




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
五大名校數(shù)學(xué)八年級上冊壓軸題試卷一、壓軸題1.(1)在等邊三角形ABC中,①如圖①,D,E分別是邊AC,AB上的點且AE=CD,BD與EC交于點F,則∠BFE的度數(shù)是度;②如圖②,D,E分別是邊AC,BA延長線上的點且AE=CD,BD與EC的延長線交于點F,此時∠BFE的度數(shù)是度;(2)如圖③,在△ABC中,AC=BC,∠ACB是銳角,點O是AC邊的垂直平分線與BC的交點,點D,E分別在AC,OA的延長線上,AE=CD,BD與EC的延長線交于點F,若∠ACB=α,求∠BFE的大小.(用含α的代數(shù)式表示).解析:(1)①60°;②60°;(2)∠BFE=α.【解析】【分析】(1)①先證明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF;②先證明△ACE≌△CBD得∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA;(2)證明△AEC≌△CDB得到∠E=∠D,則∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【詳解】(1)如圖①中,∵△ABC是等邊三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案為60.(2)如圖②中,∵△ABC是等邊三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案為60.(3)如圖③中,∵點O是AC邊的垂直平分線與BC的交點,∴OC=OA,∴∠EAC=∠DCB=α,∵AC=BC,AE=CD,∴△AEC≌△CDB,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【點睛】本題綜合考查了三角形全等以及三角形外角和定理.2.已知ABCD,點E是平面內(nèi)一點,∠CDE的角平分線與∠ABE的角平分線交于點F.(1)若點E的位置如圖1所示.①若∠ABE=60°,∠CDE=80°,則∠F=°;②探究∠F與∠BED的數(shù)量關(guān)系并證明你的結(jié)論;(2)若點E的位置如圖2所示,∠F與∠BED滿足的數(shù)量關(guān)系式是.(3)若點E的位置如圖3所示,∠CDE為銳角,且,設(shè)∠F=α,則α的取值范圍為.解析:(1)①70;②∠F=∠BED,證明見解析;(2)2∠F+∠BED=360°;(3)【解析】【分析】(1)①過F作FG//AB,利用平行線的判定和性質(zhì)定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分線的定義得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解;②分別過E、F作EN//AB,F(xiàn)M//AB,利用平行線的判定和性質(zhì)得到∠BED=∠ABE+∠CDE,利用角平分線的定義得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;(2)根據(jù)∠ABE的平分線與∠CDE的平分線相交于點F,過點E作EG∥AB,則∠BEG+∠ABE=180°,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結(jié)合①的結(jié)論即可說明∠BED與∠BFD之間的數(shù)量關(guān)系;(3)通過對的計算求得,利用角平分線的定義以及三角形外角的性質(zhì)求得,即可求得.【詳解】(1)①過F作FG//AB,如圖:∵AB∥CD,F(xiàn)G∥AB,∴CD∥FG,∴∠ABF=∠BFG,∠CDF=∠DFG,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140,∴∠ABF+∠CDF=70,∴∠DFB=∠ABF+∠CDF=70,故答案為:70;②∠F=∠BED,理由是:分別過E、F作EN//AB,F(xiàn)M//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分別是∠CDE的角平分線與∠ABE的角平分線,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∴∠F=∠BED;(3)2∠F+∠BED=360°.如圖,過點E作EG∥AB,則∠BEG+∠ABE=180°,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由①得:∠BFD=∠ABF+∠CDF,∴∠BED=360°-2∠BFD,即2∠F+∠BED=360°;(3)∵,∠F=α,∴,解得:,如圖,∵∠CDE為銳角,DF是∠CDE的角平分線,∴∠CDH=∠DHB,∴∠F∠DHB,即,∴,故答案為:.【點睛】本題考查了平行線的性質(zhì)、角平分線的定義以及三角形外角性質(zhì)的應(yīng)用,在解答此題時要注意作出輔助線,構(gòu)造出平行線求解.3.?dāng)?shù)學(xué)活動課上,老師出了這樣一個題目:“已知:于,點、分別在和上,作線段和(如圖1),使.求證:”.(1)聰聰同學(xué)給出一種證明問題的輔助線:如圖2,過作,交于.請你根據(jù)聰聰同學(xué)提供的輔助線(或自己添加其它輔助線),給出問題的證明.(2)若點在直線下方,且知,直接寫出和之間的數(shù)量關(guān)系.解析:(1)見解析;(2)【解析】【分析】(1)根據(jù)聰聰提供的輔助線作法進(jìn)行證明,先由平行線的性質(zhì)得:,,再證明,可得結(jié)論;(2)根據(jù)平行線的性質(zhì)和三角形的外角性質(zhì)可得結(jié)論.【詳解】解:(1)證明:如圖2,過作,交于,,,,,,,,;(2)解:,理由如下:如圖3,,,,,,∴.【點睛】本題主要考查了平行線的性質(zhì)和判定以及三角形外角性質(zhì)的運用,熟練掌握平行線的性質(zhì)和判定是解決問題的關(guān)鍵.4.(1)問題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,點A、D、E在同一直線上,連接BE.①請直接寫出∠AEB的度數(shù)為_____;②試猜想線段AD與線段BE有怎樣的數(shù)量關(guān)系,并證明;(2)拓展探究:圖2,△ACB和△DCE均為等腰三角形,∠ACB=∠DCE=90°,點A、D、E在同-直線上,CM為△DCE中DE邊上的高,連接BE,請判斷∠AEB的度數(shù)線段CM、AE、BE之間的數(shù)量關(guān)系,并說明理由.解析:(1)①60°;②AD=BE.證明見解析;(2)∠AEB=90°;AE=2CM+BE;理由見解析.【解析】【分析】(1)①由條件△ACB和△DCE均為等邊三角形,易證△ACD≌△BCE,從而得到:AD=BE,∠ADC=∠BEC.由點A,D,E在同一直線上可求出∠ADC,從而可以求出∠AEB的度數(shù).②由△ACD≌△BCE,可得AD=BE;(2)首先根據(jù)△ACB和△DCE均為等腰直角三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=90°,據(jù)此判斷出∠ACD=∠BCE;然后根據(jù)全等三角形的判定方法,判斷出△ACD≌△BCE,即可判斷出BE=AD,∠BEC=∠ADC,進(jìn)而判斷出∠AEB的度數(shù)為90°;根據(jù)DCE=90°,CD=CE,CM⊥DE,可得CM=DM=EM,所以DE=DM+EM=2CM,據(jù)此判斷出AE=BE+2CM.【詳解】(1)①∵∠ACB=∠DCE,∠DCB=∠DCB,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,∠CEB=∠ADC=180°?∠CDE=120°,∴∠AEB=∠CEB?∠CED=60°;②AD=BE.證明:∵△ACD≌△BCE,∴AD=BE.(2)∠AEB=90°;AE=2CM+BE;理由如下:∵△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∠ACB=∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,∴△ACD≌△BCE,∴AD=BE,∠BEC=∠ADC=135°.∴∠AEB=∠BEC-∠CED=135°-45°=90°.在等腰直角△DCE中,CM為斜邊DE上的高,∴CM=DM=ME,∴DE=2CM.∴AE=DE+AD=2CM+BE.【點睛】本題考查了等邊三角形的性質(zhì)、等腰直角三角形的性質(zhì)、三角形全等的判定與性質(zhì)等知識,解題時需注意運用已有的知識和經(jīng)驗解決相似問題.5.已知:中,過B點作BE⊥AD,.(1)如圖1,點在的延長線上,連,作于,交于點.求證:;(2)如圖2,點在線段上,連,過作,且,連交于,連,問與有何數(shù)量關(guān)系,并加以證明;(3)如圖3,點在CB延長線上,且,連接、的延長線交于點,若,請直接寫出的值.解析:(1)見詳解,(2),證明見詳解,(3).【解析】【分析】(1)欲證明,只要證明即可;(2)結(jié)論:.如圖2中,作于.只要證明,推出,,由,推出即可解決問題;(3)利用(2)中結(jié)論即可解決問題;【詳解】(1)證明:如圖1中,于,,,,,(AAS),.(2)結(jié)論:.理由:如圖2中,作于.,,,,,,,,,,,,,,,.(3)如圖3中,作于交AC延長線于.,,,,,,,,,,,,,,,.,設(shè),則,,.【點睛】本題考查三角形綜合題、全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考壓軸題.另外對于類似連續(xù)幾步的綜合題,一般前一步為后一步提供解題的條件或方法.6.如圖所示,在平面直角坐標(biāo)系中,已知點的坐標(biāo),過點作軸,垂足為點,過點作直線軸,點從點出發(fā)在軸上沿著軸的正方向運動.(1)當(dāng)點運動到點處,過點作的垂線交直線于點,證明,并求此時點的坐標(biāo);(2)點是直線上的動點,問是否存在點,使得以為頂點的三角形和全等,若存在求點的坐標(biāo)以及此時對應(yīng)的點的坐標(biāo),若不存在,請說明理由.解析:(1)證明見解析;;(2)存在,,或,或,或,或,或,.【解析】【分析】(1)通過全等三角形的判定定理ASA證得△ABP≌△PCD,由全等三角形的對應(yīng)邊相等證得AP=DP,DC=PB=3,易得點D的坐標(biāo);(2)設(shè)P(a,0),Q(2,b).需要分類討論:①AB=PC,BP=CQ;②AB=CQ,BP=PC.結(jié)合兩點間的距離公式列出方程組,通過解方程組求得a、b的值,得解.【詳解】(1)軸在和中,(2)設(shè),①,,解得或,或,或,或,②,,,解得,或,綜上:,或,或,或,或,或,【點睛】考查了三角形綜合題.涉及到了全等三角形的判定與性質(zhì),兩點間的距離公式,一元一次絕對值方程組的解法等知識點.解答(2)題時,由于沒有指明全等三角形的對應(yīng)邊(角),所以需要分類討論,以防漏解.7.如圖,若要判定紙帶兩條邊線a,b是否互相平行,我們可以采用將紙條沿AB折疊的方式來進(jìn)行探究.(1)如圖1,展開后,測得,則可判定a//b,請寫出判定的依據(jù)_________;(2)如圖2,若要使a//b,則與應(yīng)該滿足的關(guān)系是_________;(3)如圖3,紙帶兩條邊線a,b互相平行,折疊后的邊線b與a交于點C,若將紙帶沿(,分別在邊線a,b上)再次折疊,折疊后的邊線b與a交于點,AB//,,求出的長.解析:(1)內(nèi)錯角相等,兩直線平行;(2)∠1+2∠2=180°;(3)4或10【解析】【分析】(1)根據(jù)平行線的判定定理,即可得到答案;(2)由折疊的性質(zhì)得:∠3=∠4,若a∥b,則∠3=∠2,結(jié)合三角形內(nèi)角和定理,即可得到答案;(3)分兩種情況:①當(dāng)B1在B的左側(cè)時,如圖2,當(dāng)B1在B的右側(cè)時,如圖3,分別求出的長,即可得到答案.【詳解】(1)∵,∴a∥b(內(nèi)錯角相等,兩直線平行),故答案是:內(nèi)錯角相等,兩直線平行;(2)如圖1,由折疊的性質(zhì)得:∠3=∠4,若a∥b,則∠3=∠2,∴∠4=∠2,∵∠2+∠4+∠1=180°,∴∠1+2∠2=180°,∴要使a∥b,則與應(yīng)該滿足的關(guān)系是:∠1+2∠2=180°.故答案是:∠1+2∠2=180°;(3)①當(dāng)B1在B的左側(cè)時,如圖2,∵AB//,a∥b,∴AA1=BB1=3,∴=AC-AA1=7-3=4;②當(dāng)B1在B的右側(cè)時,如圖3,∵AB//,a∥b,∴AA1=BB1=3,∴=AC+AA1=7+3=10.綜上所述:=4或10.【點睛】本題主要考查平行線的判定和性質(zhì)定理,折疊的性質(zhì)以及三角形的內(nèi)角和定理,掌握“平行線間的平行線段長度相等”是解題的關(guān)鍵.8.閱讀下面材料,完成(1)-(3)題.?dāng)?shù)學(xué)課上,老師出示了這樣一道題:如圖1,已知等腰△ABC中,AB=AC,AD為BC邊上的中線,以AB為邊向AB左側(cè)作等邊△ABE,直線CE與直線AD交于點F.請?zhí)骄烤€段EF、AF、DF之間的數(shù)量關(guān)系,并證明.同學(xué)們經(jīng)過思考后,交流了自已的想法:小明:“通過觀察和度量,發(fā)現(xiàn)∠DFC的度數(shù)可以求出來.”小強(qiáng):“通過觀察和度量,發(fā)現(xiàn)線段DF和CF之間存在某種數(shù)量關(guān)系.”小偉:“通過做輔助線構(gòu)造全等三角形,就可以將問題解決.”......老師:“若以AB為邊向AB右側(cè)作等邊△ABE,其它條件均不改變,請在圖2中補(bǔ)全圖形,探究線段EF、AF、DF三者的數(shù)量關(guān)系,并證明你的結(jié)論.”(1)求∠DFC的度數(shù);(2)在圖1中探究線段EF、AF、DF之間的數(shù)量關(guān)系,并證明;(3)在圖2中補(bǔ)全圖形,探究線段EF、AF、DF之間的數(shù)量關(guān)系,并證明.解析:(1)60°;(2)EF=AF+FC,證明見解析;(3)AF=EF+2DF,證明見解析.【解析】【分析】(1)可設(shè)∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根據(jù)三角形內(nèi)角和可得2α+60+2β=180°,從而有α+β=60°,即可得出∠DFC的度數(shù);(2)在EC上截取EG=CF,連接AG,證明△AEG≌△ACF,然后再證明△AFG為等邊三角形,從而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,連接BG,BF,證明方法類似(2),先證明△ABG≌△EBF,再證明△BFG為等邊三角形,最后可得出結(jié)論.【詳解】解:(1)∵AB=AC,AD為BC邊上的中線,∴可設(shè)∠BAD=∠CAD=α,又△ABE為等邊三角形,∴AE=AB=AC,∠EAB=60°,∴可設(shè)∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,證明如下:∵AB=AC,AD為BC邊上的中線,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,則∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,連接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG為等邊三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)補(bǔ)全圖形如圖所示,結(jié)論:AF=EF+2DF.證明如下:同(1)可設(shè)∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE=180°-2β,∴∠BAE=2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE為等邊三角形,∴∠ABE=∠AFC=60°,∴由8字圖可得:∠BAD=∠BEF,在AF上截取AG=EF,連接BG,BF,又AB=BE,∴△ABG≌△EBF(SAS),∴BG=BF,又AF垂直平分BC,∴BF=CF,∴∠BFA=∠AFC=60°,∴△BFG為等邊三角形,∴BG=BF,又BC⊥FG,∴FG=BF=2DF,∴AF=AG+GF=BF+EF=2DF+EF.【點睛】本題考查了全等三角形的判定和性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)等知識,解決問題的關(guān)鍵是常用輔助線構(gòu)造全等三角形,屬于中考??碱}型.9.(閱讀材科)小明同學(xué)發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的項角的頂點,并把它們的底角頂點連接起來則形成一組全等的三角形,小明把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小明發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則△ABD≌△ACE.(材料理解)(1)在圖1中證明小明的發(fā)現(xiàn).(深入探究)(2)如圖2,△ABC和△AED是等邊三角形,連接BD,EC交于點O,連接AO,下列結(jié)論:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正確的有.(將所有正確的序號填在橫線上).(延伸應(yīng)用)(3)如圖3,AB=BC,∠ABC=∠BDC=60°,試探究∠A與∠C的數(shù)量關(guān)系.解析:(1)證明見解析;(2)①②③;(3)∠A+∠C=180°.【解析】【分析】(1)利用等式的性質(zhì)得出∠BAD=∠CAE,即可得出結(jié)論;(2)同(1)的方法判斷出△ABD≌△ACE,得出BD=CE,再利用對頂角和三角形的內(nèi)角和定理判斷出∠BOC=60°,再判斷出△BCF≌△ACO,得出∠AOC=120°,進(jìn)而得出∠AOE=60°,再判斷出BF<CF,進(jìn)而判斷出∠OBC>30°,即可得出結(jié)論;(3)先判斷出△BDP是等邊三角形,得出BD=BP,∠DBP=60°,進(jìn)而判斷出△ABD≌△CBP(SAS),即可得出結(jié)論.【詳解】(1)證明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE;(2)如圖2,∵△ABC和△ADE是等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE,∴BD=CE,①正確,∠ADB=∠AEC,記AD與CE的交點為G,∵∠AGE=∠DGO,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正確,在OB上取一點F,使OF=OC,∴△OCF是等邊三角形,∴CF=OC,∠OFC=∠OCF=60°=∠ACB,∴∠BCF=∠ACO,∵AB=AC,∴△BCF≌△ACO(SAS),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正確,連接AF,要使OC=OE,則有OC=CE,∵BD=CE,∴CF=OF=BD,∴OF=BF+OD,∴BF<CF,∴∠OBC>∠BCF,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC>30°,而沒辦法判斷∠OBC大于30度,所以,④不一定正確,即:正確的有①②③,故答案為①②③;(3)如圖3,延長DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等邊三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【點睛】此題考查三角形綜合題,等腰三角形的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定和性質(zhì),構(gòu)造等邊三角形是解題的關(guān)鍵.10.已知在△ABC中,AB=AC,射線BM、BN在∠ABC內(nèi)部,分別交線段AC于點G、H.(1)如圖1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于點D,分別交BC、BM于點E、F.①求證:∠1=∠2;②如圖2,若BF=2AF,連接CF,求證:BF⊥CF;(2)如圖3,點E為BC上一點,AE交BM于點F,連接CF,若∠BFE=∠BAC=2∠CFE,求的值.解析:(1)①見解析;②見解析;(2)2【解析】【分析】(1)①只要證明∠2+∠BAF=∠1+∠BAF=60°即可解決問題;②只要證明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,連接AK.只要證明△ABK≌CAF,可得S△ABK=S△AFC,再證明AF=FK=BK,可得S△ABK=S△AFK,即可解決問題;【詳解】(1)①證明:如圖1中,∵AB=AC,∠ABC=60°∴△ABC是等邊三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②證明:如圖2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,連接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴.【點睛】本題考查全等三角形的判定和性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的判定和性質(zhì)、直角三角形30度角性質(zhì)等知識,解題的關(guān)鍵是能夠正確添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考壓軸題.11.在《經(jīng)典幾何圖形的研究與變式》一課中,龐老師出示了一個問題:“如圖1,等腰直角三角形的三個頂點分別落在三條等距的平行線,,上,,且每兩條平行線之間的距離為1,求AB的長度”.在研究這道題的解法和變式的過程中,同學(xué)們提出了很多想法:(1)小明說:我只需要過B、C向作垂線,就能利用全等三角形的知識求出AB的長.(2)小林說:“我們可以改變的形狀.如圖2,,,且每兩條平行線之間的距離為1,求AB的長.”(3)小謝說:“我們除了改變的形狀,還能改變平行線之間的距離.如圖3,等邊三角形ABC三個頂點分別落在三條平行線,,上,且與之間的距離為1,與之間的距離為2,求AB的長、”請你根據(jù)3位同學(xué)的提示,分別求出三種情況下AB的長度.解析:(1);(2);(3)【解析】【分析】(1)分別過點B,C向l1作垂線,交l1于M,N兩點,證明△ABM≌△CAN,得到AM=CN,AN=BM,即可得出AB;(2)分別過點B,C向l1作垂線,交l1于點P,Q兩點,在l1上取M,N使∠AMB=∠CNA=120°,證明△AMB≌△CAN,得到CN=AM,再通過△PBM和△QCN算出PM和NQ的值,得到AP,最后在△APB中,利用勾股定理算出AB的長;(3)在l3上找M和N,使得∠BNC=∠AMC=60°,過B作l3的垂線,交l3于點P,過A作l3的垂線,交l3于點Q,證明△BCN≌△CAM,得到CN=AM,在△BPN和△AQM中利用勾股定理算出NP和AM,從而得到PC,結(jié)合BP算出BC的長,即為AB.【詳解】解:(1)如圖,分別過點B,C向l1作垂線,交l1于M,N兩點,由題意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA,在△ABM和△CAN中,,∴△ABM≌△CAN(AAS),∴AM=CN=2,AN=BM=1,∴AB=;(2)分別過點B,C向l1作垂線,交l1于P,Q兩點,在l1上取M,N使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC,在△AMB和△CNA中,,∴△AMB≌△CNA(AAS),∴CN=AM,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°,∴PM=BM,NQ=NC,∵PB=1,CQ=2,設(shè)PM=a,NQ=b,∴,,解得:,,∴CN=AM==,∴AB===;(3)如圖,在l3上找M和N,使得∠BNC=∠AMC=60°,過B作l3的垂線,交于點P,過A作l3的垂線,交于點Q,∵△ABC是等邊三角形,∴BC=AC,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM,在△BCN和△CAM中,,∴△BCN≌△CAM(AAS),∴CN=AM,BN=CM,∵∠PBN=90°-60°=30°,BP=2,∴BN=2NP,在△BPN中,,即,解得:NP=,∵∠AMC=60°,AQ=3,∴∠MAQ=30°,∴AM=2QM,在△AQM中,,即,解得:QM=,∴AM==CN,∴PC=CN-NP=AM-NP=,在△BPC中,BP2+CP2=BC2,即BC=,∴AB=BC=.【點睛】本題考查了全等三角形的判定和性質(zhì),平行線之間的距離,等腰三角形的性質(zhì),等邊三角形的性質(zhì)以及勾股定理,解題的關(guān)鍵是利用平行線構(gòu)造全等三角形,再利用全等三角形的性質(zhì)以及勾股定理求解.12.已知,在平面直角坐標(biāo)系中,,,C為AB的中點,P是線段AB上一動點,D是線段OA上一點,且,于E.(1)求的度數(shù);(2)當(dāng)點P運動時,PE的值是否變化?若變化,說明理由;若不變,請求PE的值.(3)若,求點D的坐標(biāo).解析:(1)45°;(2)PE的值不變,PE=4,理由見詳解;(3)D(,0).【解析】【分析】(1)根據(jù),,得△AOB為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì),即可求出∠OAB的度數(shù);(2)根據(jù)等腰直角三角形的性質(zhì)得到∠AOC=∠BOC=45°,OC⊥AB,再證明△POC≌△DPE,根據(jù)全等三角形的性質(zhì)得到OC=PE,即可得到答案;(3)證明△POB≌△DPA,得到PA=OB=,DA=PB,進(jìn)而得OD的值,即可求出點D的坐標(biāo).【詳解】(1),,∴OA=OB=,∵∠AOB=90°,∴△AOB為等腰直角三角形,∴∠OAB=45°;(2)PE的值不變,理由如下:∵△AOB為等腰直角三角形,C為AB的中點,∴∠AOC=∠BOC=45°,OC⊥AB,∵PO=PD,∴∠POD=∠PDO,∵D是線段OA上一點,∴點P在線段BC上,∵∠POD=45°+∠POC,∠PDO=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC?△DPE(AAS),∴OC=PE,∵OC=AB=××=4,∴PE=4;(3)∵OP=PD,∴∠POD=∠PDO=(180°?45°)÷2=67.5°,∴∠APD=∠PDO?∠A=22.5°,∠BOP=90°?∠POD=22.5°,∴∠APD=∠BOP,在△POB和△DPA中,∴△POB≌△DPA(AAS),∴PA=OB=,DA=PB,∴DA=PB=×-=8-,∴OD=OA?DA=-(8-)=,∴點D的坐標(biāo)為(,0).【點睛】本題主要考查等腰直角三角形的性質(zhì),三角形全等的判定與性質(zhì)定理,圖形與坐標(biāo),掌握等腰直角三角形的性質(zhì),是解題的關(guān)鍵.13.直角三角形中,,直線過點.(1)當(dāng)時,如圖1,分別過點和作直線于點,直線于點,與是否全等,并說明理由;(2)當(dāng),時,如圖2,點與點關(guān)于直線對稱,連接,點是上一點,點是上一點,分別過點作直線于點,直線于點,點從點出發(fā),以每秒的速度沿路徑運動,終點為,點從點出發(fā),以每秒的速度沿路徑運動,終點為,點同時開始運動,各自達(dá)到相應(yīng)的終點時停止運動,設(shè)運動時間為秒,當(dāng)為等腰直角三角形時,求的值.解析:(1)全等,理由見解析;(2)t=3.5秒或5秒【解析】【分析】(1)根據(jù)垂直的定義得到∠DAC=∠ECB,利用AAS定理證明△ACD≌△CBE;(2)分點F沿C→B路徑運動和點F沿B→C路徑運動兩種情況,根據(jù)等腰三角形的定義列出算式,計算即可;【詳解】解:(1)△ACD與△CBE全等.理由如下:∵AD⊥直線l,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS);(2)由題意得,AM=t,F(xiàn)N=3t,則CM=8-t,由折疊的性質(zhì)可知,CF=CB=6,∴CN=6-3t,點N在BC上時,△CMN為等腰直角三角形,當(dāng)點N沿C→B路徑運動時,由題意得,8-t=3t-6,解得,t=3.5,當(dāng)點N沿B→C路徑運動時,由題意得,8-t=18-3t,解得,t=5,綜上所述,當(dāng)t=3.5秒或5秒時,△CMN為等腰直角三角形;【點睛】本題考查的是全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理,靈活運用分情況討論思想是解題的關(guān)鍵.14.某校八年級數(shù)學(xué)興趣小組對“三角形內(nèi)角或外角平分線的夾角與第三個內(nèi)角的數(shù)量關(guān)系”進(jìn)行了探究.(1)如圖1,在△ABC中,∠ABC與∠ACB的平分線交于點P,∠A=64°,則∠BPC=;(2)如圖2,△ABC的內(nèi)角∠ACB的平分線與△ABC的外角∠ABD的平分線交于點E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如圖3,∠CBM、∠BCN為△ABC的外角,∠CBM、∠BCN的平分線交于點Q,請你寫出∠BQC與∠A的數(shù)量關(guān)系,并證明.解析:(1)∠BPC=122°;(2)∠BEC=;(3)∠BQC=90°﹣∠A,證明見解析【解析】【分析】(1)根據(jù)三角形的內(nèi)角和化為角平分線的定義;(2)根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,用∠A與∠1表示出∠2,再利用∠E與∠1表示出∠2,于是得到結(jié)論;(3)根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和以及角平分線的定義表示出∠EBC與∠ECB,然后再根據(jù)三角形的內(nèi)角和定理列式整理即可得解.【詳解】解:(1)、分別平分和,,,,,,,,故答案為:;(2)和分別是和的角平分線,,,又是的一外角,,,是的一外角,;(3),,,,,結(jié)論:.【點睛】本題考查了三角形的外角性質(zhì)與內(nèi)角和定理,熟記三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和是解題的關(guān)鍵.15.如圖,在平面直角坐標(biāo)系中,,,,點、在軸上且關(guān)于軸對稱.(1)求點的坐標(biāo);(2)動點以每秒2個單位長度的速度從點出發(fā)沿軸正方向向終點運動,設(shè)運動時間為秒,點到直線的距離的長為,求與的關(guān)系式;(3)在(2)的條件下,當(dāng)點到的距離為時,連接,作的平分線分別交、于點、,求的長.解析:(1)C(4,0);(2);(3).【解析】【分析】(1)根據(jù)對稱的性質(zhì)知為等邊三角形,利用直角三角形中30度角的性質(zhì)即可求得答案;(2)利用面積法可求得,再利用坐標(biāo)系中點的特征即可求得答案;(3)利用(2)的結(jié)論求得,利用角平分線的性質(zhì)證得,求得,利用面積法求得,再利用直角三角形中30度角的性質(zhì)即可求得答案.【詳解】(1)∵點、關(guān)于軸對稱,∴,∴,∵,∴為等邊三角形,∴,∴,∴點C的坐標(biāo)為:;(2)連接,∵,∴,∵,∴,∵,∴,∵,∴,即:;(3)∵點到的距離為,∴,∴,∴,延長交于點,過點作軸于點,連接、,∵為的角平分線,為等邊三角形,∴,,∵,,∴,∴,設(shè),在中,,∴,∵,∴,∴,∴,∴,∵,,∴,∵,∴,在中,,,∴,∴,,∴,∴.【點睛】本題是三角形綜合題,涉及的知識有:含30度直角三角形的性質(zhì),全等三角形的判定與性質(zhì),外角性質(zhì),角平分線的性質(zhì),等邊三角形的判定和性質(zhì),坐標(biāo)與圖形性質(zhì),熟練掌握性質(zhì)及定理、靈活運用面積法求線段的長是解本題的關(guān)鍵.二、選擇題16.在數(shù)3,﹣3,,中,最小的數(shù)為()A.﹣3 B. C. D.3解析:A【解析】【分析】有理數(shù)大小比較的法則:①正數(shù)都大于0;②負(fù)數(shù)都小于0;③正數(shù)大于一切負(fù)數(shù);④兩個負(fù)數(shù),絕對值大的其值反而小,據(jù)此判斷即可.【詳解】解:∵3>>>﹣3,∴在數(shù)3,﹣3,,中,最小的數(shù)為﹣3.故選:A.【點睛】此題主要考查了有理數(shù)大小比較的方法,要熟練掌握,解答此題的關(guān)鍵是要明確:①正數(shù)都大于0;②負(fù)數(shù)都小于0;③正數(shù)大于一切負(fù)數(shù);④兩個負(fù)數(shù),絕對值大的其值反而?。?7.如圖,已知線段AB的長度為a,CD的長度為b,則圖中所有線段的長度和為()A.3a+b B.3a-b C.a(chǎn)+3b D.2a+2b解析:A【解析】【分析】依據(jù)線段AB長度為a,可得AB=AC+CD+DB=a,依據(jù)CD長度為b,可得AD+CB=a+b,進(jìn)而得出所有線段的長度和.【詳解】∵線段AB長度為a,∴AB=AC+CD+DB=a,又∵CD長度為b,∴AD+CB=a+b,∴圖中所有線段的長度和為:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故選A.【點睛】本題考查了比較線段的長度和有關(guān)計算,主要考查學(xué)生能否求出線段的長度和知道如何數(shù)圖形中的線段.18.如圖,直線AB直線CD,垂足為O,直線EF經(jīng)過點O,若,則()A.35° B.45° C.55° D.125°解析:C【解析】【分析】根據(jù)對頂角相等可得:,進(jìn)而可得的度數(shù).【詳解】解:根據(jù)題意可得:,.故答案為:C.【點睛】本題考查的是對頂角和互余的知識,解題關(guān)鍵在于等量代換.19.已知a+b=7,ab=10,則代數(shù)式(5ab+4a+7b)+(3a–4ab)的值為()A.49 B.59C.77 D.139解析:B【解析】【分析】首先去括號,合并同類項將原代數(shù)式化簡,再將所求代數(shù)式化成用(a+b)與ab表示的形式,然后把已知代入即可求解.【詳解】解:∵(5ab+4a+7b)+(3a-4ab)=5ab+4a+7b+3a-4ab=ab+7a+7b=ab+7(a+b)∴當(dāng)a+b=7,ab=10時原式=10+7×7=59.故選B.20.寧波港處于“一帶一路”和長江經(jīng)濟(jì)帶交匯點,地理位置得天獨厚.全年貨物吞吐量達(dá)9.2億噸,晉升為全球首個“9億噸”大港,并連續(xù)8年蟬聯(lián)世界第一寶座.其中9.2億用科學(xué)記數(shù)法表示正確的是()A. B. C. D.解析:A【解析】因為科學(xué)記數(shù)法的表達(dá)形式為:,所以9.2億用科學(xué)記數(shù)法表示為:,故選A.點睛:本題主要考查科學(xué)記數(shù)法的表達(dá)形式,解決本題的關(guān)鍵是要熟練掌握科學(xué)記數(shù)法的表達(dá)形式.21.下列四個式子:,,,,化簡后結(jié)果為的是()A. B. C. D.解析:B【解析】【分析】由題意直接利用求平方根和立方根以及絕對值的性質(zhì)和去括號分別化簡得出答案.【詳解】解:A.=3,故排除A;B.=,選項B正確;C.=3,故排除C;D.=3,故排除D.故選B.【點睛】本題主要考查求平方根和立方根以及絕對值的性質(zhì)和去括號原則,正確掌握相關(guān)運算法則是解題關(guān)鍵.22.對于方程,去分母后得到的方程是()A. B. C. D.解析:D【解析】【分析】方程兩邊同乘以6即可求解.【詳解】,方程兩邊同乘以6可得,2x-6=3(1+2x).故選D.【點睛】本題考查了一元一次方程的解法—去分母,方程兩邊同乘以各分母的最小公倍數(shù)是去分母的基本方法.23.如圖,直線與直線相交于點,,若過點作,則的度數(shù)為()A. B.C.或 D.或解析:D【解析】【分析】由題意分兩種情況過點作,利用垂直定義以及對頂角相等進(jìn)行分析計算得出選項.【詳解】解:過點作,如圖:由可知,從而由垂直定義求得=90°-40°或90°+40°,即有的度數(shù)為或.故選D.【點睛】本題考查了垂直定義以及對頂角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 度森林資源使用權(quán)轉(zhuǎn)讓合同
- 裝修工程勞動合同合同樣本
- 區(qū)域合作分銷合同協(xié)議
- 合同履行完畢確認(rèn)聲明書
- 黃山風(fēng)景區(qū)國內(nèi)旅游合同
- 私人借款合同樣本及還款細(xì)則
- 境外就業(yè)派遣合同
- 商業(yè)綜合體停車位租賃合同范本
- 商標(biāo)糾紛和解合同細(xì)則
- 木材加工企業(yè)的品牌形象宣傳與公關(guān)活動考核試卷
- 《多維度兒童智力診斷量表》MIDSC的編制
- 罪犯教育學(xué)課程
- 紀(jì)檢監(jiān)察辦案談話應(yīng)注意的問題研討
- 超實用工程結(jié)算單excel模板
- 一年級小學(xué)生新學(xué)期開學(xué)計劃
- ISO9001-2015質(zhì)量手冊和全套程序文件
- 醫(yī)療器械產(chǎn)品放行程序
- 07j306排水溝圖集標(biāo)準(zhǔn)
- 裝飾材料復(fù)試清單
- GB/T 10089-1988圓柱蝸桿、蝸輪精度
- 國際商法 吳建斌課件 思考題答案
評論
0/150
提交評論