版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年河南省許昌市長葛一中高一上數(shù)學期末調研模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12小題,共60分)1.若函數(shù)是冪函數(shù),且其圖象過點,則函數(shù)的單調增區(qū)間為A. B.C. D.2.函數(shù)與的圖象交于兩點,為坐標原點,則的面積為()A. B.C. D.3.已知函數(shù),若存在不相等的實數(shù)a,b,c,d滿足,則的取值范圍為()A B.C. D.4.已知向量,且,則A. B.C.2 D.-25.已知正方體外接球的表面積為,正方體外接球的表面積為,若這兩個正方體的所有棱長之和為,則的最小值為()A. B.C. D.6.我們知道,函數(shù)的圖象關于坐標原點成中心對稱圖形的充要條件是函數(shù)為奇函數(shù),有同學發(fā)現(xiàn)可以將其推廣為:函數(shù)的圖象關于點成中心對稱圖形的充要條件是函數(shù)為奇函數(shù),則函數(shù)圖象的對稱中心為()A. B.C. D.7.對于函數(shù),若存在,使,則稱點是曲線“優(yōu)美點”.已知,則曲線的“優(yōu)美點”個數(shù)為A.1 B.2C.4 D.68.設集合U={1,2,3,4},M={1,2,3},N={2,3,4},則?A.{1,2}C.{2,4}9.已知正弦函數(shù)f(x)的圖像過點,則的值為()A.2 B.C. D.110.已知冪函數(shù)y=f(x)經過點(3,),則f(x)()A.是偶函數(shù),且在(0,+∞)上是增函數(shù)B.是偶函數(shù),且在(0,+∞)上是減函數(shù)C.是奇函數(shù),且在(0,+∞)上是減函數(shù)D.是非奇非偶函數(shù),且在(0,+∞)上是增函數(shù)11.函數(shù)的零點所在區(qū)間為A. B.C. D.12.已知某幾何體的三視圖如圖所示,則該幾何體的體積為A. B.C. D.二、填空題(本大題共4小題,共20分)13.空間直角坐標系中,點A(﹣1,0,1)到原點O的距離為_____14.的值為______.15.若正數(shù)a,b滿足,則的最大值為______.16.已知函數(shù)是R上的減函數(shù),則實數(shù)a的取值范圍為_______三、解答題(本大題共6小題,共70分)17.已知函數(shù).(1)判斷并證明的奇偶性;(2)求函數(shù)在區(qū)間上的最小值和最大值.18.已知,,求下列各式的值:(1)(2)19.“活水圍網(wǎng)”養(yǎng)魚技術具有養(yǎng)殖密度高、經濟效益好的特點.研究表明:“活水圍網(wǎng)”養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當時(尾/立方米)時,的值為2(千克/年);當時,是的一次函數(shù);當(尾/立方米)時,因缺氧等原因,的值為0(千克/年).(1)當時,求函數(shù)的表達式;(2)當為多大時,魚的年生長量(單位:千克/立方米)可以達到最大,并求出最大值.20.如圖,甲、乙是邊長為4a的兩塊正方形鋼板,現(xiàn)要將甲裁剪焊接成一個正四棱柱,將乙裁剪焊接成一個正四棱錐,使它們的全面積都等于一個正方形的面積(不計焊接縫的面積)(1)將你的裁剪方法用虛線標示在圖中,并作簡要說明;(2)試比較你所制作的正四棱柱與正四棱錐體積的大小,并證明你的結論21.某運營商為滿足用戶手機上網(wǎng)的需求,推出甲、乙兩種流量包月套餐,兩種套餐應付的費用(單位:元)和使用的上網(wǎng)流量(單位:GB)之間的關系如圖所示,其中AB,DE都與橫軸平行,BC與EF相互平行(1)分別求套餐甲、乙的費用(元)與上網(wǎng)流量x(GB)的函數(shù)關系式f(x)和g(x);(2)根據(jù)題中信息,用戶怎樣選擇流量包月套餐,能使自己應付的費用更少?22.△ABC的頂點坐標分別為A(1,3),B(5,7),C(10,12),求BC邊上的高所在的直線的方程
參考答案一、選擇題(本大題共12小題,共60分)1、B【解析】分別求出m,a的值,求出函數(shù)的單調區(qū)間即可【詳解】解:由題意得:,解得:,故,將代入函數(shù)的解析式得:,解得:,故,令,解得:,故在遞增,故選B【點睛】本題考查了冪函數(shù)的定義以及對數(shù)函數(shù)的性質,是一道基礎題2、A【解析】令,解方程可求得,由此可求得兩點坐標,得到關于點對稱,由可求得結果.【詳解】令,,解得:或(舍),,或,則或,不妨令,,則關于點對稱,.故選:A.3、C【解析】將問題轉化為與圖象的四個交點橫坐標之和的范圍,應用數(shù)形結合思想,結合對數(shù)函數(shù)的性質求目標式的范圍.【詳解】由題設,將問題轉化為與的圖象有四個交點,,則在上遞減且值域為;在上遞增且值域為;在上遞減且值域為,在上遞增且值域為;的圖象如下:所以時,與的圖象有四個交點,不妨假設,由圖及函數(shù)性質知:,易知:,,所以.故選:C4、A【解析】由于兩個向量垂直,故有.故選:A5、B【解析】設正方體的棱長為,正方體的棱長為,然后表示出兩個正方體外接球的表面積,求出化簡變形可得答案【詳解】解:設正方體的棱長為,正方體的棱長為因為,所以,則因為,所以,因為,所以,故當時,取得最小值,且最小值為故選:B6、A【解析】根據(jù)題意并結合奇函數(shù)的性質即可求解.【詳解】由題意得,設函數(shù)圖象的對稱中心為,則函數(shù)為奇函數(shù),即,則,解得,故函數(shù)圖象的對稱中心為.故選:.7、C【解析】曲線的“優(yōu)美點”個數(shù),就是的函數(shù)關于原點對稱的函數(shù)圖象,與的圖象的交點個數(shù),求出的函數(shù)關于原點對稱的函數(shù)解析式,與聯(lián)立,解方程可得交點個數(shù)【詳解】曲線的“優(yōu)美點”個數(shù),就是的函數(shù)關于原點對稱的函數(shù)圖象,與的圖象的交點個數(shù),由可得,關于原點對稱的函數(shù),,聯(lián)立和,解得或,則存在點和為“優(yōu)美點”,曲線的“優(yōu)美點”個數(shù)為4,故選C【點睛】本題考查新定義的理解和運用,考查轉化思想和方程思想,屬于難題.遇到新定義問題,應耐心讀題,分析新定義的特點,弄清新定義的性質,按新定義的要求,“照章辦事”,逐條分析、驗證、運算,使問題得以解決.8、D【解析】∵M∩N={2,3},∴9、C【解析】由題意結合誘導公式有:.本題選擇C選項.10、D【解析】利用冪函數(shù)的定義求得指數(shù)的值,得到冪函數(shù)的解析式,進而結合冪函數(shù)的圖象判定單調性和奇偶性【詳解】設冪函數(shù)的解析式為,將點的坐標代入解析式得,解得,∴,函數(shù)的定義域為,是非奇非偶函數(shù),且在上是增函數(shù),故選:D.11、C【解析】要判斷函數(shù)的零點位置,我們可以根據(jù)零點存在定理,依次判斷區(qū)間的兩個端點對應的函數(shù)值,然后根據(jù)連續(xù)函數(shù)在區(qū)間上零點,則與異號進行判斷【詳解】,,故函數(shù)的零點必落在區(qū)間故選C【點睛】本題考查的知識點是函數(shù)的零點,解答的關鍵是零點存在定理:即連續(xù)函數(shù)在區(qū)間上與異號,則函數(shù)在區(qū)間上有零點12、D【解析】解:該幾何體是一個底面半徑為1、高為4的圓柱被一個平面分割成兩部分中的一個部分,故其體積為.本題選擇D選項.二、填空題(本大題共4小題,共20分)13、【解析】由空間兩點的距離公式計算可得所求值.【詳解】點到原點的距離為,故答案為:.【點睛】本題考查空間兩點的距離公式的運用,考查運算能力,是一道基礎題.14、11【解析】進行對數(shù)和分數(shù)指數(shù)冪的運算即可【詳解】原式故答案為:1115、##0.25【解析】根據(jù)等式關系進行轉化,構造函數(shù),判斷函數(shù)的單調性,利用轉化法轉化為一元二次函數(shù)進行求解即可【詳解】由得,設,則在上為增函數(shù),則,等價為(a),則,則,,當時,有最大值,故答案為:16、【解析】由已知結合分段函數(shù)的性質及一次函數(shù)的性質,列出關于a的不等式,解不等式組即可得解.【詳解】因為函數(shù)是R上的減函數(shù)所以需滿足,解得,即所以實數(shù)a的取值范圍為故答案為:三、解答題(本大題共6小題,共70分)17、(1)奇函數(shù),證明見解析;(2)最小值為,最大值為.【解析】(1)利用函數(shù)奇偶性的定義證明即可;(2)設,可知函數(shù)為增函數(shù),由,可得出,且有,將問題轉化為二次函數(shù)在上的最值問題,利用二次函數(shù)的基本性質求解即可.【詳解】(1)函數(shù)定義域為,關于原點對稱,,因此,函數(shù)為奇函數(shù);(2)設,由于函數(shù)為增函數(shù),函數(shù)為減函數(shù),所以,函數(shù)為增函數(shù),當時,則,且,則,令,.所以,,.【點睛】本題考查函數(shù)奇偶性的證明,同時也考查了指數(shù)型函數(shù)在區(qū)間上最值的求解,利用換元法轉化為二次函數(shù)的最值問題是解題的關鍵,考查化歸與轉化思想的應用,屬于中等題.18、(1).(2)【解析】(1)利用二倍角公式和誘導公式直接求解;(2)判斷出,根據(jù),求出的值.【小問1詳解】因為,所以.【小問2詳解】.因為,所以,所以,所以,所以,所以19、(1)(2),魚的年生長量可以達到最大值12.5【解析】(1)根據(jù)題意得建立分段函數(shù)模型求解即可;(2)根據(jù)題意,結合(1)建立一元二次函數(shù)模型求解即可.【小問1詳解】解:(1)依題意,當時,當時,是的一次函數(shù),假設且,,代入得:,解得.所以【小問2詳解】解:當時,,當時,所以當時,取得最大值因為所以時,魚的年生長量可以達到最大值12.5.20、(1)見解析(2)正四棱柱的體積比正四棱錐的體積大【解析】1該四棱柱的底面為正方體,側棱垂直底面,可知其由兩個一樣的正方形和四個完全相同的長方形組成,對圖形進行切割,畫出圖形即可,畫法不唯一;2正四棱柱的底面邊長為2a,高為a,正四棱錐的底面邊長為2a,高為h=(3a)解析:(1)將正方形甲按圖中虛線剪開,以兩個正方形為底面,四個長方形為側面,焊接成一個底面邊長為2a,高為a的正四棱柱將正方形乙按圖中虛線剪開,以兩個長方形焊接成邊長為2a的正方形為底面,三個等腰三角形為側面,兩個直角三角形合拼成為一側面,焊接成一個底面板長為2a,斜高為3a的正四棱錐(2)∵正四棱柱的底面邊長為2a,高為a,∴其體積V1又∵正四棱錐的底面邊長為2a,高為h=(3a)∴其體積V∵42即4>823,4故所制作的正四棱柱的體積比正四棱錐的體積大(說明:裁剪方式不唯一,計算的體積也不一定相等)點睛:本題考查了四棱錐和四棱柱的知識,需要掌握二者的特征以及其體積的求法,對于圖形進行分割,畫出圖形即可,注意畫法不唯一,結合體積公式求得體積,然后比較大小即完成解答21、(1)f(x)=30,?(2)答案見解析【解析】(1)利用函數(shù)的圖像結合分段函數(shù)的性質求出解析式;(2)由f(x)=g(x),得x=30,結合圖像選擇合適的套餐.【小問1詳解】對于套餐甲:當0≤x≤20時,f(x)=30,當x>20時,設f(x)=kx+b,可知函數(shù)圖象經過點(20,30),所以20k+b=3050k+b=120,解得k=3b=-30故f(x)=對于套餐乙:當0≤x≤50時,g(x)=60,當x>50時,根據(jù)題意,可設g(x)=3x+d,將(50,60)代
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 客戶答謝會致辭(15篇)
- 感恩父母演講稿(19篇)
- 堅持新發(fā)展說課
- 當幸福來敲門觀后感集合15篇
- 初級會計實務-初級會計《初級會計實務》模擬試卷93
- 智研咨詢發(fā)布-2024年中國智能物聯(lián)網(wǎng)(AIOT)行業(yè)市場競爭格局、行業(yè)政策及需求規(guī)模預測報告
- 2025年有機肥行業(yè)發(fā)展趨勢分析報告
- 二零二五年度駕駛員勞務派遣合同協(xié)議書3篇
- 應急預案的知識普及
- 應急預案與網(wǎng)絡安全事件
- 2024年廣東省公務員錄用考試《行測》試題及答案解析
- 五年級口算題卡每天100題帶答案
- 《民航服務溝通技巧》教案第11課孕婦旅客服務溝通
- 新東方四級詞匯-正序版
- 借名購車位協(xié)議書借名購車位協(xié)議書模板(五篇)
- 面向機器人柔順操作的力位精準控制方法研究共3篇
- 《地下工程測試技術》課程教學大綱
- 同步輪尺寸參數(shù)表詳表參考范本
- 湘少英語五年級上冊單詞表
- 最優(yōu)化及最優(yōu)化方法講稿課件
- 人工智能技術介紹完整版人工智能概述、圍棋課件
評論
0/150
提交評論