版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年河南省通許縣麗星高級中學高一數(shù)學第一學期期末教學質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.函數(shù)和都是減函數(shù)的區(qū)間是A. B.C. D.2.三個數(shù)的大小關(guān)系為()A. B.C. D.3.若角的終邊經(jīng)過點,則A. B.C. D.4.已知集合,區(qū)間,則=()A. B.C. D.5.若,則的值為A. B.C. D.6.已知集合,則(
)A. B.C. D.7.若函數(shù)是定義在上的偶函數(shù),在上單調(diào)遞減,且,則使得的的取值范圍是()A. B.C. D.8.若方程x2+ax+a=0的一根小于﹣2,另一根大于﹣2,則實數(shù)a的取值范圍是()A.(4,+∞) B.(0,4)C.(﹣∞,0) D.(﹣∞,0)∪(4,+∞)9.如圖,在等腰梯形中,,分別是底邊的中點,把四邊形沿直線折起使得平面平面.若動點平面,設(shè)與平面所成的角分別為(均不為0).若,則動點的軌跡圍成的圖形的面積為A. B.C. D.10.已知a=20.1,b=log43.6,c=log30.3,則()A.a>b>c B.b>a>cC.a>c>b D.c>a>b二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11.函數(shù)的零點為______12.已知扇形的周長是2022,則扇形面積最大時,扇形的圓心角的弧度數(shù)是___________.13.已知函數(shù),現(xiàn)有如下幾個命題:①該函數(shù)為偶函數(shù);
②是該函數(shù)的一個單調(diào)遞增區(qū)間;③該函數(shù)的最小正周期為;④該函數(shù)的圖像關(guān)于點對稱;⑤該函數(shù)的值域為.其中正確命題的編號為______14.如果,且,則的化簡為_____.15.請寫出一個最小正周期為,且在上單調(diào)遞增的函數(shù)__________三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16.已知函數(shù),,且求實數(shù)m的值;作出函數(shù)的圖象并直接寫出單調(diào)減區(qū)間若不等式在時都成立,求t的取值范圍17.已知函數(shù)(1)若,求不等式解集;(2)若,求在區(qū)間上的最大值和最小值,并分別寫出取得最大值和最小值時的x值;(3)若對任意,不等式恒成立,求實數(shù)a的取值范圍18.已知方程(1)若此方程表示圓,求的取值范圍;(2)若此方程表示圓,且點在圓上,求過點的圓的切線方程19.如圖,已知四棱錐中,底面為平行四邊形,點,,分別是,,的中點(1)求證:平面;(2)求證:平面平面20.已知且,求使不等式恒成立的實數(shù)m的取值范圍21.已知函數(shù)的圖象在軸右側(cè)的第一個最高點和第一個最低點的坐標分別為和.(1)求函數(shù)的解析式;(2)求的值
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、A【解析】y=sinx是減函數(shù)的區(qū)間是,y=cosx是減函數(shù)的區(qū)間是[2k,2k+],,∴同時成立的區(qū)間為故選A.2、A【解析】利用指數(shù)對數(shù)函數(shù)的性質(zhì)可以判定,從而做出判定.【詳解】因為指數(shù)函數(shù)是單調(diào)增函數(shù),是單調(diào)減函數(shù),對數(shù)函數(shù)是單調(diào)減函數(shù),所以,所以,故選:A3、C【解析】根據(jù)三角函數(shù)定義可得,判斷符號即可.【詳解】解:由三角函數(shù)的定義可知,符號不確定,,故選:C【點睛】任意角的三角函數(shù)值:(1)角與單位圓交點,則;(2)角終邊任意一點,則.4、D【解析】利用交集的運算律求【詳解】∵,,∴.故選:D.5、B【解析】根據(jù)誘導公式將原式化簡為,分子分母同除以,即可求出結(jié)果.【詳解】因為,又,所以原式.故選B【點睛】本題主要考查誘導公式和同角三角函數(shù)基本關(guān)系,熟記公式即可,屬于基礎(chǔ)題型.6、B【解析】直接利用兩個集合的交集的定義求得M∩N【詳解】集合M={x|x+1≥0}={x|x≥-1},N={x|x2<4}={x|-2<x<2},則M∩N={x|-1≤x<2},故選B【點睛】本題主要考查兩個集合的交集的定義和求法,屬于基礎(chǔ)題7、C【解析】先求解出時的解集,再根據(jù)偶函數(shù)圖像關(guān)于軸對稱,寫出時的解集,即得整個函數(shù)的解集.【詳解】由于函數(shù)是偶函數(shù),所以,由題意,當時,,則;又因為函數(shù)是偶函數(shù),圖象關(guān)于軸對稱,所以當時,,則,所以的解集為.故選:C.8、A【解析】令,利用函數(shù)與方程的關(guān)系,結(jié)合二次函數(shù)的性質(zhì),列出不等式求解即可.【詳解】令,∵方程的一根小于,另一根大于,∴,即,解得,即實數(shù)的取值范圍是,故選A.【點睛】本題考查一元二次函數(shù)的零點與方程根的關(guān)系,數(shù)形結(jié)合思想在一元二次函數(shù)中的應(yīng)用,是基本知識的考查9、D【解析】由題意,PE=BEcotθ1,PF=CFcotθ2,∵BE=CF,θ1=θ2,∴PE=PF以EF所在直線為x軸,EF的垂直平分線為y軸建立坐標系,設(shè)E(﹣,0),F(xiàn)(,0),P(x,y),則(x+)2+y2=[(x﹣)2+y2],∴3x2+3y2+5ax+a2=0,即(x+a)2+y2=a2,軌跡為圓,面積為故答案選:D點睛:這個題考查的是立體幾何中點的軌跡問題,在求動點軌跡問題中常用的方法有:建立坐標系,將立體問題平面化,用方程的形式體現(xiàn)軌跡;或者根據(jù)幾何意義得到軌跡,但是注意得到軌跡后,一些特殊點是否需要去掉10、A【解析】直接判斷范圍,比較大小即可.【詳解】,,,故a>b>c.故選:A.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11、1和【解析】由,解得的值,即可得結(jié)果【詳解】因為,若,則,即,整理得:可解得:或,即函數(shù)的零點為1和,故答案為1和.【點睛】本題主要考查函數(shù)零點的計算,意在考查對基礎(chǔ)知識的理解與應(yīng)用,屬于基礎(chǔ)題12、2【解析】設(shè)扇形的弧長為,半徑為,則,將面積最值轉(zhuǎn)化為一元二次函數(shù)的最值;【詳解】設(shè)扇形的弧長為,半徑為,則,,當時,扇形面積最大時,此時,故答案為:13、②③【解析】由于為非奇非偶函數(shù),①錯誤.,此時,其在上為增函數(shù),②正確.由于,所以函數(shù)最小正周期為,③正確.由于,故④正確.當時,,故⑤錯誤.綜上所述,正確的編號為②③.14、【解析】由,且,得到是第二象限角,由此能化簡【詳解】解:∵,且,∴是第二象限角,∴故答案為:15、或(不唯一).【解析】根據(jù)函數(shù)最小正周期為,可構(gòu)造正弦型、余弦型或者正切型函數(shù),再結(jié)合在上單調(diào)遞增,構(gòu)造即可.【詳解】解:根據(jù)函數(shù)最小正周期為,可構(gòu)造正弦型、余弦型或者正切型函數(shù),再結(jié)合在上單調(diào)遞增,構(gòu)造即可,如或滿足題意故答案為:或(不唯一).三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16、(1)(2)詳見解析,單調(diào)減區(qū)間為:;(3)【解析】由,代入可得m值;分類討論,去絕對值符號后根據(jù)二次函數(shù)表達式,畫出圖象由題意得在時都成立,可得在時都成立,解得即可【詳解】解:,由得即解得:;由得,即則函數(shù)的圖象如圖所示;單調(diào)減區(qū)間為:;由題意得在時都成立,即在時都成立,即在時都成立,在時,,【點睛】本題考查的知識點是函數(shù)解析式的求法,零點分段法,分段函數(shù),由圖象分析函數(shù)的值域,其中利用零點分段法,求函數(shù)的解析式是解答的關(guān)鍵17、(1)(2)當時函數(shù)取得最小值,,當時函數(shù)取得最大值;(3)【解析】(1)根據(jù),代入求出參數(shù)的值,再解一元二次不等式即可;(2)首先由求出的值,再根據(jù)二次函數(shù)的性質(zhì)求出函數(shù)在給定區(qū)間上的最值;(3)參變分離可得對任意恒成立,再利用基本不等式求出的最小值,即可得解;【小問1詳解】解:因為且,所以,解得,所以,解,即,即,解得,即原不等式的解集為;【小問2詳解】解:因為,所以,所以,所以,因為,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以當時函數(shù)取得最小值,當時函數(shù)取得最大值;【小問3詳解】解:因為對任意,不等式恒成立,即對任意,不等式恒成立,即對任意恒成立,因為當且僅當,即時取等號;所以,即,所以18、(1)或;(2)或【解析】(1)若此方程表示圓,則,即可得解;(2)代入點得,從而得圓心半徑,由已知得所求圓的切線斜率存在,設(shè)為,切線方程為:,由圓心到直線距離等于半徑列方程求解即可.試題解析:(1)若此方程表示圓,則或(2)由點在圓,代入圓的方程得,此時圓心,半徑,由已知得所求圓的切線斜率存在,設(shè)為,切線方程為:或,∴切線方程為:或.19、(1)見解析(2)見解析【解析】(1)根據(jù)三角形的中位線,可得,由此證得平面.(2)利用中位線證明,,故,由(1)得,證明分別平行于平面,由此可得平面平面.【詳解】(1)由題意:四棱錐的底面為平行四邊形,點,,分別是,,的中點,∴是的中點,∴,又∵平面,平面,∴平面(2)由(1),知,∵,分別是,的中點,∴,又∵平面,平面,平面同理平面,平面,平面,,∴平面平面【點睛】本題主要考查線面平行的判定定理,考查面面平行的判定定理.要證明線面平行,需在平面內(nèi)找到一條直線和要證的直線平行,一般尋找的方法有三種:一是利用三角形的中位線,二是利用平行四邊形,三是利用面面平行.要證面面平行,則需證兩條相交直線和另一個平面平行.20、.【解析】要使不等式恒成立,只需求的最小值,將展開利用基本不等式可求解.【詳解】由,則當且僅當即時取到最小值16若恒成立,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025河北建筑安全員-A證考試題庫附答案
- DB32T-食品安全督導工作規(guī)范編制說明
- 三個共點力的動態(tài)平衡
- 單位人力資源管理制度精彩大合集十篇
- 公用事業(yè)行業(yè)十二月行業(yè)動態(tài)報告:水電發(fā)電量降幅收窄風光核裝機目標明確
- 江蘇省連云港市海州區(qū)2024-2025學年八年級上學期期末考試生物學試卷(含答案)
- 單位管理制度展示合集【職員管理篇】十篇
- 年產(chǎn)5000臺液晶電視項目可行性研究報告建議書
- 單位管理制度展示選集人力資源管理篇
- 單位管理制度品讀選集人員管理篇十篇
- 機動車維修竣工出廠合格證
- 陜西延長石油精原煤化工有限公司 60 萬噸 - 年蘭炭綜合利用項目 ( 一期 30 萬噸 - 年蘭炭、1 萬噸 - 年金屬鎂生產(chǎn)線)竣工環(huán)境保護驗收調(diào)查報告
- 大病救助申請書
- 法學概論-課件
- 廈門物業(yè)管理若干規(guī)定
- 外科護理學試題+答案
- 齊魯醫(yī)學屈光和屈光不正匯編
- 貨架的技術(shù)說明(一)
- 【高等數(shù)學練習題】皖西學院專升本自考真題匯總(附答案解析)
- 高處作業(yè)安全技術(shù)交底-
- 工抵房協(xié)議模板
評論
0/150
提交評論