河北承德市隆化縣2024屆中考一模數(shù)學試題含解析_第1頁
河北承德市隆化縣2024屆中考一模數(shù)學試題含解析_第2頁
河北承德市隆化縣2024屆中考一模數(shù)學試題含解析_第3頁
河北承德市隆化縣2024屆中考一模數(shù)學試題含解析_第4頁
河北承德市隆化縣2024屆中考一模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

河北承德市隆化縣2024屆中考一模數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在正方形ABCD中,點E,F(xiàn)分別在BC,CD上,AE=AF,AC與EF相交于點G,下列結論:①AC垂直平分EF;②BE+DF=EF;③當∠DAF=15°時,△AEF為等邊三角形;④當∠EAF=60°時,S△ABE=S△CEF,其中正確的是()A.①③ B.②④ C.①③④ D.②③④2.一、單選題如圖,△ABC中,AD是BC邊上的高,AE、BF分別是∠BAC、∠ABC的平分線,∠BAC=50°,∠ABC=60°,則∠EAD+∠ACD=()A.75° B.80° C.85° D.90°3.規(guī)定:如果關于x的一元二次方程ax2+bx+c=0(a≠0)有兩個實數(shù)根,且其中一個根是另一個根的2倍,則稱這樣的方程為“倍根方程”.現(xiàn)有下列結論:①方程x2+2x﹣8=0是倍根方程;②若關于x的方程x2+ax+2=0是倍根方程,則a=±3;③若關于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,則拋物線y=ax2﹣6ax+c與x軸的公共點的坐標是(2,0)和(4,0);④若點(m,n)在反比例函數(shù)y=的圖象上,則關于x的方程mx2+5x+n=0是倍根方程.上述結論中正確的有(

)A.①② B.③④ C.②③ D.②④4.如圖,四邊形ABCD內(nèi)接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,則∠BDC的度數(shù)為()A.100° B.105° C.110° D.115°5.如圖,是在直角坐標系中圍棋子擺出的圖案,若再擺放一黑一白兩枚棋子,使9枚棋子組成的圖案既是軸對稱圖形又是中心對稱圖形,則這兩枚棋子的坐標是()A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)6.實數(shù)a,b在數(shù)軸上對應的點的位置如圖所示,則正確的結論是()A.a(chǎn)+b<0 B.a(chǎn)>|﹣2| C.b>π D.7.下列運算正確的是()A.5ab﹣ab=4 B.a(chǎn)6÷a2=a4C. D.(a2b)3=a5b38.如圖,O為原點,點A的坐標為(3,0),點B的坐標為(0,4),⊙D過A、B、O三點,點C為上一點(不與O、A兩點重合),則cosC的值為()A. B. C. D.9.若分式有意義,則x的取值范圍是A.x>1 B.x<1 C.x≠1 D.x≠010.如圖,在等腰直角三角形ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.早春二月的某一天,大連市南部地區(qū)的平均氣溫為﹣3℃,北部地區(qū)的平均氣溫為﹣6℃,則當天南部地區(qū)比北部地區(qū)的平均氣溫高_____℃.12.如圖,已知是的高線,且,,則_________.13.已知菱形的周長為10cm,一條對角線長為6cm,則這個菱形的面積是_____cm1.14.如圖,在直角坐標系中,⊙A的圓心A的坐標為(1,0),半徑為1,點P為直線y=x+3上的動點,過點P作⊙A的切線,切點為Q,則切線長PQ的最小值是______________.15.拋物線y=2x2+3x+k﹣2經(jīng)過點(﹣1,0),那么k=_____.16.已知方程x2﹣5x+2=0的兩個解分別為x1、x2,則x1+x2﹣x1?x2的值為______.17.若關于的一元二次方程無實數(shù)根,則一次函數(shù)的圖象不經(jīng)過第_________象限.三、解答題(共7小題,滿分69分)18.(10分)王老師對試卷講評課中九年級學生參與的深度與廣度進行評價調(diào)查,每位學生最終評價結果為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項中的一項.評價組隨機抽取了若干名初中學生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:(1)在這次評價中,一共抽查了

名學生;(2)在扇形統(tǒng)計圖中,項目“主動質(zhì)疑”所在扇形的圓心角度數(shù)為

度;(3)請將頻數(shù)分布直方圖補充完整;(4)如果全市九年級學生有8000名,那么在試卷評講課中,“獨立思考”的九年級學生約有多少人?19.(5分)2018年湖南省進入高中學習的學生三年后將面對新高考,高考方案與高校招生政策都將有重大變化.某部門為了了解政策的宣傳情況,對某初級中學學生進行了隨機抽樣調(diào)查,根據(jù)學生對政策的了解程度由高到低分為A,B,C,D四個等級,并對調(diào)查結果分析后繪制了如下兩幅圖不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息完成下列問題:(1)求被調(diào)查學生的人數(shù),并將條形統(tǒng)計圖補充完整;(2)求扇形統(tǒng)計圖中的A等對應的扇形圓心角的度數(shù);(3)已知該校有1500名學生,估計該校學生對政策內(nèi)容了解程度達到A等的學生有多少人?20.(8分)A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的s與t的關系.(1)L1表示哪輛汽車到甲地的距離與行駛時間的關系?(2)汽車B的速度是多少?(3)求L1,L2分別表示的兩輛汽車的s與t的關系式.(4)2小時后,兩車相距多少千米?(5)行駛多長時間后,A、B兩車相遇?21.(10分)已知拋物線y=ax2﹣bx.若此拋物線與直線y=x只有一個公共點,且向右平移1個單位長度后,剛好過點(3,1).①求此拋物線的解析式;②以y軸上的點P(1,n)為中心,作該拋物線關于點P對稱的拋物線y',若這兩條拋物線有公共點,求n的取值范圍;若a>1,將此拋物線向上平移c個單位(c>1),當x=c時,y=1;當1<x<c時,y>1.試比較ac與1的大小,并說明理由.22.(10分)如圖,已知:正方形ABCD,點E在CB的延長線上,連接AE、DE,DE與邊AB交于點F,F(xiàn)G∥BE交AE于點G.(1)求證:GF=BF;(2)若EB=1,BC=4,求AG的長;(3)在BC邊上取點M,使得BM=BE,連接AM交DE于點O.求證:FO?ED=OD?EF.23.(12分)已知,在平面直角坐標系xOy中,拋物線L:y=x2-4x+3與x軸交于A,B兩點(點A在點B的左側),頂點為C.(1)求點C和點A的坐標.(2)定義“L雙拋圖形”:直線x=t將拋物線L分成兩部分,首先去掉其不含頂點的部分,然后作出拋物線剩余部分關于直線x=t的對稱圖形,得到的整個圖形稱為拋物線L關于直線x=t的“L雙拋圖形”(特別地,當直線x=t恰好是拋物線的對稱軸時,得到的“L雙拋圖形”不變),①當t=0時,拋物線L關于直找x=0的“L雙拋圖形”如圖所示,直線y=3與“L雙拋圖形”有______個交點;②若拋物線L關于直線x=t的“L雙拋圖形”與直線y=3恰好有兩個交點,結合圖象,直接寫出t的取值范圍:______;③當直線x=t經(jīng)過點A時,“L雙拋圖形”如圖所示,現(xiàn)將線段AC所在直線沿水平(x軸)方向左右平移,交“L雙拋圖形”于點P,交x軸于點Q,滿足PQ=AC時,求點P的坐標.24.(14分)問題提出(1)如圖①,在矩形ABCD中,AB=2AD,E為CD的中點,則∠AEB∠ACB(填“>”“<”“=”);問題探究(2)如圖②,在正方形ABCD中,P為CD邊上的一個動點,當點P位于何處時,∠APB最大?并說明理由;問題解決(3)如圖③,在一幢大樓AD上裝有一塊矩形廣告牌,其側面上、下邊沿相距6米(即AB=6米),下邊沿到地面的距離BD=11.6米.如果小剛的睛睛距離地面的高度EF為1.6米,他從遠處正對廣告牌走近時,在P處看廣告效果最好(視角最大),請你在圖③中找到點P的位置,并計算此時小剛與大樓AD之間的距離.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】

①通過條件可以得出△ABE≌△ADF,從而得出∠BAE=∠DAF,BE=DF,由正方形的性質(zhì)就可以得出EC=FC,就可以得出AC垂直平分EF,②設BC=a,CE=y,由勾股定理就可以得出EF與x、y的關系,表示出BE與EF,即可判斷BE+DF與EF關系不確定;③當∠DAF=15°時,可計算出∠EAF=60°,即可判斷△EAF為等邊三角形,④當∠EAF=60°時,設EC=x,BE=y,由勾股定理就可以得出x與y的關系,表示出BE與EF,利用三角形的面積公式分別表示出S△CEF和S△ABE,再通過比較大小就可以得出結論.【題目詳解】①四邊形ABCD是正方形,∴AB═AD,∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF∵BC=CD,∴BC-BE=CD-DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故①正確).②設BC=a,CE=y,∴BE+DF=2(a-y)EF=y,∴BE+DF與EF關系不確定,只有當y=(2?)a時成立,(故②錯誤).③當∠DAF=15°時,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF為等邊三角形.(故③正確).④當∠EAF=60°時,設EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2=(x)2∴x2=2y(x+y)∵S△CEF=x2,S△ABE=y(x+y),∴S△ABE=S△CEF.(故④正確).綜上所述,正確的有①③④,故選C.【題目點撥】本題考查了正方形的性質(zhì)的運用,全等三角形的判定及性質(zhì)的運用,勾股定理的運用,等邊三角形的性質(zhì)的運用,三角形的面積公式的運用,解答本題時運用勾股定理的性質(zhì)解題時關鍵.2、A【解題分析】分析:依據(jù)AD是BC邊上的高,∠ABC=60°,即可得到∠BAD=30°,依據(jù)∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根據(jù)△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.詳解:∵AD是BC邊上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故選A.點睛:本題考查了三角形內(nèi)角和定理:三角形內(nèi)角和為180°.解決問題的關鍵是三角形外角性質(zhì)以及角平分線的定義的運用.3、C【解題分析】分析:①通過解方程得到該方程的根,結合“倍根方程”的定義進行判斷;②設=2,得到?=2=2,得到當=1時,=2,當=-1時,=-2,于是得到結論;③根據(jù)“倍根方程”的定義即可得到結論;④若點(m,n)在反比例函數(shù)y=的圖象上,得到mn=4,然后解方程m+5x+n=0即可得到正確的結論;詳解:①由-2x-8=0,得:(x-4)(x+2)=0,解得=4,=-2,∵≠2,或≠2,∴方程-2x-8=0不是倍根方程;故①錯誤;②關于x的方程+ax+2=0是倍根方程,∴設=2,∴?=2=2,∴=±1,當=1時,=2,當=-1時,=-2,∴+=-a=±3,∴a=±3,故②正確;③關于x的方程a-6ax+c=0(a≠0)是倍根方程,∴=2,∵拋物線y=a-6ax+c的對稱軸是直線x=3,∴拋物線y=a-6ax+c與x軸的交點的坐標是(2,0)和(4,0),故③正確;④∵點(m,n)在反比例函數(shù)y=的圖象上,∴mn=4,解m+5x+n=0得=,=,∴=4,∴關于x的方程m+5x+n=0不是倍根方程;故選C.點睛:本題考查了反比例函數(shù)圖象上點的坐標特征,根與系數(shù)的關系,正確的理解倍根方程的定義是解題的關鍵.4、B【解題分析】

根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠C的度數(shù),進而利用平行線的性質(zhì)得出∠ABC的度數(shù),利用角平分線的定義和三角形內(nèi)角和解答即可.【題目詳解】∵四邊形ABCD內(nèi)接于⊙O,∠A=130°,

∴∠C=180°-130°=50°,

∵AD∥BC,

∴∠ABC=180°-∠A=50°,

∵BD平分∠ABC,

∴∠DBC=25°,

∴∠BDC=180°-25°-50°=105°,

故選:B.【題目點撥】本題考查了圓內(nèi)接四邊形的性質(zhì),關鍵是根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠C的度數(shù).5、A【解題分析】

首先根據(jù)各選項棋子的位置,進而結合軸對稱圖形和中心對稱圖形的性質(zhì)判斷得出即可.【題目詳解】解:A、當擺放黑(3,3),白(3,1)時,此時是軸對稱圖形,也是中心對稱圖形,故此選項正確;B、當擺放黑(3,1),白(3,3)時,此時是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;C、當擺放黑(1,5),白(5,5)時,此時不是軸對稱圖形也不是中心對稱圖形,故此選項錯誤;D、當擺放黑(3,2),白(3,3)時,此時是軸對稱圖形不是中心對稱圖形,故此選項錯誤.故選:A.【題目點撥】此題主要考查了坐標確定位置以及軸對稱圖形與中心對稱圖形的性質(zhì),利用已知確定各點位置是解題關鍵.6、D【解題分析】

根據(jù)數(shù)軸上點的位置,可得a,b,根據(jù)有理數(shù)的運算,可得答案.【題目詳解】a=﹣2,2<b<1.A.a+b<0,故A不符合題意;B.a<|﹣2|,故B不符合題意;C.b<1<π,故C不符合題意;D.<0,故D符合題意;故選D.【題目點撥】本題考查了實數(shù)與數(shù)軸,利用有理數(shù)的運算是解題關鍵.7、B【解題分析】

由整數(shù)指數(shù)冪和分式的運算的法則計算可得答案.【題目詳解】A項,根據(jù)單項式的減法法則可得:5ab-ab=4ab,故A項錯誤;B項,根據(jù)“同底數(shù)冪相除,底數(shù)不變,指數(shù)相減”可得:a6÷a2=a4,故B項正確;C項,根據(jù)分式的加法法則可得:,故C項錯誤;D項,根據(jù)“積的乘方等于乘方的積”可得:,故D項錯誤;故本題正確答案為B.【題目點撥】冪的運算法則:(1)同底數(shù)冪的乘法:(m、n都是正整數(shù))(2)冪的乘方:(m、n都是正整數(shù))(3)積的乘方:(n是正整數(shù))(4)同底數(shù)冪的除法:(a≠0,m、n都是正整數(shù),且m>n)(5)零次冪:(a≠0)(6)負整數(shù)次冪:(a≠0,p是正整數(shù)).8、D【解題分析】

如圖,連接AB,由圓周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故選D.9、C【解題分析】

分式分母不為0,所以,解得.故選:C.10、A【解題分析】∵△DEF是△AEF翻折而成,

∴△DEF≌△AEF,∠A=∠EDF,

∵△ABC是等腰直角三角形,

∴∠EDF=45°,由三角形外角性質(zhì)得∠CDF+45°=∠BED+45°,

∴∠BED=∠CDF,

設CD=1,CF=x,則CA=CB=2,

∴DF=FA=2-x,

∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,

解得x=,

∴sin∠BED=sin∠CDF=.

故選:A.二、填空題(共7小題,每小題3分,滿分21分)11、3【解題分析】

用南部氣溫減北部的氣溫,根據(jù)“減去一個數(shù)等于加上這個數(shù)的相反數(shù)”求出它們的差就是高出的溫度.【題目詳解】解:(﹣3)﹣(﹣6)=﹣3+6=3℃.答:當天南部地區(qū)比北部地區(qū)的平均氣溫高3℃,故答案為:3.【題目點撥】本題考查了有理數(shù)的減法運算法則,減法運算法則:減去一個數(shù)等于加上這個數(shù)的相反數(shù).12、4cm【解題分析】

根據(jù)三角形的高線的定義得到,根據(jù)直角三角形的性質(zhì)即可得到結論.【題目詳解】解:∵是的高線,∴,∵,,∴.故答案為:4cm.【題目點撥】本題考查了三角形的角平分線、中線、高線,含30°角的直角三角形,熟練掌握直角三角形的性質(zhì)是解題的關鍵.13、14【解題分析】

根據(jù)菱形的性質(zhì),先求另一條對角線的長度,再運用菱形的面積等于對角線乘積的一半求解.【題目詳解】解:如圖,在菱形ABCD中,BD=2.∵菱形的周長為10,BD=2,∴AB=5,BO=3,∴AC=3.∴面積故答案為14.【題目點撥】此題考查了菱形的性質(zhì)及面積求法,難度不大.14、2【解題分析】分析:因為BP=,AB的長不變,當PA最小時切線長PB最小,所以點P是過點A向直線l所作垂線的垂足,利用△APC≌△DOC求出AP的長即可求解.詳解:如圖,作AP⊥直線y=x+3,垂足為P,此時切線長PB最小,設直線與x軸,y軸分別交于D,C.∵A的坐標為(1,0),∴D(0,3),C(﹣4,0),∴OD=3,AC=5,∴DC==5,∴AC=DC,在△APC與△DOC中,∠APC=∠COD=90°,∠ACP=∠DCO,AC=DC,∴△APC≌△DOC,∴AP=OD=3,∴PB==2.故答案為2.點睛:本題考查了切線的性質(zhì),全等三角形的判定性質(zhì),勾股定理及垂線段最短,因為直角三角形中的三邊長滿足勾股定理,所以當其中的一邊的長不變時,即可根據(jù)另一邊的取值情況確定第三邊的最大值或最小值.15、3.【解題分析】試題解析:把(-1,0)代入得:2-3+k-2=0,解得:k=3.故答案為3.16、1【解題分析】解:根據(jù)題意可得x1+x2==5,x1x2==2,∴x1+x2﹣x1x2=5﹣2=1.故答案為:1.點睛:本題主要考查了根據(jù)與系數(shù)的關系,利用一元二次方程的兩個根x1、x2具有這樣的關系:x1+x2=,x1x2=是解題的關鍵.17、一【解題分析】

根據(jù)一元二次方程的定義和判別式的意義得到m≠0且△=(-2)2-4m×(-1)<0,所以m<-1,然后根據(jù)一次函數(shù)的性質(zhì)判斷一次函數(shù)y=mx+m的圖象所在的象限即可.【題目詳解】∵關于x的一元二次方程mx2-2x-1=0無實數(shù)根,∴m≠0且△=(-2)2-4m×(-1)<0,∴m<-1,∴一次函數(shù)y=mx+m的圖象經(jīng)過第二、三、四象限,不經(jīng)過第一象限.故答案為一.【題目點撥】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程無實數(shù)根.也考查了一次函數(shù)的性質(zhì).三、解答題(共7小題,滿分69分)18、(1)560;(2)54;(3)詳見解析;(4)獨立思考的學生約有840人.【解題分析】

(1)由“專注聽講”的學生人數(shù)除以占的百分比求出調(diào)查學生總數(shù)即可;(2)由“主動質(zhì)疑”占的百分比乘以360°即可得到結果;(3)求出“講解題目”的學生數(shù),補全統(tǒng)計圖即可;(4)求出“獨立思考”學生占的百分比,乘以2800即可得到結果.【題目詳解】(1)根據(jù)題意得:224÷40%=560(名),則在這次評價中,一個調(diào)查了560名學生;故答案為:560;(2)根據(jù)題意得:×360°=54°,則在扇形統(tǒng)計圖中,項目“主動質(zhì)疑”所在的扇形的圓心角的度數(shù)為54度;故答案為:54;(3)“講解題目”的人數(shù)為560-(84+168+224)=84,補全統(tǒng)計圖如下:(4)根據(jù)題意得:2800×(人),則“獨立思考”的學生約有840人.【題目點撥】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.19、(1)圖見解析;(2)126°;(3)1.【解題分析】

(1)利用被調(diào)查學生的人數(shù)=了解程度達到B等的學生數(shù)÷所占比例,即可得出被調(diào)查學生的人數(shù),由了解程度達到C等占到的比例可求出了解程度達到C等的學生數(shù),再利用了解程度達到A等的學生數(shù)=被調(diào)查學生的人數(shù)-了解程度達到B等的學生數(shù)-了解程度達到C等的學生數(shù)-了解程度達到D等的學生數(shù)可求出了解程度達到A等的學生數(shù),依此數(shù)據(jù)即可將條形統(tǒng)計圖補充完整;(2)根據(jù)A等對應的扇形圓心角的度數(shù)=了解程度達到A等的學生數(shù)÷被調(diào)查學生的人數(shù)×360°,即可求出結論;(3)利用該?,F(xiàn)有學生數(shù)×了解程度達到A等的學生所占比例,即可得出結論.【題目詳解】(1)48÷40%=120(人),120×15%=18(人),120-48-18-12=42(人).將條形統(tǒng)計圖補充完整,如圖所示.(2)42÷120×100%×360°=126°.答:扇形統(tǒng)計圖中的A等對應的扇形圓心角為126°.(3)1500×=1(人).答:該校學生對政策內(nèi)容了解程度達到A等的學生有1人.【題目點撥】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及用樣本估計總體,觀察條形統(tǒng)計圖及扇形統(tǒng)計圖,找出各數(shù)據(jù),再利用各數(shù)量間的關系列式計算是解題的關鍵.20、(1)L1表示汽車B到甲地的距離與行駛時間的關系;(2)汽車B的速度是1.5千米/分;(3)s1=﹣1.5t+330,s2=t;(4)2小時后,兩車相距30千米;(5)行駛132分鐘,A、B兩車相遇.【解題分析】試題分析:(1)直接根據(jù)函數(shù)圖象的走向和題意可知L1表示汽車B到甲地的距離與行駛時間的關系;

(2)由L1上60分鐘處點的坐標可知路程和時間,從而求得速度;

(3)先分別設出函數(shù),利用函數(shù)圖象上的已知點,使用待定系數(shù)法可求得函數(shù)解析式;

(4)結合(3)中函數(shù)圖象求得時s的值,做差即可求解;

(5)求出函數(shù)圖象的交點坐標即可求解.試題解析:(1)函數(shù)圖形可知汽車B是由乙地開往甲地,故L1表示汽車B到甲地的距離與行駛時間的關系;(2)(330﹣240)÷60=1.5(千米/分);(3)設L1為把點(0,330),(60,240)代入得所以設L2為把點(60,60)代入得所以(4)當時,330﹣150﹣120=60(千米);所以2小時后,兩車相距60千米;(5)當時,解得即行駛132分鐘,A、B兩車相遇.21、(1)①;②n≤1;(2)ac≤1,見解析.【解題分析】

(1)①△=1求解b=1,將點(3,1)代入平移后解析式,即可;②頂點為(1,)關于P(1,n)對稱點的坐標是(﹣1,2n﹣),關于點P中心對稱的新拋物線y'=(x+1)2+2n﹣=x2+x+2n,聯(lián)立方程組即可求n的范圍;(2)將點(c,1)代入y=ax2﹣bx+c得到ac﹣b+1=1,b=ac+1,當1<x<c時,y>1.≥c,b≥2ac,ac+1≥2ac,ac≥1;【題目詳解】解:(1)①ax2﹣bx=x,ax2﹣(b+1)x=1,△=(b+1)2=1,b=﹣1,平移后的拋物線y=a(x﹣1)2﹣b(x﹣1)過點(3,1),∴4a﹣2b=1,∴a=﹣,b=﹣1,原拋物線:y=﹣x2+x,②其頂點為(1,)關于P(1,n)對稱點的坐標是(﹣1,2n﹣),∴關于點P中心對稱的新拋物線y'=(x+1)2+2n﹣=x2+x+2n.由得:x2+2n=1有解,所以n≤1.(2)由題知:a>1,將此拋物線y=ax2﹣bx向上平移c個單位(c>1),其解析式為:y=ax2﹣bx+c過點(c,1),∴ac2﹣bc+c=1(c>1),∴ac﹣b+1=1,b=ac+1,且當x=1時,y=c,對稱軸:x=,拋物線開口向上,畫草圖如右所示.由題知,當1<x<c時,y>1.∴≥c,b≥2ac,∴ac+1≥2ac,ac≤1;【題目點撥】本題考查二次函數(shù)的圖象及性質(zhì);掌握二次函數(shù)圖象平移時改變位置,而a的值不變是解題的關鍵.22、(1)證明見解析;(2)AG=;(3)證明見解析.【解題分析】

(1)根據(jù)正方形的性質(zhì)得到AD∥BC,AB∥CD,AD=CD,根據(jù)相似三角形的性質(zhì)列出比例式,等量代換即可;(2)根據(jù)勾股定理求出AE,根據(jù)相似三角形的性質(zhì)計算即可;(3)延長GF交AM于H,根據(jù)平行線分線段成比例定理得到,由于BM=BE,得到GF=FH,由GF∥AD,得到,等量代換得到,即,于是得到結論.【題目詳解】解:(1)∵四邊形ABCD是正方形,∴AD∥BC,AB∥CD,AD=CD,∵GF∥BE,∴GF∥BC,∴GF∥AD,∴,∵AB∥CD,,∵AD=CD,∴GF=BF;(2)∵EB=1,BC=4,∴=4,AE=,∴=4,∴AG=;(3)延長GF交AM于H,∵GF∥BC,∴FH∥BC,∴,∴,∵BM=BE,∴GF=FH,∵GF∥AD,∴,,∴,∴,∴FO?ED=OD?EF.【題目點撥】本題主要考查平行線分線段成比例及正方形的性質(zhì),掌握平行線分線段中的線段對應成比例是解題的關鍵,注意利用比例相等也可以證明線段相等.23、(1)C(2,-1),A(1,0);(2)①3,②0<t<1,③(+2,1)或(-+2,1)或(-1,0)【解題分析】

(1)令y=0得:x2-1x+3=0,然后求得方程的解,從而可得到A、B的坐標,然后再求得拋物線的對稱軸為x=2,最后將x=2代入可求得點C的縱坐標;(2)①拋物線與y軸交點坐標為(0,3),然后做出直線y=3,然后找出交點個數(shù)即可;②將y=3代入拋物線的解析式求得對應的x的值,從而可得到直線y=3與“L雙拋圖形”恰好有3個交點時t的取值,然后結合函數(shù)圖象可得到“L雙拋圖形”與直線y=3恰好有兩個交點時t的取值范圍;③首先證明四邊形ACQP為平行四邊形,由可得到點P的縱坐標為1,然后由函數(shù)解析式可求得點P的橫坐標.【題目詳解】(1)令y=0得:x2-1x+3=0,解得:x=1或x=3,∴A(1,0),B(3,0),∴拋物線的對稱軸為x=2,將x=2代入拋物線的解析式得:y=-1,∴C(2,-1);(2)①將x=0代入拋物線的解析式得:y=3,∴拋物線與y軸交點坐標為(0,3),如圖所示:作直線y=3,由圖象可知:直線y=3與“L雙拋圖形”有3個交點,故答案為3;②將y=3代入得:x2-1x+3=3,解得:x=0或x=1,由函數(shù)圖象可知:當0<t<1時,拋物線L關于直線x=t的“L雙拋圖形”與直線y=3恰好有兩個交點,故答案為0<t<1.③如圖2所示:∵PQ∥AC且PQ=AC,∴四邊形ACQP為平行四邊形,又∵點C的縱坐標為-1,∴點P的縱坐標為1,將y=1代入拋物線的解析式得:x2-1x+3=1,解得:x=+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論