版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山西省晉城市陵川一中2024屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.平面的法向量,平面的法向量,已知,則等于()A B.C. D.2.直線被圓所截得的弦長為()A. B.C. D.3.等比數(shù)列的各項均為正數(shù),且,則=()A.8 B.16C.32 D.644.已知斜率為1的直線與橢圓相交于A、B兩點,O為坐標原點,AB的中點為P,若直線OP的斜率為,則橢圓C的離心率為()A. B.C. D.5.已知集合,則()A. B.C. D.6.120°的二面角的棱上有A,B兩點,直線AC,BD分別在這個二面角的兩個半平面內(nèi),且都垂直于AB.已知,,,則CD的長為()A. B.C. D.7.函數(shù)在處的切線方程為()A. B.C. D.8.從1,2,3,4,5中任取2個不同的數(shù),兩數(shù)和為偶數(shù)的概率為()A. B.C. D.9.一條直線過原點和點,則這條直線的傾斜角是()A. B.C. D.10.某中學舉行黨史學習教育知識競賽,甲隊有、、、、、共名選手其中名男生名女生,按比賽規(guī)則,比賽時現(xiàn)場從中隨機抽出名選手答題,則至少有名女同學被選中的概率是()A. B.C. D.11.若,則=()A.244 B.1C. D.12.在長方體中,若,,則異而直線與所成角的余弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在空間直角坐標系中,若三點、、滿足,則實數(shù)的值為__________.14.與雙曲線有共同漸近線,并且經(jīng)過點的雙曲線方程是______15.4與16的等比中項是________.16.從1,2,3,4,5中任取兩個不同的數(shù),其中一個作為對數(shù)的底數(shù)a,另一個作為對數(shù)的真數(shù)b.則的概率為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)p:方程有兩個不等的負實數(shù)根;q:方程無實數(shù)根,若為真命題,為假命題,求實數(shù)m的取值范圍、18.(12分)已知關于x的不等式,.(1)若,求不等式的解集;(2)若不等式的解集為R,求k的取值范圍.19.(12分)給定函數(shù).(1)判斷函數(shù)f(x)的單調(diào)性,并求出f(x)的極值;(2)畫出函數(shù)f(x)的大致圖象,無須說明理由(要求:坐標系中要標出關鍵點);(3)求出方程的解的個數(shù).20.(12分)已知在△ABC中,角A,B,C的對邊分別為a,b,c,且(1)求C;(2)若,求的最大值21.(12分)已知(1)討論函數(shù)的單調(diào)性;(2)若函數(shù)在上有1個零點,求實數(shù)a的取值范圍22.(10分)在數(shù)列中,,,數(shù)列滿足(1)求證:數(shù)列是等比數(shù)列,并求出數(shù)列的通項公式;(2)數(shù)列前項和為,且滿足,求的表達式;(3)令,對于大于的正整數(shù)、(其中),若、、三個數(shù)經(jīng)適當排序后能構成等差數(shù)列,求符合條件的數(shù)組.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)兩個平面平行得出其法向量平行,根據(jù)向量共線定理進行計算即可.【詳解】由題意得,因為,所以(),即,解得,所以.故選:A2、A【解析】求得圓心坐標和半徑,結合點到直線的距離公式和圓的弦長公式,即可求解.【詳解】由圓的方程可知圓心為,半徑為,圓心到直線的距離,所以弦長為.故選:A.3、B【解析】由等比數(shù)列的下標和性質(zhì)即可求得答案.【詳解】由題意,,所以.故選:B.4、B【解析】這是中點弦問題,注意斜率與橢圓a,b之間的關系.【詳解】如圖:依題意,假設斜率為1的直線方程為:,聯(lián)立方程:,解得:,代入得,故P點坐標為,由題意,OP的斜率為,即,化簡得:,,,;故選:B.5、B【解析】先求得集合A,再根據(jù)集合的交集運算可得選項.【詳解】解:因為,所以故選:B.6、B【解析】由,把展開整理求解【詳解】由已知可得:,,,,=41,∴.故選:B7、C【解析】利用導數(shù)的幾何意義即可求切線方程﹒【詳解】,,,,在處的切線為:,即﹒故選:C﹒8、B【解析】利用列舉法,結合古典概型概率計算公式,計算出所求概率.【詳解】從中任取個不同的數(shù)的方法有,共種,其中和為偶數(shù)的有共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型概率計算,屬于基礎題.9、C【解析】求出直線的斜率,結合傾斜角的取值范圍可求得所求直線的傾斜角.【詳解】設這條件直線的傾斜角為,則,,因此,.故選:C.10、D【解析】現(xiàn)場選名選手,共種情況,設,,,四位同學為男同學則沒有女同學被選中的情況,共有6種,利用對立事件進行求解,即可得到答案;【詳解】現(xiàn)場選名選手,基本事件有:,,,,,,,,,,,,,,共種情況,不妨設,,,四位同學為男同學則沒有女同學被選中的情況是:,,,,,共種,則至少有一名女同學被選中的概率為.故選:.11、D【解析】分別令代入已知關系式,再兩式求和即可求解.【詳解】根據(jù),令時,整理得:令x=2時,整理得:由①+②得,,所以.故選:D.12、C【解析】通過平移把異面直線平移到同一平面中,所以取,的中點,易知且過中心點,所以異而直線與所成角為和所成角,通過解三角形即可得解.【詳解】根據(jù)長方體的對稱性可得體對角線過中心點,取,的中點,易知且過中心點,所以異而直線和所成角為和所成角,連接,在中,,,,所以則異而直線與所成角的余弦值為:,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】分析可知,結合空間向量數(shù)量積的坐標運算可求得結果.【詳解】由已知可得,,因為,則,即,解得.故答案為:.14、【解析】設雙曲線的方程為,將點代入方程可求的值,從而可得結果【詳解】設與雙曲線有共同的漸近線的雙曲線的方程為,該雙曲線經(jīng)過點,所求的雙曲線方程為:,整理得故答案為【點睛】本題考查雙曲線的方程與簡單性質(zhì),意在考查靈活應用所學知識解答問題的能力,屬于中檔題.與共漸近線的雙曲線方程可設為,只需根據(jù)已知條件求出即可.15、±8【解析】解析由G2=4×16=64得G=±8.答案±816、##【解析】利用列舉法,結合古典概型概率計算公式以及對數(shù)的知識求得正確答案.【詳解】的所有可能取值為,,共種,滿足的為,,共種,所以的概率為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【解析】利用復合命題的真假推出兩個命題為一真一假,求出m的范圍即可.【詳解】:方程有兩個不等的負實數(shù)根,解得,:方程無實數(shù)根,解得,所以:,:或.因為為真命題,為假命題,所以真假,或假真.(1)當真假時,即真為真,所以,解得;(2)當假真時,即真為真,所以,解得.綜上,取值范圍為18、(1)(2)【解析】(1)因式分解后可求不等式的解集.(2)就分類討論后可得的取值范圍.【小問1詳解】時,原不等式即為,其解為.【小問2詳解】不等式的解集為R,當時,則有,解得,綜上,.19、(1)函數(shù)的減區(qū)間為,增區(qū)間為,有極小值,無極大值;(2)具體見解析;(3)具體見解析.【解析】(1)對函數(shù)求導,進而求出單調(diào)區(qū)間和極值;(2)結合(1),并代入幾個特殊點,再結合函數(shù)的變化趨勢作出圖象;(3)結合(2),采用數(shù)形結合的方法求得答案.【小問1詳解】,時,,單調(diào)遞減,時,,單調(diào)遞增,故函數(shù)在x=-1處取得極小值為,無極大值.【小問2詳解】作圖說明:由(1)可知函數(shù)先減后增,有極小值;描出極小值點,原點和點(1,e);當時,函數(shù)增加得越來越快,當時,函數(shù)越來越接近于0.【小問3詳解】結合圖象可知,若,則方程有0個解;若,則方程有2個解;若或,則方程有1個解.20、(1);(2).【解析】(1)將題設條件化為,結合余弦定理即可知C的大小.(2)由(1)及正弦定理邊角關系可得,再應用輔助角公式、正弦函數(shù)的性質(zhì)即可求最大值.【小問1詳解】由,得,即,由余弦定理得:,又,所以【小問2詳解】由(1)知:,則,設△ABC外接圓半徑為R,則,當時,取得最大值為21、(1)答案見解析;(2).【解析】(1)對函數(shù)求導,按a值的正負分析討論導數(shù)值的符號計算作答.(2)求出函數(shù)的解析式并求導,再按在值的正負分段討論推理作答.【小問1詳解】函數(shù)的定義域為R,求導得:當時,當時,,當時,,則在上單調(diào)遞減,在上單調(diào)遞增,當時,令,得,若,即時,,則有在R上單調(diào)遞增,若,即時,當或時,,當時,,則有在,上都單調(diào)遞增,在上單調(diào)遞減,若,即時,當或時,,當時,,則有在,上都單調(diào)遞增,在上單調(diào)遞減,所以,當時,上單調(diào)遞減,在上單調(diào)遞增,當時,在,上都單調(diào)遞增,在上單調(diào)遞減,當時,在R上單調(diào)遞增,當時,在,上都單調(diào)遞增,在上單調(diào)遞減.【小問2詳解】依題意,,,當時,,當時,,,則函數(shù)在上單調(diào)遞增,有,無零點,當時,,,函數(shù)在上單調(diào)遞減,,無零點,當時,,使得,而在上單調(diào)遞增,當時,,當時,,因此,在上單調(diào)遞增,在上單調(diào)遞減,又,若,即時,無零點,若,即時,有一個零點,綜上可知,當時,在有1個零點,所以實數(shù)a的取值范圍.【點睛】思路點睛:涉及含參的函數(shù)零點問題,利用導數(shù)分類討論,研究函數(shù)的單調(diào)性、最值等,結合零點存在性定理,借助數(shù)形結合思想分析解決問題.22、(1)證明見解析,;(2);(3).【解析】(1)由已知等式變形可得,利用等比數(shù)列的定義可證得結論成立,確定等比數(shù)列的首項和公比,可求得數(shù)列的通項公式;(2)求得,然后分、兩種情況討論,結合裂項相消法可得出的表達式;(3)求得,分、、三種情況討論,利用奇數(shù)與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權】 ISO 14903:2025 EN Refrigerating systems and heat pumps - Qualification of tightness of components and joints
- 2024年統(tǒng)一損失賠償合同范本一
- 2024年咖啡飲品加盟連鎖經(jīng)營合同范本3篇
- 溫度溫度顯示器課程設計
- 浙大生物制藥課程設計
- 油梁式抽油機課程設計
- (標準員)基礎知識樣卷(共六卷)
- 安全月活動總結試題
- 2024年美術教案課件
- 財務風險管理概述
- 【企業(yè)盈利能力探析的國內(nèi)外文獻綜述2400字】
- 醫(yī)學生創(chuàng)新創(chuàng)業(yè)基礎智慧樹知到期末考試答案2024年
- 大學生國家安全教育智慧樹知到期末考試答案2024年
- 建筑施工成品保護措施
- 魚骨圖PPT模板精品教案0002
- 教科版三年級上冊科學期末測試卷(二)【含答案】
- 冠狀動脈造影基本知識-
- 油墨組成和分類
- DB37T 5175-2021 建筑與市政工程綠色施工技術標準
- 自動噴漆線使用說明書
- 科研項目評審評分表
評論
0/150
提交評論