下載本文檔
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
關(guān)于函數(shù)極值點(diǎn)的定義及判別
在分析中,我們了解了零函數(shù)極值點(diǎn)的定義和評(píng)價(jià)方法。這里準(zhǔn)備就更一般的情形加以討論。定義1:設(shè)函數(shù)f(x,y)在點(diǎn)(x0,y0)處有各階連續(xù)的偏導(dǎo)數(shù),如果函數(shù)f(x,y)在點(diǎn)(x0,y0)處的所有不大于(≤)k(k=1,2,3,…)階的偏導(dǎo)數(shù)全為零,而k+1階偏導(dǎo)數(shù)不全為零,則稱(chēng)點(diǎn)(x0,y0)為函數(shù)f(x,y)的k(k=1,2,3,…)階穩(wěn)定點(diǎn)。定理1:設(shè)函數(shù)f(x,y)在點(diǎn)(x0,y0)處有各階連續(xù)的偏導(dǎo)數(shù),且點(diǎn)(x0,y0)為函數(shù)f(x,y)的一階穩(wěn)定點(diǎn),則(1)當(dāng)[f″xx(x0,y0)][f″yy(x0,y0)]-[f″xy(x0,y0)]2>0時(shí),函數(shù)f(x,y)在點(diǎn)(x0,y0)處取到極值。并且:①[f″xx(x0,y0)]>0時(shí),f(x,y)在點(diǎn)(x0,y0)處取極小值;②當(dāng)[f″xx(x0,y0)]<0時(shí),f(x,y)在點(diǎn)(x0,y0)處取極大值。(2)當(dāng)[f″xx(x0,y0)][f″yy(x0,y0)]-[f″xy(x0,y0)]2<0時(shí),函數(shù)f(x,y)在點(diǎn)(x0,y0)處不取極值。(3)當(dāng)Δ=[f″xx(x0,y0)][f″yy(x0,y0)]-[f″xy(x0,y0]2=0時(shí),結(jié)論不定。這就是我們熟知的教科書(shū)中給出并證明的結(jié)論。定理2:設(shè)函數(shù)f(x,y)在點(diǎn)(x0,y0)處有各階連續(xù)的偏導(dǎo)數(shù),且點(diǎn)(x0,y0)為函數(shù)f(x,y)的2k(k=1,2,3,…)階穩(wěn)定點(diǎn),則點(diǎn)(x0,y0)一定不是f(x,y)的極值點(diǎn)。證明:為方便敘述,引入記號(hào):Ai=f(2k+1)x2k+1-iyi(2k+1)x2k+1?iyi(x0,y0)(i=0,1,2,…2k+1)由于函數(shù)f(x,y)在點(diǎn)(x0,y0)處的各階偏導(dǎo)數(shù)連續(xù),點(diǎn)(x0,y0)為函數(shù)f(x,y)的2k階穩(wěn)定點(diǎn),所以,由2k階穩(wěn)定點(diǎn)的定義及2k+1階泰勒展開(kāi)式,對(duì)任意的s和t有Δf=f(x0+s,y0+t)-f(x0,y0)=1(2k+1)!2k+1∑i=0[Ci2k+1Ais2k+1-iti]+1(2k+1)!2k+1∑i=0[Ci2k+1αis2k+1-iti]Δf=f(x0+s,y0+t)?f(x0,y0)=1(2k+1)!∑2k+1i=0[Ci2k+1Ais2k+1?iti]+1(2k+1)!∑2k+1i=0[Ci2k+1αis2k+1?iti]其中當(dāng)s→0,t→0時(shí),αi→0(i=0,1,2,…2k+1),于是當(dāng)|s|及|t|充分小時(shí),Δf的符號(hào)就由ω=12k+1!2k+1∑i=0[Ci2k+1Ais2k+1-iti]ω=12k+1!∑2k+1i=0[Ci2k+1Ais2k+1?iti]的符號(hào)決定。由于Ai(i=0,1,2,…2k+1)不全為零,所以可將2k+1∑i=0[Ci2k+1Aizi]=0∑2k+1i=0[Ci2k+1Aizi]=0視為以z為變量的至多2k+1次的代數(shù)方程,根據(jù)代數(shù)基本定理知它最多有2k+1個(gè)根。于是總可以取z0使得2k+1∑i=0[Ci2k+1Aiz0i]≠0∑2k+1i=0[Ci2k+1Aiz0i]≠0取t=z0s則ω=s2k+1(2k+1)!2k+1∑i=0[Ci2k+1Aizi0]ω=s2k+1(2k+1)!∑2k+1i=0[Ci2k+1Aizi0]于是ω的符號(hào)就取決于s的符號(hào),所以在t=z0s的條件下,Δf的符號(hào)就取決于s的符號(hào),故在點(diǎn)(x0,y0)的任何鄰域內(nèi)總存在點(diǎn)(x0+s,y0+z0s)及點(diǎn)(x0-s,y0-z0s)使得:f(x0+s,y0+z0s)-f(x0,y0)與f(x0-s,y0-z0s)-f(x0,y0)符號(hào)相反,所以函數(shù)f(x,y)在點(diǎn)(x0,y0)處不取極值。例、證明:f(x,y)=x2(1-y2)在點(diǎn)(0,-1)及點(diǎn)(0,1)不取極值。證明:f′x(x,y)=2x(1-y2)f′y(x,y)=-2x2y令它們等于零,解得(x0,y0)為(0,-1)及(0,1),不難驗(yàn)證:f′x(x0,y0)=f′y(x0,y0)=f″xx(x0,y0)=f″xy(x0,y0)=f″yy(x0,y0)=0但fue087xxy(0,-1)=4fue087xxy(0,1)=-4所以(0,-1)及點(diǎn)(0,1)均為f(x,y)的二階穩(wěn)定點(diǎn),故由定理2知f(x,x)在點(diǎn)(0,-1)及點(diǎn)(0,1)不取極值。為方便定理3的敘述,引入記號(hào):Ai=f(2k)x2k-iyi(x0,y0)(i=0,1,2,…,2k)定理3:設(shè)函數(shù)f(x,y)在點(diǎn)(x0,y0)處有各階連續(xù)的偏導(dǎo)數(shù),且點(diǎn)(x0,y0)為函數(shù)f(x,y)的2k-1(k=1,2,3…)階穩(wěn)定點(diǎn),如果對(duì)任意的i=1,2,…,2k-1均有Ai=0,而A0·A2k≠0則:(1)當(dāng)A0·A2k>0時(shí),函數(shù)f(x,y)在點(diǎn)(x0,y0)處取極值。且A0>0時(shí)取極小值,A0<0時(shí)取極大值;(2)當(dāng)A0·A2k<0時(shí),函數(shù)f(x,y)在點(diǎn)(x0,y0)處不取極值。證明:由于點(diǎn)(x0,y0)為函數(shù)f(x,y)的2k-1階穩(wěn)定點(diǎn),所以,由2k-1階穩(wěn)定點(diǎn)的定義及2k階泰勒展開(kāi)式和定理?xiàng)l件可知:當(dāng)|s|及|t|充分小時(shí),Δf=f(x0+s,y0+t)-f(x0,y0)的符號(hào)就由ω=1(2k)![A0s2k+A2kt2k]的符號(hào)決定,顯然,(1)當(dāng)A0·A2k>0時(shí),對(duì)任意不全為零的s,t,ω保持與A0同號(hào)。所以,函數(shù)f(x,y)在點(diǎn)(x0,y0)處取極值。且A0>0時(shí)取極小值;A0<0時(shí)取極大值。(2)當(dāng)A0·A2k<0時(shí),取s≠0,t=0則ω保持與A0同號(hào);而取s=0,t≠0則ω保持與A2k同號(hào)(與A0異號(hào)),所以,函數(shù)f(x,y)在點(diǎn)(x0,y0)處不取極值。為方便定理4的敘述,引入記號(hào):Ai=f(4k)x4k-iyi(x0,y0)(i=0,1,2,…,4k)。定理4:設(shè)函數(shù)f(x,y)在點(diǎn)(x0,y0)處有各階連續(xù)的偏導(dǎo)數(shù),且點(diǎn)(x0,y0)為函數(shù)f(x,y)的4k-1(k=1,2,3…)階穩(wěn)定點(diǎn),如果A2k≠0而對(duì)于任意的i≠2k且0≤i≤4k,均有Ai=0,則函數(shù)f(x,y)在點(diǎn)(x0,y0)處取極值。且A2k>0時(shí)取極小值;A2k<0時(shí)取極大值。證明:由于點(diǎn)(x0,y0)為函數(shù)f(x,y)的4k-1階穩(wěn)定點(diǎn),所以,由4k-1階穩(wěn)定點(diǎn)的定義及4k階泰勒展開(kāi)式和定理?xiàng)l件可知:當(dāng)|s|及|t|充分小時(shí),Δf=f(x0+s,y0+t)-f(x0,y0)的符號(hào)就由ω=1(4k)!C2k4kA2ks2kt2k的符號(hào)決定,顯然,當(dāng)A2k≠0時(shí),ω保持與A2k同號(hào)。所以,函數(shù)f(x,y)在點(diǎn)(x0,y0)處取極值。且A2k>0時(shí)取極小值;A2k<0時(shí)取極大值。為方便下面的敘述,引入記號(hào):A=f(4)x4(x0,y0)B=f(4)x3y(x0,y0)C=f(4)x2y2(x0,y0)D=f(4)xy3(x0,y0)E=f(4)y4(x0,y0)定理5:設(shè)函數(shù)f(x,y)在點(diǎn)(x0,y0)處有各階連續(xù)的偏導(dǎo)數(shù),且點(diǎn)(x0,y0)為函數(shù)f(x,y)的三階穩(wěn)定點(diǎn),則:(1)當(dāng)A≠0,AC-B2>0,3(AC-B2)(A3E-B4)-2(A2D-B3)2>0時(shí),函數(shù)f(x,y)在點(diǎn)(x0,y0)處取極值。且當(dāng)A>0時(shí)取極小值;當(dāng)A<0時(shí)取極大值;(2)當(dāng)A≠0,AC-B2<0,3(AC-B2)(A3E-B4)-2(A2D-B3)2>0時(shí),函數(shù)f(x,y)在點(diǎn)(x0,y0)處不取極值。證明:因?yàn)?點(diǎn)(x0,y0)為函數(shù)f(x,y)的三階穩(wěn)定點(diǎn),所以,由三階穩(wěn)定點(diǎn)的定義及四階泰勒展開(kāi)式可知,當(dāng)|s|及|t|充分小時(shí),Δf=f(x0+s,y0+t)-f(x0,y0)符號(hào)就由ω=14![As4+4Bs3t+6Cs2t2+4Dst3+Et4]的符號(hào)決定。設(shè)s=rcosαt=rsinα則r=√s2+t2,當(dāng)A≠0,AC-B2≠0時(shí),ω=r44![(Acos4α+4Bcos3αsinα+6Ccos2αsin2α+4Dcosαsin3α+Esin4α]=r44!A3[(Acosα+Bsinα)4+6(A3C-A2B2)cos2αsin2α+4(A3D-AB3)cosαsin3α+(A3E-B4)sin4α]=r424A3(Acosα+Bsinα)4+r4sin2α36A3(AC-B2)[3A(AC-B2)cosα+(A2D-B3)sinα]2+r4sin4α72A3(AC-B2)[3(AC-B2)(A3E-B4)-2(A2D-B3)2](1)由于s,t不同時(shí)為零時(shí),r≠0;且當(dāng)sinα=0時(shí),cosα=±0,于是,當(dāng)A≠0,AC-B2>0,3(AC-B2)(A3E-B4)-2(A2D-B3)2>0時(shí),ω保持與A同號(hào)。所以,函數(shù)f(x,y)在點(diǎn)(x0,y0)處取極值。且當(dāng)A>0時(shí)取極小值;當(dāng)A<0時(shí)取極大值。(2)當(dāng)A≠0,AC-B2<0,3(AC-B2)(A3E-B4)-2(A2D-B3)2>0時(shí),若取sinα=0,則ω與A同號(hào);若取ctgα=-BA,則ω與A異號(hào),所以,函數(shù)f(x,y)在點(diǎn)(x0,y0)處不取極值。推論:設(shè)函數(shù)f(x,y)在點(diǎn)(x0,y0)處有各階連續(xù)的偏導(dǎo)數(shù),且點(diǎn)(x0,y0)為函數(shù)f(x,y)的三階穩(wěn)定點(diǎn),則:(1)當(dāng)E≠0,EC-D2>0,3(EC-D2)(E3A-D4)-2(E2B-D3)2>0時(shí),函數(shù)f(x,y)在點(diǎn)(x0,y0)處取極值。且當(dāng)E>0時(shí)取極小值;當(dāng)E<0時(shí)取極大值;(2)當(dāng)E≠0,EC-D2<0,3(EC-D2)(E3A-D4)-2(E2B-D3)2>0時(shí),函數(shù)f(x,y)在點(diǎn)(x0,y0)處不取極值。定理6:設(shè)函數(shù)f(x,y)在點(diǎn)(x0,y0)處有各階連續(xù)的偏導(dǎo)數(shù),點(diǎn)(x0,y0)為函數(shù)f(x,y)的三階穩(wěn)定點(diǎn),且A=E=0,則當(dāng)B≠0(或D≠0)16BD-9C2>0時(shí),函數(shù)f(x,y)在點(diǎn)(x0,y0)處不取極值。證明:由定
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 資金管理與優(yōu)化實(shí)踐總結(jié)
- 廣西河池市環(huán)江縣2022-2023學(xué)年六年級(jí)上學(xué)期英語(yǔ)期末試卷
- 《演講中的自我介紹》課件
- 2025年山西省、陜西省、寧夏、青海省八省聯(lián)考高考地理模擬試卷
- 2023年廣西壯族自治區(qū)柳州市公開(kāi)招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2024年山西省朔州市公開(kāi)招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 《全身麻醉》課件
- 機(jī)電部的口號(hào)和目標(biāo)
- 遼寧省本溪市(2024年-2025年小學(xué)六年級(jí)語(yǔ)文)統(tǒng)編版綜合練習(xí)((上下)學(xué)期)試卷及答案
- 《慢阻肺健康大課堂》課件
- 子長(zhǎng)市長(zhǎng)征文化運(yùn)動(dòng)公園項(xiàng)目社會(huì)穩(wěn)定風(fēng)險(xiǎn)評(píng)估報(bào)告
- 浙教版七年級(jí)科學(xué)上冊(cè)期末綜合素質(zhì)檢測(cè)含答案
- 2024年北京市離婚協(xié)議書(shū)樣本
- 2019年海南省公務(wù)員考試申論真題(乙類(lèi))
- 北京郵電大學(xué)《操作系統(tǒng)》2022-2023學(xué)年期末試卷
- 2024-2025學(xué)年人教版高二上學(xué)期期末英語(yǔ)試題及解答參考
- 2023年稅收基礎(chǔ)知識(shí)考試試題庫(kù)和答案解析
- 熱氣球項(xiàng)目可行性實(shí)施報(bào)告
- 雙向進(jìn)入交叉任職制度
- 合成纖維的熔融紡絲工藝研究考核試卷
- 管道改造施工方案
評(píng)論
0/150
提交評(píng)論