北京市十三中2024屆高一數(shù)學第一學期期末綜合測試模擬試題含解析_第1頁
北京市十三中2024屆高一數(shù)學第一學期期末綜合測試模擬試題含解析_第2頁
北京市十三中2024屆高一數(shù)學第一學期期末綜合測試模擬試題含解析_第3頁
北京市十三中2024屆高一數(shù)學第一學期期末綜合測試模擬試題含解析_第4頁
北京市十三中2024屆高一數(shù)學第一學期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

北京市十三中2024屆高一數(shù)學第一學期期末綜合測試模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12小題,共60分)1.已知角的終邊與單位圓相交于點,則=()A. B.C. D.2.為了得到函數(shù)的圖象,只要把函數(shù)圖象上所有的點()A.橫坐標伸長到原來的2倍,縱坐標不變B.橫坐標縮短到原來的倍,縱坐標不變C.縱坐標伸長到原來的2倍,橫坐標不變D.縱坐標縮短到原來的倍,橫坐標不變3.函數(shù)的圖像可能是().A. B.C. D.4.計算器是如何計算,,,,等函數(shù)值的?計算器使用的是數(shù)值計算法,其中一種方法是用容易計算的多項式近似地表示這些函數(shù),通過計算多項式的值求出原函數(shù)的值,如,,,其中.英國數(shù)學家泰勒(B.Taylor,1685-1731)發(fā)現(xiàn)了這些公式,可以看出,右邊的項用得越多,計算得出的和的值也就越精確.運用上述思想,可得到的近似值為()A.0.50 B.0.52C.0.54 D.0.565.半徑為的半圓卷成一個圓錐,則它的體積是()A. B.C. D.6.若,則下列說法正確的是()A.若,則 B.若,則C.若且,則 D.若,則7.已知函數(shù)是定義在上的奇函數(shù),當時,,則當時,表達式是A. B.C. D.8.若無論實數(shù)取何值,直線與圓相交,則的取值范圍為()A. B.C. D.9.下列說法正確的有()①兩個面平行且相似,其余各面都是梯形的多面體是棱臺;②以直角三角形的一邊為軸旋轉一周所得的旋轉體是圓錐;③各側面都是正方形的四棱柱一定是正方體;④圓錐的軸截面是等腰三角形.A.1個 B.2個C.3個 D.4個10.直線(為實常數(shù))的傾斜角的大小是A B.C. D.11.命題“,”否定是()A., B.,C., D.,12.下列選項正確的是()A. B.C. D.二、填空題(本大題共4小題,共20分)13.已知函數(shù)同時滿足以下條件:①定義域為;②值域為;③.試寫出一個函數(shù)解析式___________.14.設是定義在上且周期為2的函數(shù),在區(qū)間上,其中.若,則的值是____________.15.各條棱長均相等的四面體相鄰兩個面所成角的余弦值為___________.16.已知集合,,則_________.三、解答題(本大題共6小題,共70分)17.如圖所示,四棱錐中,底面為矩形,平面,,點為的中點()求證:平面()求證:平面平面18.如圖,已知,分別是正方體的棱,的中點.求證:平面平面.19.汽車在行駛中,由于慣性的作用,剎車后還要繼續(xù)向前滑行一段距離才能停住,我們稱這段距離為“剎車距離”.剎車距離是分析事故產(chǎn)生原因的一個重要因素.在一個限速為40km/h的彎道上,現(xiàn)場勘查測得一輛事故汽車的剎車距離略超過10米.已知這種型號的汽車的剎車距離(單位:m)與車速(單位:km/h)之間滿足關系式,其中為常數(shù).試驗測得如下數(shù)據(jù):車速km/h20100剎車距離m355(1)求的值;(2)請你判斷這輛事故汽車是否超速,并說明理由20.已知函數(shù)的部分圖象如下圖所示(1)求函數(shù)的解析式;(2)討論函數(shù)在上的單調(diào)性21.已知函數(shù)f(x)=a-.(1)若2f(1)=f(2),求a的值;(2)判斷f(x)在(-∞,0)上的單調(diào)性并用定義證明.22.國家質量監(jiān)督檢驗檢疫局于2004年5月31日發(fā)布了新的《車輛駕駛人員血液、呼氣酒精含量閥值與檢驗》國家標準.新標準規(guī)定,車輛駕駛人員血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升為飲酒駕車,血液中的酒精含量大于或等于80毫克/百毫升為醉酒駕車.經(jīng)過反復試驗,喝一瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點圖”如下:該函數(shù)模型如下:根據(jù)上述條件,回答以下問題:(1)試計算喝1瓶啤酒多少小時血液中的酒精含量達到最大值?最大值是多少?(2)試計算喝一瓶啤酒多少小時后才可以駕車?(時間以整小時計算)(參考數(shù)據(jù):)

參考答案一、選擇題(本大題共12小題,共60分)1、C【解析】先利用三角函數(shù)的定義求角的正、余弦,再利用二倍角公式計算即可.【詳解】角的終邊與單位圓相交于點,故,所以,故.故選:C.2、B【解析】直接利用三角函數(shù)伸縮變換法則得到答案.【詳解】為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點橫坐標縮短到原來的倍,縱坐標不變.故選:B3、D【解析】∵,∴,∴函數(shù)需向下平移個單位,不過(0,1)點,所以排除A,當時,∴,所以排除B,當時,∴,所以排除C,故選D.考點:函數(shù)圖象的平移.4、C【解析】根據(jù)新定義,直接計算取近似值即可.【詳解】由題意,故選:C5、C【解析】求出扇形的弧長,然后求出圓錐的底面周長,轉化為底面半徑,求出圓錐的高,然后求出體積.【詳解】設底面半徑為r,則,所以.所以圓錐高.所以體積.故選:C.【點睛】本題考查圓錐的性質及體積,圓錐問題抓住兩個關鍵點:(1)圓錐側面展開圖的扇形弧長等于底面周長;(2)圓錐底面半徑r、高h、母線l組成直角三角形,滿足勾股定理,本題考查這兩種關系的應用,屬于簡單題.6、D【解析】根據(jù)選項舉反例即可排除ABC,結合不等式性質可判斷D【詳解】對A,取,則有,A錯;對B,取,則有,B錯;對C,取,則有,C錯;對D,若,則正確;故選:D7、D【解析】若,則,利用給出的解析式求出,再由奇函數(shù)的定義即,求出.【詳解】設,則,當時,,,函數(shù)是定義在上的奇函數(shù),,,故選D.【點睛】本題考查了函數(shù)奇偶性在求解析式的應用,屬于中檔題.本題題型可歸納為“已知當時,函數(shù),則當時,求函數(shù)的解析式”.有如下結論:若函數(shù)為偶函數(shù),則當時,函數(shù)的解析式為;若為奇函數(shù),則函數(shù)的解析式為8、A【解析】利用二元二次方程表示圓的條件及點與圓的位置關系即得.【詳解】由圓,可知圓,∴,又∵直線,即,恒過定點,∴點在圓的內(nèi)部,∴,即,綜上,.故選:A.9、A【解析】對于①:利用棱臺的定義進行判斷;對于②:以直角三角形的斜邊為軸旋轉一周所得的旋轉體不是圓錐.即可判斷;對于③:舉反例:底面的菱形,各側面都是正方形的四棱柱不是正方體.即可判斷;對于④:利用圓錐的性質直接判斷.【詳解】對于①:棱臺是棱錐過側棱上一點作底面的平行平面分割而得到的.而兩個面平行且相似,其余各面都是梯形的多面體中,把梯形的腰延長后,有可能不交于一點,就不是棱臺.故①錯誤;對于②:以直角三角形的斜邊為軸旋轉一周所得的旋轉體不是圓錐.故②錯誤;對于③:各側面都是正方形的四棱柱中,如果底面的菱形,一定不是正方體.故③錯誤;對于④:圓錐的軸截面是等腰三角形.是正確的.故④正確.故選:A10、D【解析】計算出直線的斜率,再結合傾斜角的取值范圍可求得該直線的傾斜角.【詳解】設直線傾斜角為,直線的斜率為,所以,,則.故選:D.【點睛】本題考查直線傾斜角的計算,一般要求出直線的斜率,考查計算能力,屬于基礎題.11、B【解析】根據(jù)命題的否定的定義判斷.【詳解】命題“,”的否定是:,故選:B12、A【解析】根據(jù)指數(shù)函數(shù)的性質一一判斷可得;【詳解】解:對于A:在定義域上單調(diào)遞減,所以,故A正確;對于B:在定義域上單調(diào)遞增,所以,故B錯誤;對于C:因為,,所以,故C錯誤;對于D:因為,,即,所以,故D錯誤;故選:A二、填空題(本大題共4小題,共20分)13、或(答案不唯一)【解析】由條件知,函數(shù)是定義在R上的偶函數(shù)且值域為,可以寫出若干符合條件的函數(shù).【詳解】函數(shù)定義域為R,值域為且為偶函數(shù),滿足題意的函數(shù)解析式可以為:或【點睛】本題主要考查了函數(shù)的定義域、值域、奇偶性以,屬于中檔題.14、##-0.4【解析】根據(jù)函數(shù)的周期性及可得的值,進而利用周期性即可求解的值.【詳解】解:因為是定義在上且周期為2的函數(shù),在區(qū)間上,所以,,又,即,解得,所以,故答案為:.15、【解析】首先利用圖像作出相鄰兩個面所成角,然后利用已知條件求出正四面體相鄰兩個面所成角的兩邊即可求解.【詳解】由題意,四面體為正三棱錐,不妨設正三棱錐的邊長為,過作平面,垂足為,取的中點,并連接、、、,如下圖:由正四面體的性質可知,為底面正三角形的中心,從而,,∵為的中點,為正三角形,所以,,所以為正四面體相鄰兩個面所成角∵,∴易得,,∵平面,平面,∴,故.故答案為:.16、【解析】由對數(shù)函數(shù)單調(diào)性,求出集合A,再根據(jù)交集的定義即可求解.【詳解】解:,,,故答案為:.三、解答題(本大題共6小題,共70分)17、(1)證明見解析;(2)證明見解析.【解析】(1)連接交于,連接.利用幾何關系可證得,結合線面平行的判斷定理則有直線平面(2)利用線面垂直的定義有,結合可證得平面,則,由幾何關系有,則平面,利用面面垂直的判斷定理即可證得平面平面試題解析:()連接交于,連接因為矩形的對角線互相平分,所以在矩形中,是中點,所以在中,是中位線,所以,因為平面,平面,所以平面()因為平面,平面,所以;在矩形中有,又,所以平面,因為平面,所以;由已知,三角形是等腰直角三角形,是斜邊的中點,所以,因為,所以平面,因為平面,所以平面平面18、見解析【解析】取的中點,連接、,則,進一步得到四邊形為平行四邊形,同理得到四邊形為平行四邊形,結合線面平行的判定即可得到結果.【詳解】證明:取的中點,連接、.因為、分別為、的中點,.四邊形為平行四邊形..、分別為、的中點,∴,∴四邊形為平行四邊形,∴,∴.∵平面,平面,平面又,平面平面.【點睛】本題主要考查面面平行的判定,屬于基礎題型.19、(1)(2)超速,理由見解析【解析】(1)將表格中的數(shù)據(jù)代入函數(shù)的解析式建立方程組即可求得答案;(2)根據(jù)(1)建立不等式,進而解出不等式,最后判斷答案.【小問1詳解】由題意得,解得.【小問2詳解】由題意知,,解得或(舍去)所以該車超速20、(1)(2)在,上單調(diào)遞減,在,和,上單調(diào)遞增【解析】(1)由圖知,,最小正周期,由,求得的值,再將點,代入函數(shù)的解析式中,求出的值,即可;(2)由,,知,,再結合正弦函數(shù)的單調(diào)性,即可得解【小問1詳解】解:由圖知,,最小正周期,因為,所以,將點,代入函數(shù)的解析式中,得,所以,,即,,因為,所以,故函數(shù)的解析式為;【小問2詳解】解:因為,,所以,,令,則,,因為函數(shù)在,上單調(diào)遞減,在,和,上單調(diào)遞增,令,得,令,得,令,得,所以在,上單調(diào)遞減,在,和,上單調(diào)遞增21、(1)3(2)f(x)在(-∞,0)上是單調(diào)遞增的,證明見解析【解析】(1)由已知列方程求解;(2)由復合函數(shù)單調(diào)性判斷,根據(jù)單調(diào)性定義證明;【小問1詳解】∵2f(1)=f(2),∴2(a-2)=a-1,∴a=3.【小問2詳解】f(x)在(-∞,0)上是單調(diào)遞增的,證明如下:設x1,x2∈(-∞,0),且x1<x2,則f(x1)-f(x2)=(a-)-(a-)=-=,∵x1,x2∈(-∞,0),∴x1x2>0.又x1<x2,∴x1-x2<0,∴f(x1)-f(x2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論