軸上B點(diǎn)右側(cè)的點(diǎn),把點(diǎn)A沿y軸負(fù)半軸方向平移,過點(diǎn)A作x軸的平行線l,在直線l上取兩點(diǎn)G、H(點(diǎn)H在點(diǎn)G右側(cè)),滿足HB=8,GD=6.當(dāng)點(diǎn)A平移到某一位置時,四邊形BDHG的面積有最大值,直接寫出面積的最大值.14.點(diǎn)A,C,E在直線l上,點(diǎn)B不在直線l上,把線段AB沿直線l向右平移得到線段CD.(1)如圖1,若點(diǎn)E在線段AC上,求證:B+D=BED;(2)若點(diǎn)E不在線段AC上,試猜想并證明B,D,BED之間的等量關(guān)系;(3)在(1)的條件下,如圖2所示,過點(diǎn)B作PB//ED,在直線BP,ED之間有點(diǎn)M,使得ABE=EBM,CDE=EDM,同時點(diǎn)F使得ABE=nEBF,CDE=nEDF,其中n≥1,設(shè)BMD=m,利用(1)中的結(jié)論求BFD的度數(shù)(用含m,n的代數(shù)式表示).15.如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),三角形OAB的邊OA、OB分別在x軸正半軸上和y軸正半軸上,A(a,0),a是方程的解,且△OAB的面積為6.(1)求點(diǎn)A、B的坐標(biāo);(2)將線段OA沿軸向上平移后得到PQ,點(diǎn)O、A的對應(yīng)點(diǎn)分別為點(diǎn)P和點(diǎn)Q(點(diǎn)P與點(diǎn)B不重合),設(shè)點(diǎn)P的縱坐標(biāo)為t,△BPQ的面積為S,請用含t的式子表示S;(3)在(2)的條件下,設(shè)PQ交線段AB于點(diǎn)K,若PK=,求t的值及△BPQ的面積.16.如圖,數(shù)軸上兩點(diǎn)A、B對應(yīng)的數(shù)分別是-1,1,點(diǎn)P是線段AB上一動點(diǎn),給出如下定義:如果在數(shù)軸上存在動點(diǎn)Q,滿足|PQ|=2,那么我們把這樣的點(diǎn)Q表示的數(shù)稱為連動數(shù),特別地,當(dāng)點(diǎn)Q表示的數(shù)是整數(shù)時我們稱為連動整數(shù).(1)在-2.5,0,2,3.5四個數(shù)中,連動數(shù)有;(直接寫出結(jié)果)(2)若k使得方程組中的x,y均為連動數(shù),求k所有可能的取值;(3)若關(guān)于x的不等式組的解集中恰好有4個連動整數(shù),求這4個連動整數(shù)的值及a的取值范圍.17.在平面直角坐標(biāo)系中,點(diǎn),滿足關(guān)系式.(1)求,的值;(2)若點(diǎn)滿足的面積等于,求的值;(3)線段與軸交于點(diǎn),動點(diǎn)從點(diǎn)出發(fā),在軸上以每秒個單位長度的速度向下運(yùn)動,動點(diǎn)從點(diǎn)出發(fā),以每秒個單位長度的速度向右運(yùn)動,問為何值時有,請直接寫出的值.18.如圖所示,在直角坐標(biāo)系中,已知,,將線段平移至,連接、、、,且,點(diǎn)在軸上移動(不與點(diǎn)、重合).(1)直接寫出點(diǎn)的坐標(biāo);(2)點(diǎn)在運(yùn)動過程中,是否存在的面積是的面積的3倍,如果存在請求出點(diǎn)的坐標(biāo),如果不存在請說明理由;(3)點(diǎn)在運(yùn)動過程中,請寫出、、三者之間存在怎樣的數(shù)量關(guān)系,并說明理由.19.如圖,和的度數(shù)滿足方程組,且,.(1)用解方程的方法求和的度數(shù);(2)求的度數(shù).20.已知:用3輛A型車和2輛B型車載滿貨物一次可運(yùn)貨17噸;用2輛A型車和3輛B型車載滿貨物一次可運(yùn)貨l8噸,某物流公刊現(xiàn)有35噸貨物,計劃同時租用A型車a輛,B型車b輛,一次運(yùn)完,且恰好每輛車都載滿貨物.根據(jù)以上信息,解答下列問題:(1)l輛A型車和l輛B型車都載滿貨物一次可分別運(yùn)貨多少噸?(2)請你幫該物流公司設(shè)計租車方案;(3)若A型車每輛需租金200元/次,B型車每輛需租金240元/次,請選出最省錢的租車方案,并求出最少租車費(fèi).21.平面直角坐標(biāo)系中,A(a,0),B(0,b),a,b滿足,將線段AB平移得到CD,A,B的對應(yīng)點(diǎn)分別為C,D,其中點(diǎn)C在y軸負(fù)半軸上.(1)求A,B兩點(diǎn)的坐標(biāo);(2)如圖1,連AD交BC于點(diǎn)E,若點(diǎn)E在y軸正半軸上,求的值;(3)如圖2,點(diǎn)F,G分別在CD,BD的延長線上,連結(jié)FG,∠BAC的角平分線與∠DFG的角平分線交于點(diǎn)H,求∠G與∠H之間的數(shù)量關(guān)系.22.在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),點(diǎn).(1)的面積為______;(2)已知點(diǎn),,那么四邊形的面積為______.(3)奧地利數(shù)學(xué)家皮克發(fā)現(xiàn)了一類快速求解格點(diǎn)多邊形的方法,被稱為皮克定理:如果用m表示格點(diǎn)多邊形內(nèi)的格點(diǎn)數(shù),n表示格點(diǎn)多邊形邊上的格點(diǎn)數(shù),那么格點(diǎn)多邊形的面積S和m與n之間滿足一種數(shù)量關(guān)系.例如剛剛求解的幾個多邊形面積中,我們可以得到如表中信息:形內(nèi)格點(diǎn)數(shù)m邊界格點(diǎn)數(shù)n格點(diǎn)多邊形面積S611四邊形811五邊形208根據(jù)上述的例子,猜測皮克公式為______(用m,n表示),試計算圖②中六邊形的面積為______(本大題無需寫出解題過程,寫出正確答案即可).23.閱讀感悟:有些關(guān)于方程組的問題,要求的結(jié)果不是每一個未知數(shù)的值,而是關(guān)于未知數(shù)的代數(shù)式的值,如以下問題:已知實數(shù)、滿足①,②,求和的值.本題常規(guī)思路是將①②兩式聯(lián)立組成方程組,解得、的值再代入欲求值的代數(shù)式得到答案,常規(guī)思路運(yùn)算量比較大.其實,仔細(xì)觀察兩個方程未知數(shù)的系數(shù)之間的關(guān)系,本題還可以通過適當(dāng)變形整體求得代數(shù)式的值,如由①-②可得,由①+②×2可得.這樣的解題思想就是通常所說的“整體思想”.解決問題:(1)已知二元一次方程組,則_______,_______;(2)某班級組織活動購買小獎品,買20支水筆、3塊橡皮、2本記事本共需35元,買39支水筆、5塊橡皮、3本記事本工序62元,則購買6支水筆、6塊橡皮、6本記事本共需多少元?(3)對于實數(shù)、,定義新運(yùn)算:,其中、、是常數(shù),等式右邊是通常的加法和乘法運(yùn)算.已知,,那么_______.24.某數(shù)碼專營店銷售A,B兩種品牌智能手機(jī),這兩種手機(jī)的進(jìn)價和售價如表所示:AB進(jìn)價(元/部)33003700售價(元/部)38004300(1)該店銷售記錄顯示,三月份銷售A、B兩種手機(jī)共34部,且銷售A種手機(jī)的利潤恰好是銷售B種手機(jī)利潤的2倍,求該店三月份售出A種手機(jī)和B種手機(jī)各多少部?(2)根據(jù)市場調(diào)研,該店四月份計劃購進(jìn)這兩種手機(jī)共40部,要求購進(jìn)B種手機(jī)數(shù)不低于A種手機(jī)數(shù)的,用于購買這兩種手機(jī)的資金低于140000元,請通過計算設(shè)計所有可能的進(jìn)貨方案.25.閱讀材料:關(guān)于x,y的二元一次方程ax+by=c有一組整數(shù)解,則方程ax+by=c的全部整數(shù)解可表示為(t為整數(shù)).問題:求方程7x+19y=213的所有正整數(shù)解.小明參考閱讀材料,解決該問題如下:解:該方程一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).因為解得.因為t為整數(shù),所以t=0或-1.所以該方程的正整數(shù)解為和.(1)方程3x-5y=11的全部整數(shù)解表示為:(t為整數(shù)),則=;(2)請你參考小明的解題方法,求方程2x+3y=24的全部正整數(shù)解;(3)方程19x+8y=1908的正整數(shù)解有多少組?請直接寫出答案.26.閱讀材料:如果x是一個有理數(shù),我們把不超過x的最大整數(shù)記作[x].例如,[3.2]=3,[5]=5,[-2.1]=-3.那么,x=[x]+a,其中0≤a<1.例如,3.2=[3.2]+0.2,5=[5]+0,-2.1=[-2.1]+0.9.請你解決下列問題:(1)[4.8]=,[-6.5]=;(2)如果[x]=3,那么x的取值范圍是;(3)如果[5x-2]=3x+1,那么x的值是;(4)如果x=[x]+a,其中0≤a<1,且4a=[x]+1,求x的值.27.對于三個數(shù),,,表示,,這三個數(shù)的平均數(shù),表示,,這三個數(shù)中最小的數(shù),如:,;,.解決下列問題:(1)填空:______;(2)若,求的取值范圍;(3)①若,那么______;②根據(jù)①,你發(fā)現(xiàn)結(jié)論“若,那么______”(填,,大小關(guān)系);③運(yùn)用②解決問題:若,求的值.28.閱讀下列材料:問題:已知x﹣y=2,且x>1,y<0解:∵x﹣y=2.∴x=y(tǒng)+2,又∵x>1∴y+2>1∴y>﹣1又∵y<0∴﹣1<y<0①∴﹣1+2<y+2<0+2即1<x<2②①+②得﹣1+1<x+y<0+2∴x+y的取值范圍是0<x+y<2請按照上述方法,完成下列問題:(1)已知x﹣y=3,且x>﹣1,y<0,則x的取值范圍是;x+y的取值范圍是;(2)已知x﹣y=a,且x<﹣b,y>2b,根據(jù)上述做法得到-2<3x-y<10,求a、b的值.29.如圖,以直角三角形AOC的直角頂點(diǎn)O為原點(diǎn),以O(shè)C、OA所在直線為x軸和y軸建立平面直角坐標(biāo)系,點(diǎn)A(0,a),C(b,0)滿足+|b﹣2|=0,D為線段AC的中點(diǎn).在平面直角坐標(biāo)系中,以任意兩點(diǎn)P(x1,y1)、Q(x2,y2)為端點(diǎn)的線段中點(diǎn)坐標(biāo)為(,).(1)則A點(diǎn)的坐標(biāo)為;點(diǎn)C的坐標(biāo)為,D點(diǎn)的坐標(biāo)為.(2)已知坐標(biāo)軸上有兩動點(diǎn)P、Q同時出發(fā),P點(diǎn)從C點(diǎn)出發(fā)沿x軸負(fù)方向以1個單位長度每秒的速度勻速移動,Q點(diǎn)從O點(diǎn)出發(fā)以2個單位長度每秒的速度沿y軸正方向移動,點(diǎn)Q到達(dá)A點(diǎn)整個運(yùn)動隨之結(jié)束.設(shè)運(yùn)動時間為t(t>0)秒.問:是否存在這樣的t,使S△ODP=S△ODQ,若存在,請求出t的值;若不存在,請說明理由.(3)點(diǎn)F是線段AC上一點(diǎn),滿足∠FOC=∠FCO,點(diǎn)G是第二象限中一點(diǎn),連OG,使得∠AOG=∠AOF.點(diǎn)E是線段OA上一動點(diǎn),連CE交OF于點(diǎn)H,當(dāng)點(diǎn)E在線段OA上運(yùn)動的過程中,請確定∠OHC,∠ACE和∠OEC的數(shù)量關(guān)系,并說明理由.30.規(guī)定:二元一次方程有無數(shù)組解,每組解記為,稱為亮點(diǎn),將這些亮點(diǎn)連接得到一條直線,稱這條直線是亮點(diǎn)的隱線,答下列問題:(1)已知,則是隱線的亮點(diǎn)的是;(2)設(shè)是隱線的兩個亮點(diǎn),求方程中的最小的正整數(shù)解;(3)已知是實數(shù),且,若是隱線的一個亮點(diǎn),求隱線中的最大值和最小值的和.【參考答案】***試卷處理標(biāo)記,請不要刪除一、解答題1.(1)(-2,0);(2)①t=2;②當(dāng)點(diǎn)P在線段BC上時,點(diǎn)P的坐標(biāo)(-t,2),當(dāng)點(diǎn)P在線段CD上時,點(diǎn)P的坐標(biāo)(-3,5-t);③能確定,z=x+y.【分析】(1)根據(jù)平移的性質(zhì)即可得到結(jié)論;(2)①由點(diǎn)C的坐標(biāo)為(-3,2).得到BC=3,CD=2,由于點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);于是確定點(diǎn)P在線段BC上,有PB=CD,即可得到結(jié)果;②當(dāng)點(diǎn)P在線段BC上時,點(diǎn)P的坐標(biāo)(-t,2),當(dāng)點(diǎn)P在線段CD上時,點(diǎn)P的坐標(biāo)(-3,5-t);③如圖,過P作PF∥BC交AB于F,則PF∥AD,根據(jù)平行線的性質(zhì)即可得到結(jié)論.【詳解】解:(1)根據(jù)題意,可得三角形OAB沿x軸負(fù)方向平移3個單位得到三角形DEC,∵點(diǎn)A的坐標(biāo)是(1,0),∴點(diǎn)E的坐標(biāo)是(-2,0);故答案為:(-2,0);(2)①∵點(diǎn)C的坐標(biāo)為(-3,2)∴BC=3,CD=2,∵點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);∴點(diǎn)P在線段BC上,∴PB=CD,即t=2;∴當(dāng)t=2秒時,點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);故答案為:2;②當(dāng)點(diǎn)P在線段BC上時,點(diǎn)P的坐標(biāo)(-t,2),當(dāng)點(diǎn)P在線段CD上時,點(diǎn)P的坐標(biāo)(-3,5-t);③能確定,如圖,過P作PF∥BC交AB于F,則PF∥AD,∠1=∠CBP=x°,∠2=∠DAP=y°,∴∠BPA=∠1+∠2=x°+y°=z°,∴z=x+y.【點(diǎn)睛】本題考查了坐標(biāo)與圖形的性質(zhì),坐標(biāo)與圖形的變化-平移,平行線的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.2.(1)證明見解析;(2)證明見解析;(3)120°.【分析】(1)過點(diǎn)A作AD∥MN,根據(jù)兩直線平行,內(nèi)錯角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根據(jù)角的和差等量代換即可得解;(2)由兩直線平行,同旁內(nèi)角互補(bǔ)得到∴、∠CAB+∠ACD=180°,由鄰補(bǔ)角定義得到∠ECM+∠ECN=180°,再等量代換即可得解;(3)由平行線的性質(zhì)得到,∠FAB=120°﹣∠GCA,再由角平分線的定義及平行線的性質(zhì)得到∠GCA﹣∠ABF=60°,最后根據(jù)三角形的內(nèi)角和是180°即可求解.【詳解】解:(1)證明:如圖1,過點(diǎn)A作AD∥MN,∵M(jìn)N∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如圖2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),線段、角、相交線與平行線,準(zhǔn)確的推導(dǎo)是解決本題的關(guān)鍵.3.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根據(jù)平行線的性質(zhì)與判定可求解;(2)過P點(diǎn)作PN∥AB,則PN∥CD,可得∠FPN=∠PEA+∠FPE,進(jìn)而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令A(yù)B與PF交點(diǎn)為O,連接EF,根據(jù)三角形的內(nèi)角和定理可得∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【詳解】解:(1)如圖1,過點(diǎn)P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:過P點(diǎn)作PN∥AB,則PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令A(yù)B與PF交點(diǎn)為O,連接EF,如圖3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=∠PEA+∠OEF,∠GFE=∠PFC+∠OFE,∴∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=(∠PFC?α)+∠PFC+180°?∠PFC=180°?α,∴∠G=180°?(∠GEF+∠GFE)=180°?180°+α=α.【點(diǎn)睛】本題主要考查平行線的性質(zhì)與判定,靈活運(yùn)用平行線的性質(zhì)與判定是解題的關(guān)鍵.4.(1)PB′⊥QC′;(2)當(dāng)射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時,∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過O作OE∥AB,根據(jù)平行線的性質(zhì)求得∠POE和∠QOE的度數(shù),進(jìn)而得結(jié)論;(2)分三種情況:①當(dāng)0<t≤15時,②當(dāng)15<t≤30時,③當(dāng)30<t<45時,根據(jù)平行線的性質(zhì),得出角的關(guān)系,列出t的方程便可求得旋轉(zhuǎn)時間.【詳解】解:(1)如圖1,當(dāng)旋轉(zhuǎn)時間30秒時,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,過O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案為:PB′⊥QC′;(2)①當(dāng)0<t≤15時,如圖,則∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②當(dāng)15<t≤30時,如圖,則∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③當(dāng)30<t≤45時,如圖,則∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;綜上,當(dāng)射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),第(1)題關(guān)鍵是作平行線,第(2)題關(guān)鍵是分情況討論,運(yùn)用方程思想解決幾何問題.5.(1)證明見解析;(2)證明見解析;(3)∠FBE=35°.【分析】(1)根據(jù)平行線的性質(zhì)得出∠ABF=∠BFE,∠DCF=∠EFC,進(jìn)而解答即可;(2)由(1)的結(jié)論和垂直的定義解答即可;(3)由(1)的結(jié)論和三角形的角的關(guān)系解答即可.【詳解】證明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)設(shè)∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【點(diǎn)睛】本題主要考查平行線的性質(zhì),解決本題的關(guān)鍵是根據(jù)平行線的性質(zhì)解答.6.(1)AB//CD,證明見解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)(n-1)?180°【分析】(1)過點(diǎn)E作EF//AB,利用平行線的性質(zhì)則可得出∠B=∠BEF,再由已知及平行線的判定即可得出AB∥CD;(2)如圖,過點(diǎn)E作EM∥AB,過點(diǎn)F作FN∥AB,過點(diǎn)G作GH∥AB,根據(jù)探究(1)的證明過程及方法,可推出∠E+∠G=∠B+∠F+∠D,則可由此得出規(guī)律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)如圖,過點(diǎn)M作EF∥AB,過點(diǎn)N作GH∥AB,則可由平行線的性質(zhì)得出∠1+∠2+∠MNG=180°×2,依此即可得出此題結(jié)論.【詳解】解:(1)過點(diǎn)E作EF//AB,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(內(nèi)錯角相等,兩直線平行).∴AB//CD.(2)過點(diǎn)E作EM∥AB,過點(diǎn)F作FN∥AB,過點(diǎn)G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:開口朝左的所有角度之和與開口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.故答案為:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.(3)如圖,過點(diǎn)M作EF∥AB,過點(diǎn)N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF∥GH,∴∠EMN+∠MNG=180°,∴∠1+∠2+∠MNG=180°×2,依次類推:∠1+∠2+…+∠n-1+∠n=(n-1)?180°.故答案為:(n-1)?180°.【點(diǎn)睛】本題考查了平行線的性質(zhì)與判定,屬于基礎(chǔ)題,關(guān)鍵是過E點(diǎn)作AB(或CD)的平行線,把復(fù)雜的圖形化歸為基本圖形.7.(1);(2)①;②;(3).【分析】(1)根據(jù)題目中的式子可以寫出第n個式子的結(jié)果;(2)①根據(jù)題目中的式子的特點(diǎn)和(1)中的結(jié)果,可以求得所求式子的值;②根據(jù)題目中的式子的特點(diǎn)和(1)中的結(jié)果,可以求得所求式子的值;(3)根據(jù)題目中式子的特點(diǎn),可以求得所求式子的值.【詳解】解:(1)由題目中的式子可得,,故答案為:;(2)①,故答案為:;②,故答案為:;(3).【點(diǎn)睛】本題考查數(shù)字的變化類、有理數(shù)的混合運(yùn)算,解答本題的關(guān)鍵是明確題意,發(fā)現(xiàn)題目中式子的變化特點(diǎn),求出所求式子的值.8.(1);(2);(3);(4)x=2017;(5)【分析】(1)類比題目中方法解答即可;(2)根據(jù)題目中所給的算式總結(jié)出規(guī)律,解答即可;(3)利用總結(jié)的規(guī)律把每個式子拆分后合并即可解答;(4)方程左邊提取x后利用(3)的方法計算后,再解方程即可;(5)類比(3)的方法,拆項計算即可.【詳解】(1)故答案為:;(2)=故答案為:;(3)計算:==1﹣=;(4)=2016=2016,x=2017;(5).=+()+()+…+().=(1﹣).=.【點(diǎn)睛】本題是數(shù)字規(guī)律探究題,解決問題基本思路是正確找出規(guī)律,根據(jù)所得的規(guī)律解決問題.9.(1),;(2)①圖見解析,;②見解析【分析】(1)根據(jù)圖1得到小正方形的對角線長,即可得出數(shù)軸上點(diǎn)A和點(diǎn)B表示的數(shù)(2)根據(jù)長方形的面積得正方形的面積,即可得到正方形的邊長,再畫出圖象即可;(3)從原點(diǎn)開始畫一個長是2,高是1的長方形,對角線長即是a,再用圓規(guī)以這個長度畫弧,交數(shù)軸于點(diǎn)M,再把這個長方形向左平移3個單位,用同樣的方法得到點(diǎn)N.【詳解】(1)由圖1知,小正方形的對角線長是,∴圖2中點(diǎn)A表示的數(shù)是,點(diǎn)B表示的數(shù)是,故答案是:,;(2)①長方形的面積是5,拼成的正方形的面積也應(yīng)該是5,∴正方形的邊長是,如圖所示:故答案是:;②如圖所示:【點(diǎn)睛】本題考查無理數(shù)的表示方法,解題的關(guān)鍵是理解題意,模仿題目中給出的解題方法進(jìn)行求解.10.(I)x=2;(Ⅱ)3;(Ⅲ)-2017.【分析】(I)根據(jù)對數(shù)的定義,得出x2=4,求解即可;(Ⅱ)根據(jù)對數(shù)的定義求解即;;(Ⅲ)根據(jù)loga(M?N)=logaM+logaN求解即可.【詳解】(I)解:∵logx4=2,∴x2=4,∴x=2或x=-2(舍去)(Ⅱ)解:∵8=23,∴l(xiāng)og28=3,故答案為3;(Ⅲ)解:(lg2)2+lg2?1g5+1g5﹣2018=lg2?(lg2+1g5)+1g5﹣2018=lg2+1g5﹣2018=1-2018=-2017故答案為-2017.【點(diǎn)睛】本題主要考查同底數(shù)冪的乘法,有理數(shù)的乘方,是一道關(guān)于新定義運(yùn)算的題目,解答本題的關(guān)鍵是理解給出的對數(shù)的定義.11.(1)兩;右;一;(2)12.25;0.3873;(3)被開方數(shù)的小數(shù)點(diǎn)向右(左)移三位,其立方根的小數(shù)點(diǎn)向右(左)移動一位;(4)-0.01【分析】(1)觀察已知等式,得到一般性規(guī)律,寫出即可;(2)利用得出的規(guī)律計算即可得到結(jié)果;(3)歸納總結(jié)得到規(guī)律,寫出即可;(4)利用得出的規(guī)律計算即可得到結(jié)果.【詳解】解:(1),,,……,,,……由此可見,被開方數(shù)的小數(shù)點(diǎn)每向右移動兩位,其算術(shù)平方根的小數(shù)點(diǎn)向右移動一位.故答案為:兩;右;一;(2)已知,,則;;故答案為:12.25;0.3873;(3),,,……小數(shù)點(diǎn)的變化規(guī)律是:被開方數(shù)的小數(shù)點(diǎn)向右(左)移三位,其立方根的小數(shù)點(diǎn)向右(左)移動一位;(4)∵,,∴,∴,∴y=-0.01.【點(diǎn)睛】此題考查了立方根,以及算術(shù)平方根,弄清題中的規(guī)律是解本題的關(guān)鍵.12.(1)×,√,×,×;(2)3332;1000;(3)(個).【分析】(1)根據(jù)“本位數(shù)”的定義即可判斷;(2)要想保證不進(jìn)位,千位、百位、十位最大只能是3,個位最大只能是2,故最大的四位“本位數(shù)”是3332;千位最小為1,百位、十位、個位最小為0,故最小的“本位數(shù)”是1000;(3)要想構(gòu)成“本位數(shù)”,百位可以為1,2,3,十位可以為0,1,2,3,個位可以為0,1,2,所有的三位數(shù)中,“本位數(shù)”一共有(個).【詳解】解:(1)有進(jìn)位;沒有進(jìn)位;有進(jìn)位;有進(jìn)位;故答案為:×,√,×,×.(2)要想保證不進(jìn)位,千位、百位、十位最大只能是3,個位最大只能是2,故最大的四位“本位數(shù)”是3332;千位最小為1,百位、十位、個位最小為0,故最小的“本位數(shù)”是1000,故答案為:3332,1000.(3)要想構(gòu)成“本位數(shù)”,百位可以為1,2,3,十位可以為0,1,2,3,個位可以為0,1,2,所有的三位數(shù)中,“本位數(shù)”一共有(個).【點(diǎn)睛】本題考查了新定義計算題,準(zhǔn)確理解新定義的內(nèi)涵是解題的關(guān)鍵.13.(1)A(0,5),B(4,0);(2)①E(0,﹣);②﹣2或6;(3)24.【分析】(1)根據(jù)二次根式和偶次冪的非負(fù)性得出a,b解答即可;(2)①根據(jù)三角形的面積公式得出點(diǎn)C的坐標(biāo),根據(jù)平行線的性質(zhì)解答即可;②延長CA交直線l于點(diǎn)H(a,10),過點(diǎn)H作HM⊥x軸于點(diǎn)M,根據(jù)三角形面積公式解答即可;(3)平移GH到DM,連接HM,根據(jù)三角形面積公式解答即可.【詳解】解:(1)∵,且,(b﹣4)2≥0,∴a﹣5=0,b﹣4=0,解得:a=5,b=4,∴A(0,5),B(4,0);(2)①連接BE,如圖1,∵,∴BC=6,∴C(﹣2,0),∵AB∥CE,∴S△ABC=S△ABE,∴,∴AE=,∴OE=,∴E(0,﹣);②∵F(m,10),∴點(diǎn)F在過點(diǎn)G(0,10)且平行于x軸的直線l上,延長CA交直線l于點(diǎn)H(a,10),過點(diǎn)H作HM⊥x軸于點(diǎn)M,則M(a,0),如圖2,∵S△HCM=S△ACO+S梯形AOMH,∴,解得:a=2,∴H(2,10),∵S△AFC=S△CFH﹣S△AFH,∴,∴FH=4,∵H(2,10),∴F(﹣2,10)或(6,10),∴m=﹣2或6;(3)平移GH到DM,連接HM,則GD∥HM,GD=HM,如圖3,四邊形BDHG的面積=△BHM的面積,當(dāng)BH⊥HM時,△BHM的面積最大,其最大值=.【點(diǎn)睛】本題主要考查圖形與坐標(biāo)及平移的性質(zhì),熟練掌握圖形與坐標(biāo)及平移的性質(zhì)是解題的關(guān)鍵.14.(1)見解析;(2)當(dāng)點(diǎn)E在CA的延長線上時,∠BED=∠D-∠B;當(dāng)點(diǎn)E在AC的延長線上時,∠BED=∠BET-∠DET=∠B-∠D;(3)【分析】(1)如圖1中,過點(diǎn)E作ET∥AB.利用平行線的性質(zhì)解決問題.(2)分兩種情形:如圖2-1中,當(dāng)點(diǎn)E在CA的延長線上時,如圖2-2中,當(dāng)點(diǎn)E在AC的延長線上時,構(gòu)造平行線,利用平行線的性質(zhì)求解即可.(3)利用(1)中結(jié)論,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解決問題即可.【詳解】解:(1)證明:如圖1中,過點(diǎn)E作ET∥AB.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如圖2-1中,當(dāng)點(diǎn)E在CA的延長線上時,過點(diǎn)E作ET∥AB.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如圖2-2中,當(dāng)點(diǎn)E在AC的延長線上時,過點(diǎn)E作ET∥AB.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如圖,設(shè)∠ABE=∠EBM=x,∠CDE=∠EDM=y,∵AB∥CD,∴∠BMD=∠ABM+∠CDM,∴m=2x+2y,∴x+y=m,∵∠BFD=∠ABF+∠CDF,∠ABE=n∠EBF,∠CDE=n∠EDF,∴∠BFD===.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了平行線的性質(zhì),角平分線的定義等知識,解題的關(guān)鍵是學(xué)會條件常用輔助線,構(gòu)造平行線解決問題,屬于中考常考題型.15.(1)B(0,3);(2)S=(3)4【分析】(1)解方程求出a的值,利用三角形的面積公式構(gòu)建方程求出b的值即可解決問題;(2)分兩種情形分別求解:當(dāng)點(diǎn)P在線段OB上時,當(dāng)點(diǎn)P在線段OB的延長線上時;(3)過點(diǎn)K作KH⊥OA用H.根據(jù)S△BPK+S△AKH=S△AOB-S長方形OPKH,構(gòu)建方程求出t,即可解決問題;【詳解】解:(1)∵,∴2(a+2)-3(a-2)=6,∴-a+4=0,∴a=4,∴A(4,0),∵S△OAB=6,∴?4?OB=6,∴OB=3,∴B(0,3).(2)當(dāng)點(diǎn)P在線段OB上時,S=?PQ?PB=×4×(3-t)=-2t+6.當(dāng)點(diǎn)P在線段OB的延長線上時,S=?PQ?PB=×4×(t-3)=2t-6.綜上所述,S=.(3)過點(diǎn)K作KH⊥OA用H.∵S△BPK+S△AKH=S△AOB-S長方形OPKH,∴PK?BP+AH?KH=6-PK?OP,∴××(3-t)+(4-)?t=6-?t,解得t=1,∴S△BPQ=-2t+6=4.【點(diǎn)睛】本題考查三角形綜合題,一元一次方程、三角形的面積、平移變換等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考壓軸題.16.(1)-2.5,2;(2)k=-8或-6或-4;(3)2,1,-1,-2,【分析】(1)根據(jù)連動數(shù)的定義即可確定;(2)先表示出x,y的值,再根據(jù)連動數(shù)的范圍求解即可;(3)求得不等式的解,根據(jù)連動整數(shù)的概念得到關(guān)于a的不等式,解不等式即可求得.【詳解】解:(1)∵點(diǎn)P是線段AB上一動點(diǎn),點(diǎn)A、點(diǎn)B對應(yīng)的數(shù)分別是-1,1,又∵|PQ|=2,∴連動數(shù)Q的范圍為:或,∴連動數(shù)有-2.5,2;(2),②×3-①×4得:,①×3-②×2得:,要使x,y均為連動數(shù),或,解得或或,解得或∴k=-8或-6或-4;(3)解得:,∵解集中恰好有4個解是連動整數(shù),∴四個連動整數(shù)解為-2,-1,1,2,∴,∴∴a的取值范圍是.【點(diǎn)睛】本題考查了解一元一次不等式組的整數(shù)解,一元一次方程的解,根據(jù)新定義得到不等式組是解題的關(guān)鍵,17.(1),;(2)或;(3)或【分析】(1)根據(jù)一個數(shù)的平方與絕對值均非負(fù),且其和為0,則可得它們都為0,從而可求得a和b的值;(2)過點(diǎn)P作直線l垂直于x軸,延長交直線于點(diǎn),設(shè)點(diǎn)坐標(biāo)為,過作交直線于點(diǎn),根據(jù)面積關(guān)系求出Q點(diǎn)坐標(biāo),再求出PQ的長度,即可求出n的值;(3)先根據(jù)求出C點(diǎn)坐標(biāo),再根據(jù)求出D點(diǎn)坐標(biāo),根據(jù)題意可得F點(diǎn)坐標(biāo),由得關(guān)于t的方程,求出t值即可.【詳解】(1),,且,,(2)過作直線垂直于軸,延長交直線于點(diǎn),設(shè)點(diǎn)坐標(biāo)為,過作交直線于點(diǎn),如圖所示∵∴解得,點(diǎn)坐標(biāo)為∵∴解得:或(3)當(dāng)或時,有.如圖,延長BA交x軸于點(diǎn)D,過A點(diǎn)作AG⊥x軸于點(diǎn)G,過B點(diǎn)作BN⊥x軸于點(diǎn)N,∵∴解得:∴∵∴解得:∵∴當(dāng)運(yùn)動t秒時,∴∵CE=t∴,∵∴解得:或.【點(diǎn)睛】本題主要考查三角形的面積,含絕對值方程解法,熟練掌握直角坐標(biāo)系的知識,三角形的面積,梯形的面積等知識是解題的關(guān)鍵,難點(diǎn)在于對圖形進(jìn)行割補(bǔ)轉(zhuǎn)化為易求面積的圖形.18.(1)(2,6);(2)(,0)或(9,0);(3)∠OCD+∠DBA=∠BDC或∠OCD-∠DBA=∠BDC【分析】(1)由點(diǎn)的坐標(biāo)的特點(diǎn),確定出FC=2,OF=6,得出C(2,6);(2)分點(diǎn)D在線段OA和在OA延長線兩種情況進(jìn)行計算;(3)分點(diǎn)D在線段OA上時,∠OCD+∠DBA=∠BDC和在OA延長線∠OCD-∠DBA=∠BDC兩種情況進(jìn)行計算.【詳解】解:(1)如圖,過點(diǎn)C作CF⊥y軸,垂足為F,過B作BE⊥x軸,垂足為E,∵A(6,0),B(8,6),∴FC=AE=8-6=2,OF=BE=6,∴C(2,6);(2)設(shè)D(x,0),當(dāng)△ODC的面積是△ABD的面積的3倍時,若點(diǎn)D在線段OA上,∵OD=3AD,∴×6x=3××6(6-x),∴x=,∴D(,0);若點(diǎn)D在線段OA延長線上,∵OD=3AD,∴×6x=3××6(x-6),∴x=9,∴D(9,0);(3)如圖,過點(diǎn)D作DE∥OC,由平移的性質(zhì)知OC∥AB.∴OC∥AB∥DE.∴∠OCD=∠CDE,∠EDB=∠DBA.若點(diǎn)D在線段OA上,∠BDC=∠CDE+∠EDB=∠OCD+∠DBA,即∠OCD+∠DBA=∠BDC;若點(diǎn)D在線段OA延長線上,∠BDC=∠CDE-∠EDB=∠OCD-∠DBA,即∠OCD-∠DBA=∠BDC.【點(diǎn)睛】此題是幾何變換綜合題,主要考查了點(diǎn)三角形面積的計算方法,平移的性質(zhì),平行線的性質(zhì)和判定,解本題的關(guān)鍵是分點(diǎn)D在線段OA上,和OA延長線上兩種情況.19.(1),;(2)【分析】(1)把和當(dāng)做未知數(shù),利用加減消元法解二元一次方程組即可;(2)先證明AB∥EF,則可以得到CD∥AB,∠C+∠CAB=180°,求出∠CAB的度數(shù)即可求解.【詳解】解:(1)用②+①得:,解得,把代入①解得;(2)∵∴AB∥EF,∵,∴CD∥AB,∴∠C+∠CAB=180°,∵∠CAB=∠EAC+∠BAE,AC⊥AE,∴∠CAE=90°,∴∠CAB=140°∴40°.【點(diǎn)睛】本題考查了平行線的判定和性質(zhì),解二元一次方程組,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.20.(1)A型車、B型車都裝滿貨物一次可以分別運(yùn)貨3噸、4噸;(2)最省錢的租車方案是方案一:A型車8輛,B型車2輛,最少租車費(fèi)為2080元.【分析】(1)設(shè)每輛A型車、B型車都裝滿貨物一次可以分別運(yùn)貨x噸、y噸,根據(jù)題目中的等量關(guān)系:用3輛A型車和2輛B型車載滿貨物一次可運(yùn)貨17噸;用2輛A型車和3輛B型車載滿貨物一次可運(yùn)貨l8噸,列方程組求解即可;(2)由題意得出3a+4b=35,然后由a、b為整數(shù)解,得到三中租車方案;(3)根據(jù)(2)中的所求方案,利用A型車每輛需租金200元/次,B型車每輛需租金240元/次,分別求出租車費(fèi)用即可.【詳解】解:(1)設(shè)每輛A型車、B型車都裝滿貨物一次可以分別運(yùn)貨x噸、y噸,依題意列方程組為:解得答:1輛A型車輛裝滿貨物一次可運(yùn)3噸,1輛B型車裝滿貨物一次可運(yùn)4噸.(2)結(jié)合題意,和(1)可得3a+4b=35∴a=∵a、b都是整數(shù)∴或或答:有3種租車方案:方案一:A型車9輛,B型車2輛;方案二:A型車5輛,B型車5輛;方案三:A型車1輛,B型車8輛.(3)∵A型車每輛需租金200元/次,B型車每輛需租金240元/次,∴方案一需租金:9×200+2×240=2280(元)方案二需租金:5×200+5×240=2200(元)方案三需租金:1×200+8×240=2120(元)∵2280>2200>2120∴最省錢的租車方案是方案一:A型車1輛,B型車8輛,最少租車費(fèi)為2120元.【點(diǎn)睛】此題主要考查了二元一次方程組以及二元一次方程的解法,關(guān)鍵是明確二元一次方程有無數(shù)解,但在解與實際問題有關(guān)的二元一次方程組時,要結(jié)合未知數(shù)的實際意義求解.21.(1);(2);(3)與之間的數(shù)量關(guān)系為.【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)和解二元一次方程組求解即可;(2)設(shè),先根據(jù)平移的性質(zhì)可得,過D作軸于P,再根據(jù)三角形ADP的面積得出,從而可得,然后根據(jù)線段的和差可得,由此即可得出答案;(3)設(shè)AH與CD交于點(diǎn)Q,過H,G分別作DF的平行線MN,KJ,設(shè),由平行線的性質(zhì)可得,由此即可得出結(jié)論.【詳解】(1)∵,且∴解得:則;(2)設(shè)∵將線段AB平移得到CD,∴由平移的性質(zhì)得如圖1,過D作軸于P∴∵∴即解得∴∴;(3)與之間的數(shù)量關(guān)系為,求解過程如下:如圖2,設(shè)AH與CD交于點(diǎn)Q,過H,G分別作DF的平行線MN,KJ∵HD平分,HF平分∴設(shè)∵AB平移得到CD∴∴,∴∵∴∴∵∴∴∴.【點(diǎn)睛】本題屬于一道較難的綜合題,考查了解二元一次方程組、平移的性質(zhì)、平行線的性質(zhì)等知識點(diǎn),較難的是題(3),通過作兩條輔助線,構(gòu)造平行線,從而利用平行線的性質(zhì)是解題關(guān)鍵.22.(1)10.5;(2)12.5;(3)10.5,12.5,23;;30【分析】(1)畫出圖形,根據(jù)三角形的面積公式求解;(2)畫出圖形,利用割補(bǔ)法求解;(3)設(shè)S=am+bn+c,其中a,b,c為常數(shù),根據(jù)表中數(shù)據(jù)列方程組求出a,b,c,然后根據(jù)公式即可求出六邊形的面積.【詳解】(1)如圖1,的底為7,高為3,所以面積為,故答案為:10.5;(2)如圖2,,故答案為:12.5;(3)由(1)、(2)可填表格如下:形內(nèi)格點(diǎn)數(shù)m邊界格點(diǎn)數(shù)n格點(diǎn)多邊形面積S61110.5四邊形81112.5五邊形20823設(shè)S=am+bn+c,其中a,b為常數(shù),由題意得,解得,∴皮克公式為,∵六邊形中,m=27,n=8,∴六邊形的面積為=30.【點(diǎn)睛】本題考查了坐標(biāo)與圖形的性質(zhì),三角形的面積,三元一次方程組的應(yīng)用等知識,解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識解決問題.23.(1);5;(2)購買6支水筆、6塊橡皮、6本記事本共需48元;(3).【分析】(1)利用①?②可得x-y的值,利用可得出x+y的值;(2)設(shè)鉛筆的單價為m元,橡皮的單價為元,記事本的單價為元,根據(jù)“買20支水筆、3塊橡皮、2本記事本共需35元,買39支水筆、5塊橡皮、3本記事本工序62元”,即可得出關(guān)于m,n,p的三元一次方程組,由2×①-②可得的值,再乘5即可求得結(jié)果;(3)根據(jù)新運(yùn)算的定義可得出關(guān)于a,b,c的三元一次方程組,由3×①?2×②可得出的值,從而可求得結(jié)果.【詳解】(1)由①?②可得:x-y=-1,由可得x+y=5故答案為:;5.(2)設(shè)水筆的單價為元,橡皮的單價為元,記事本的單價為元,依題意,得:,由可得,.故購買6支水筆、6塊橡皮、6本記事本共需48元.(3)依題意得:由3×①?2×②可得:即故答案為:.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用及三元一次方程組的應(yīng)用,解題的關(guān)鍵是:(1)運(yùn)用“整體思想”求出x-y,x+y的值;(2)(3)找出等量關(guān)系,正確列出三元一次方程組.24.(1)該店三月份售出A種手機(jī)24部,B種手機(jī)10部;(2)共有5種進(jìn)貨方案,分別是A種手機(jī)21部,B種手機(jī)19部;A種手機(jī)22部,B種手機(jī)18部;A種手機(jī)23部,B種手機(jī)17部;A種手機(jī)24部,B種手機(jī)16部;A種手機(jī)25部,B種手機(jī)15部【分析】(1)設(shè)該店三月份售出A種手機(jī)x部,B種手機(jī)y部,由“三月份銷售A、B兩種手機(jī)共34部,且銷售A種手機(jī)的利潤恰好是銷售B種手機(jī)利潤的2倍”列出方程組,可求解;(2)設(shè)A種手機(jī)a部,B種手機(jī)(40﹣a)部,由“購進(jìn)B種手機(jī)數(shù)不低于A種手機(jī)數(shù)的,用于購買這兩種手機(jī)的資金低于140000元”列出不等式組,即可求解.【詳解】解:(1)設(shè)該店三月份售出A種手機(jī)x部,B種手機(jī)y部,由題意可得:,解得:,答:該店三月份售出A種手機(jī)24部,B種手機(jī)10部;(2)設(shè)A種手機(jī)a部,B種手機(jī)(40﹣a)部,由題意可得,解得:20<a≤25,∵a為整數(shù),∴a=21,22,23,24,25,∴共有5種進(jìn)貨方案,分別是A種手機(jī)21部,B種手機(jī)19部;A種手機(jī)22部,B種手機(jī)18部;A種手機(jī)23部,B種手機(jī)17部;A種手機(jī)24部,B種手機(jī)16部;A種手機(jī)25部,B種手機(jī)15部.【點(diǎn)睛】本題考查了一元一次不等式組解實際問題的運(yùn)用,二元一次方程組解實際問題的運(yùn)用,找準(zhǔn)等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.25.(1)-1;(2)t=-2,-1,0,1;(3)13組【分析】(1)把x=2代入方程3x-5y=11得,求得y的值,即可求得θ的值;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東體育職業(yè)技術(shù)學(xué)院《審計學(xué)實驗》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東司法警官職業(yè)學(xué)院《數(shù)字視頻制作》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東食品藥品職業(yè)學(xué)院《光信息處理》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東省外語藝術(shù)職業(yè)學(xué)院《基礎(chǔ)閱讀(一)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東輕工職業(yè)技術(shù)學(xué)院《建筑施工》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東茂名健康職業(yè)學(xué)院《體育舞蹈專項理論與實踐(6)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東茂名農(nóng)林科技職業(yè)學(xué)院《修建性詳細(xì)規(guī)劃》2023-2024學(xué)年第一學(xué)期期末試卷
- 四年級數(shù)學(xué)(簡便運(yùn)算)計算題專項練習(xí)與答案
- 【2022屆走向高考】高三數(shù)學(xué)一輪(人教A版)階段性測試題12(綜合素質(zhì)能力測試)
- 2021年高考英語考點(diǎn)總動員系列-專題10-交際用語(解析版)
- 2024年1月國開電大法律事務(wù)??啤镀髽I(yè)法務(wù)》期末考試試題及答案
- 2024全國能源行業(yè)火力發(fā)電集控值班員理論知識技能競賽題庫(多選題)
- 因式分解(分組分解法)專項練習(xí)100題及答案
- 冶煉煙氣制酸工藝設(shè)計規(guī)范
- 《上帝擲骰子嗎:量子物理史話》超星爾雅學(xué)習(xí)通章節(jié)測試答案
- Unit13 同步教學(xué)設(shè)計2023-2024學(xué)年人教版九年級英語全冊
- 2023-2024學(xué)年河北省保定市滿城區(qū)八年級(上)期末英語試卷
- 2024成都中考數(shù)學(xué)第一輪專題復(fù)習(xí)之專題四 幾何動態(tài)探究題 教學(xué)課件
- 2024合同范本之太平洋保險合同條款
- 萬用表的使用
- 合伙經(jīng)營合作社協(xié)議書
評論
0/150
提交評論