版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆吉林省長春市九臺市師范中高一上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,共60分)1.將函數(shù)fx的圖象向右平移φφ>0個單位長度,得到函數(shù)gx=sinx+π6的圖象.A.π6 B.C.2π3 D.2.下列函數(shù)中最小值為6的是()A. B.C D.3.函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的部分圖象如圖所示,則函數(shù)f(x)的解析式為()A. B.C. D.4.對于用斜二測畫法畫水平放置的圖形的直觀圖來說,下列描述不正確的是A.三角形的直觀圖仍然是一個三角形 B.的角的直觀圖會變?yōu)榈慕荂.與軸平行的線段長度變?yōu)樵瓉淼囊话?D.原來平行的線段仍然平行5.設,滿足約束條件,則的最小值與最大值分別為()A., B.2,C.4,34 D.2,346.已知函數(shù),且在上的最大值為,若函數(shù)有四個不同的零點,則實數(shù)a的取值范圍為()A. B.C. D.7.在中,,,若點滿足,則()A. B.C. D.8.關(guān)于不同的直線與不同的平面,有下列四個命題:①,,且,則②,,且,則③,,且,則④,,且,則其中正確命題的序號是A.①② B.②③C.①③ D.③④9.下列各題中,p是q的充要條件的是()A.p:,q:B.p:,q:C.p:四邊形是正方形,q:四邊形的對角線互相垂直且平分D.p:兩個三角形相似,q:兩個三角形三邊成比例10.在四棱錐中,平面,中,,,則三棱錐的外接球的表面積為A. B.C. D.11.若集合,則()A. B.C. D.12.在中,角、、的對邊分別為、、,已知,,,則A. B.C. D.二、填空題(本大題共4小題,共20分)13.函數(shù)的定義域是______________14.某品牌筆記本電腦的成本不斷降低,若每隔4年價格就降低,則現(xiàn)在價格為8100元的筆記本電腦,12年后的價格將降為__________元15.已知,,則________.(用m,n表示)16.某校高中三個年級共有學生2000人,其中高一年級有學生750人,高二年級有學生650人.為了了解學生參加整本書閱讀活動的情況,現(xiàn)采用分層抽樣的方法從中抽取容量為200的樣本進行調(diào)查,那么在高三年級的學生中應抽取的人數(shù)為___________.三、解答題(本大題共6小題,共70分)17.近年來,隨著我市經(jīng)濟的快速發(fā)展,政府對民生越來越關(guān)注市區(qū)現(xiàn)有一塊近似正三角形的土地(如圖所示),其邊長為2百米,為了滿足市民的休閑需求,市政府擬在三個頂點處分別修建扇形廣場,即扇形和,其中與、分別相切于點,且與無重疊,剩余部分(陰影部分)種植草坪.設長為(單位:百米),草坪面積為(單位:萬平方米).(1)試用分別表示扇形和的面積,并寫出的取值范圍;(2)當為何值時,草坪面積最大?并求出最大面積.18.某形場地,,米(、足夠長).現(xiàn)修一條水泥路在上,在上),在四邊形中種植三種花卉,為了美觀起見,決定在上取一點,使且.現(xiàn)將鋪成鵝卵石路,設鵝卵石路總長為米.(1)設,將l表示成的函數(shù)關(guān)系式;(2)求l的最小值.19.已知函數(shù).(1)當時,求函數(shù)在區(qū)間上的值域;(2)求函數(shù)在區(qū)間上的最大值.20.已知.(1)求函數(shù)的最小正周期及單調(diào)增區(qū)間;(2)若,,求的值.21.年新冠肺炎仍在世界好多國家肆虐,并且出現(xiàn)了傳染性更強的“德爾塔”變異毒株、拉姆達”變異毒株,盡管我國抗疫取得了很大的成績,疫情也得到了很好的遏制,但由于整個國際環(huán)境的影響,時而也會出現(xiàn)一些散發(fā)病例,故而抗疫形勢依然艱巨,日常防護依然不能有絲毫放松.在日常防護中,口罩是必不可少的防護用品.已知某口罩的固定成本為萬元,每生產(chǎn)萬箱,需另投入成本萬元,為年產(chǎn)量單位:萬箱;已知通過市場分析,如若每萬箱售價萬元時,該廠年內(nèi)生產(chǎn)的商品能全部售完.利潤銷售收入總成本(1)求年利潤與萬元關(guān)于年產(chǎn)量萬箱的函數(shù)關(guān)系式;22.已知函數(shù)f(x)=(a,b為常數(shù),且a≠0)滿足f(2)=1,方程f(x)=x有唯一解,(1)求函數(shù)f(x)的解析式;(2)若,求函數(shù)的最大值.
參考答案一、選擇題(本大題共12小題,共60分)1、C【解析】根據(jù)正弦型函數(shù)圖象變換的性質(zhì),結(jié)合零點的定義和正弦型函數(shù)的性質(zhì)進行求解即可.【詳解】因為函數(shù)fx的圖象向右平移φφ>0個單位長度,得到函數(shù)gx=sinx+π6的圖象,所以函數(shù)因為x=0是函數(shù)Fx所以F0=f0所以sinφ+π6=1解得:φ=2kπ(k∈Z),或φ=2kπ+2π3(k∈Z)當φ=2kπ(k∈Z)時,因為φ>0,所以φ的最小值是2π,當φ=2kπ+2π3(k∈Z)時,因為φ>0,所以φ綜上所述φ的最小值是2π3故選:C2、B【解析】利用基本不等式逐項分析即得.【詳解】對于A,當時,,故A錯誤;對于B,因為,所以,當且僅當,即時取等號,故B正確;對于C,因為,所以,當且僅當,即,等號不能成立,故C錯誤;對于D,當時,,故D錯誤.故選:B.3、A【解析】由圖觀察出和后代入最高點,利用可得,進而得到解析式【詳解】解:由圖可知:,,,,代入點,得,,,,,,故選.【點睛】本題考查了由的部分圖象確定其表達式,屬基礎題.4、B【解析】根據(jù)斜二測畫法,三角形的直觀圖仍然是一個三角形,故正確;的角的直觀圖不一定的角,例如也可以為,所以不正確;由斜二測畫法可知,與軸平行的線段長度變?yōu)樵瓉淼囊话?故正確;根據(jù)斜二測畫法的作法可得原來平行的線段仍然平行,故正確,故選B.5、D【解析】畫出約束條件表示的可行域,通過表達式的幾何意義,判斷最大值與最小值時的位置求出最值即可【詳解】解:由,滿足約束條件表示的可行域如圖,由,解得的幾何意義是點到坐標原點的距離的平方,所以的最大值為,的最小值為:原點到直線的距離故選D【點睛】本題考查簡單的線性規(guī)劃的應用,表達式的幾何意義是解題的關(guān)鍵,考查計算能力,屬于??碱}型.6、B【解析】由在上最大值為,討論可求出,從而,若有4個零點,則函數(shù)與有4個交點,畫出圖象,結(jié)合圖象求解即可【詳解】若,則函數(shù)在上單調(diào)遞增,所以的最小值為,不合題意,則,要使函數(shù)在上的最大值為如果,即,則,解得,不合題意;若,即,則解得即,則如圖所示,若有4個零點,則函數(shù)與有4個交點,只有函數(shù)的圖象開口向上,即當與)有一個交點時,方程有一個根,得,此時函數(shù)有二個不同的零點,要使函數(shù)有四個不同的零點,與有兩個交點,則拋物線的圖象開口要比的圖象開口大,可得,所以,即實數(shù)a的取值范圍為故選:B【點睛】關(guān)鍵點點睛:此題考查函數(shù)與方程的綜合應用,考查二次函數(shù)的性質(zhì)的應用,考查數(shù)形結(jié)合的思想,解題的關(guān)鍵是由已知條件求出的值,然后將問題轉(zhuǎn)化為函數(shù)與有4個交點,畫出函數(shù)圖象,結(jié)合圖象求解即可,屬于較難題7、C【解析】由題可得,進一步化簡可得.【詳解】,,.故選:C.8、C【解析】根據(jù)線線垂直,線線平行的判定,結(jié)合線面位置關(guān)系,即可容易求得判斷.【詳解】對于①,若,,且,顯然一定有,故正確;對于②,因為,,且,則的位置關(guān)系可能平行,也可能相交,也可能是異面直線,故錯;對于③,若,//且//,則一定有,故③正確;對于④,,,且,則與的位置關(guān)系不定,故④錯故正確的序號有:①③.故選C【點睛】本題考查直線和直線的位置關(guān)系,涉及線面垂直以及面面垂直,屬綜合基礎題.9、D【解析】根據(jù)充分條件、必要條件的判定方法,逐項判定,即可求解.【詳解】對于A中,當時,滿足,所以充分性不成立,反之:當時,可得,所以必要性成立,所以是的必要不充分條件,不符合題意;對于B中,當時,可得,即充分性成立;反之:當時,可得,即必要性不成立,所以是的充分不必要條件,不符合題意;對于C中,若四邊形是正方形,可得四邊形的對角線互相垂直且平分,即充分性成立;反之:若四邊形的對角線互相垂直且平分,但四邊形不一定是正方形,即必要性不成立,所以是充分不必要條件,不符合題意;對于D中,若兩個三角形相似,可得兩個三角形三邊成比例,即充分性成立;反之:若兩個三角形三邊成比例,可得兩個三角形相似,即必要性成立,所以是的充分必要條件,符合題意.故選:D.10、B【解析】由題意,求長,即可求外接圓半徑,從而可求該三棱錐的外接球的半徑,即可求出三棱錐的外接球的表面積.【詳解】由題意中,,,則是等腰直角三角形,平面可得,,平面,,則的中點為球心設外接圓半徑為,則,設球心到平面的距離為,則,由勾股定理得,則三棱錐的外接球的表面積故選:【點睛】本題考查三棱錐外接球表面積的求法,利用球的對稱性確定球心到平面的距離,培養(yǎng)空間感知能力,中等題型.11、C【解析】根據(jù)交集定義即可求出.【詳解】因為,所以.故選:C.12、B【解析】分析:直接利用余弦定理求cosA.詳解:由余弦定理得cosA=故答案為B.點睛:(1)本題主要考查余弦定理在解三角形中的應用,意在考查學生對余弦定理的掌握水平.(2)已知三邊一般利用余弦定理:.二、填空題(本大題共4小題,共20分)13、【解析】由題意可得,從而可得答案.【詳解】函數(shù)的定義域滿足即,所以函數(shù)的定義域為故答案為:14、2400【解析】由題意直接利用指數(shù)冪的運算得到結(jié)果【詳解】12年后的價格可降為81002400元故答案為2400【點睛】本題考查了指數(shù)函數(shù)模型的應用,考查了推理能力與計算能力,屬于基礎題15、【解析】根據(jù)指數(shù)式與對數(shù)式的互化,以及對數(shù)的運算性質(zhì),準確運算,即可求解.【詳解】因為,,所以,,所以,可得.故答案為:16、60【解析】求出高三年級的學生人數(shù),再根據(jù)分層抽樣的方法計算即可.【詳解】高三年級有學生2000-750-650=600人,用分層抽樣的方法從中抽取容量為200的樣本,應抽取高三年級學生的人數(shù)為200×600故答案為:60三、解答題(本大題共6小題,共70分)17、(1),,;(2)時,草坪面積最大,最大面積為萬平方米.【解析】(1)因為,所以可得三個扇形的半徑,圓心角都為,由扇形的面積公式可得答案;(2)用三角形面積減去三個扇形面積可得草坪面積,再利用二次函數(shù)可求出最值.【詳解】(1),則,,在扇形中,的長為,所以,同理,.∵與無重疊,∴,即,則.又三個扇形都在三角形內(nèi)部,則,∴.(2)∵,∴,∴當時,取得最大值,為.故當長為百米時,草坪面積最大,最大面積為萬平方米.【點睛】弧度制中求扇形弧長和面積的關(guān)鍵在于確定半徑和扇形圓心角弧度數(shù),解題時通常要根據(jù)已知條件列出方程,運用方程思想求解,強化了數(shù)學運算的素養(yǎng).屬于中檔題.18、(1)見解析;(2)20.【解析】(1)設,可得:,;(2)利用二次函數(shù)求最值即可.試題解析:(1)設米,則即,(2),當,即時,取得最小值為,的最小值為20.答:的最小值為20.19、(1)(2)【解析】(1)利用二次函數(shù)的圖象和性質(zhì)求值域;(2)討論對稱軸與區(qū)間中點的大小關(guān)系,即可得答案;【詳解】(1)由題意,當時,,又,對稱軸為,,離對稱軸較遠,,的值域為.(2)由題意,二次函數(shù)開口向上,對稱軸為,由數(shù)形結(jié)合知,(i)當,即時,;(ii)當,即時,,綜上:.【點睛】本題考查一元二次函數(shù)的值域求解,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力,求解時注意拋物線的開口方向及對稱軸與區(qū)間的位置關(guān)系.20、(1)最小正周期,單調(diào)增區(qū)間為,;(2).【解析】(1)將函數(shù)解析式化簡為,可得周期為;將看作一個整體代入正弦函數(shù)的增區(qū)間可得函數(shù)的單調(diào)增區(qū)間為,.(2)由(1)可得,結(jié)合條件得到,進而可得,于是,,最后根據(jù)兩角差的正弦公式可得結(jié)果試題解析:(1)∴函數(shù)的最小正周期.由,,得,,所以函數(shù)的單調(diào)增區(qū)間為,.(2)由(1)得,又,∴,∵,∴,∴,,∴.點睛:(1)解決三角函數(shù)問題時通常將所給的函數(shù)化簡為的形式后,將看作一個整體,并結(jié)合正弦函數(shù)的相關(guān)性質(zhì)求解.在解題中要注意整體代換思想的運用(2)對于給出某些角的三角函數(shù)值,求另外一些角的三角函數(shù)值的問題,解題關(guān)鍵在于“變角”,即用已知的角表示所求的角,使其角相同或具有某種關(guān)系21、(1)(2)萬箱【解析】(1)分,兩種情況,結(jié)合利潤銷售收入總成本公式,即可求解(2)根據(jù)已知條件,結(jié)合二次函數(shù)的性質(zhì),以及基本不等式,分類討論求得最大值后比較可得【小問1詳解】當時,,當時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025園林綠化合同
- 2025建設工程施工合同(VIII)
- 2025企業(yè)代培訓合同范文
- 2025合同模板健身俱樂部會員入會協(xié)議 范本
- 沙盤模型制作合同
- 醫(yī)療科技在小兒發(fā)熱治療中的應用
- 課題申報參考:馬克思隱喻敘事的唯物史觀原理研究
- 課題申報參考:禮俗互動視域下明清江南婚嫁刺繡裝飾研究
- 課題申報參考:科學教育教學體系研究
- 綠色能源在校園電力供應中的應用與展望
- 2024年蘇州工業(yè)園區(qū)服務外包職業(yè)學院高職單招職業(yè)適應性測試歷年參考題庫含答案解析
- 人教版初中語文2022-2024年三年中考真題匯編-學生版-專題08 古詩詞名篇名句默寫
- 2024-2025學年人教版(2024)七年級(上)數(shù)學寒假作業(yè)(十二)
- 山西粵電能源有限公司招聘筆試沖刺題2025
- ESG表現(xiàn)對企業(yè)財務績效的影響研究
- 旅游活動碳排放管理評價指標體系構(gòu)建及實證研究
- 2022年全國職業(yè)院校技能大賽-電氣安裝與維修賽項規(guī)程
- 小學德育養(yǎng)成教育工作分層實施方案
- 2024年湖南高速鐵路職業(yè)技術(shù)學院單招職業(yè)技能測試題庫附答案
- 2024年4月浙江省00015英語二試題及答案含評分參考
- 黑枸杞生物原液應用及產(chǎn)業(yè)化項目可行性研究報告
評論
0/150
提交評論