版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省廣州市荔灣區(qū)真光中學(xué)2024屆高一數(shù)學(xué)第一學(xué)期期末調(diào)研試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12小題,共60分)1.已知冪函數(shù)的圖象過點,則的值為()A. B.1C.2 D.42.已知()A. B.C. D.3.函數(shù)的一條對稱軸是()A. B.C. D.4.已知,,,則()A. B.C. D.5.已知正方體的個頂點中,有個為一側(cè)面是等邊三角形的正三棱錐的頂點,則這個正三棱錐與正方體的全面積之比為A. B.C. D.6.已知函數(shù),則下列關(guān)于函數(shù)的說法中,正確的是()A.將圖象向左平移個單位可得到的圖象B.將圖象向右平移個單位,所得圖象關(guān)于對稱C.是函數(shù)的一條對稱軸D.最小正周期為7.函數(shù)y=8x2-(m-1)x+m-7在區(qū)間(-∞,-]上單調(diào)遞減,則m的取值范圍為()A. B.C. D.8.設(shè)集合A={x|-1<x<2},集合B={x|1<x<3},則A∪B=A.{x|-1<x<3} B.{x|-1<x<1}C.{x|1<x<2} D.{x|2<x<3}9.若正實數(shù),滿足,則的最小值為()A. B.C. D.10.若,,則()A. B.C. D.11.已知向量,向量,則的最大值,最小值分別是()A.,0 B.4,C.16,0 D.4,012.某空間幾何體的正視圖是三角形,則該幾何體不可能是A.圓柱 B.圓錐C.四面體 D.三棱柱二、填空題(本大題共4小題,共20分)13.若命題p是命題“”的充分不必要條件,則p可以是___________.(寫出滿足題意的一個即可)14.全集,集合,則______15.已知是內(nèi)一點,,記的面積為,的面積為,則__________16.在直三棱柱中,若,則異面直線與所成的角等于_________.三、解答題(本大題共6小題,共70分)17.已知函數(shù),()求函數(shù)的單調(diào)區(qū)間;()若函數(shù)在上有兩個零點,求實數(shù)的取值范圍18.△ABC中,A(3,-1),AB邊上的中線CM所在直線方程為:6x+10y-59=0,∠B的平分線方程BT為:x-4y+10=0,求直線BC的方程.19.已知關(guān)于x的不等式對恒成立.(1)求的取值范圍;(2)當(dāng)取得最小值時,求的值.20.已知角的頂點與原點重合,始邊與軸的非負半軸重合,它的終邊在直線上.(1)求的值;(2)求值21.已知函數(shù),且.(1)求函數(shù)的定義域,并判斷函數(shù)的奇偶性.(2)求滿足的實數(shù)x的取值范圍.22.已知函數(shù)的部分圖象如圖所示,點為函數(shù)的圖象與y軸的一個交點,點B為函數(shù)圖象上的一個最高點,且點B的橫坐標(biāo)為,點為函數(shù)的圖象與x軸的一個交點(1)求函數(shù)的解析式;(2)已知函數(shù)的值域為,求a,b的值
參考答案一、選擇題(本大題共12小題,共60分)1、C【解析】設(shè)出冪函數(shù)的解析式,利用給定點求出解析式即可計算作答.【詳解】依題意,設(shè),則有,解得,于得,所以.故選:C2、D【解析】利用誘導(dǎo)公式對式子進行化簡,轉(zhuǎn)化為特殊角的三角函數(shù),即可得到答案;【詳解】,故選:D3、B【解析】由余弦函數(shù)的對稱軸為,應(yīng)用整體代入法求得對稱軸為,即可判斷各項的對稱軸方程是否正確.【詳解】由余弦函數(shù)性質(zhì),有,即,∴當(dāng)時,有.故選:B4、A【解析】比較a、b、c與中間值0和1的大小即可﹒【詳解】,,,∴﹒故選:A﹒5、A【解析】所求的全面積之比為:,故選A.6、C【解析】根據(jù)余弦型函數(shù)的圖象變換性質(zhì),結(jié)合余弦型函數(shù)的對稱性和周期性逐一判斷即可.【詳解】A:圖象向左平移個單位可得到函數(shù)的解析式為:,故本選項說法不正確;B:圖象向右平移個單位,所得函數(shù)的解析式為;,因為,所以該函數(shù)是偶函數(shù),圖象不關(guān)于原點對稱,故本選項說法不正確;C:因為,所以是函數(shù)的一條對稱軸,因此本選項說法正確;D:函數(shù)的最小正周期為:,所以本選項說法不正確,故選:C7、A【解析】求出函數(shù)的對稱軸,得到關(guān)于m的不等式,解出即可【詳解】函數(shù)的對稱軸是,若函數(shù)在區(qū)間上單調(diào)遞減,則,解得:m≥0,故選A【點睛】本題考查了二次函數(shù)的性質(zhì),熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵8、A【解析】由已知,集合A=(-1,2),B=(1,3),故A∪B=(-1,3),選A考點:本題主要考查集合概念,集合的表示方法和并集運算.9、B【解析】由基本不等式有,令,將已知等式轉(zhuǎn)化為關(guān)于的一元二次不等式,解不等式即可得答案.【詳解】解:由題意,正實數(shù)滿足,則,令,可得,即,解得,或(舍去),所以當(dāng)且僅當(dāng)時,取得最小值2,故選:B.10、C【解析】由題可得,從而可求出,即得.【詳解】∵所以,又因為,,所以,即,所以,又因為,所以,故選:C11、D【解析】利用向量的坐標(biāo)運算得到|2用θ的三角函數(shù)表示化簡求最值【詳解】解:向量,向量,則2(2cosθ,2sinθ+1),所以|22=(2cosθ)2+(2sinθ+1)2=8﹣4cosθ+4sinθ=8﹣8sin(),所以|22的最大值,最小值分別是:16,0;所以|2的最大值,最小值分別是4,0;故選:D【點睛】本題考查了向量的坐標(biāo)運算以及三角函數(shù)解析式的化簡;利用了兩角差的正弦公式以及正弦函數(shù)的有界性12、A【解析】因為圓柱的三視圖有兩個矩形,一個圓,正視圖不可能是三角形,而圓錐、四面體(三棱錐)、三棱柱的正視圖都有可能是三角形,所以選A.考點:空間幾何體的三視圖.二、填空題(本大題共4小題,共20分)13、,(答案不唯一)【解析】由充分條件和必要條件的定義求解即可【詳解】因為當(dāng)時,一定成立,而當(dāng)時,可能,可能,所以是的充分不必要條件,故答案為:(答案不唯一)14、【解析】直接利用補集的定義求解【詳解】因為全集,集合,所以,故答案為:15、【解析】設(shè)BC中點為M,則,所以P到BC的距離為點A到BC距離的,故16、【解析】如圖以點為坐標(biāo)原點,分別以為軸建立空間直角坐標(biāo)系,利用空間向量求解即可.【詳解】解:因為三棱柱為直三棱柱,且,所以以點為坐標(biāo)原點,分別以為軸建立空間直角坐標(biāo)系,設(shè),則,所以,所以,因為異面直線所成的角在,所以異面直線與所成的角等于,故答案為:【點睛】此題考查異面直線所成角,利用了空間向量進行求解,屬于基礎(chǔ)題.三、解答題(本大題共6小題,共70分)17、(1)在上單調(diào)遞增,在上單調(diào)遞減;(2).【解析】(1)本題可根據(jù)正弦函數(shù)單調(diào)性得出結(jié)果;(2)可令,通過計算得出或,然后根據(jù)在上有兩個零點即可得出結(jié)果.【詳解】(1)令,解得,令,解得,故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.(2),令,則,,故或,解得或,因為在上有兩個零點,所以,解得,故實數(shù)的取值范圍為.18、.【解析】設(shè)則的中點在直線上和點在直線上,得,求得,再根據(jù)到角公式,求得,進而求得直線的方程試題解析:設(shè)則的中點在直線上,則,即…①,又點在直線上,則…②聯(lián)立①②得,,有直線平分,則由到角公式得,得的直線方程為:.19、(1)(2)【解析】(1)根據(jù)已知條件,利用判別式小于等于零列不等式可得范圍;(2)根據(jù)(1)可得,利用轉(zhuǎn)化分母,把正弦和余弦化為正切值,可得答案.【小問1詳解】關(guān)于x的不等式對恒成立,所以,解得.【小問2詳解】由(1)可知,由得.20、(1)或;(2)或;【解析】(1)在直線上任取一點,由已知角的終邊過點,利用誘導(dǎo)公式與三角函數(shù)定義即可求解,要注意分類討論m的正負.(2)先利用商的關(guān)系化簡原式為,結(jié)合第一問利用三角函數(shù)定義分別求得與,要注意分類討論m的正負.【詳解】(1)在直線上任取一點,由已知角的終邊過點,,,利用誘導(dǎo)公式與三角函數(shù)定義可得:,當(dāng)時,;當(dāng)時,(2)原式同理(1)利用三角函數(shù)定義可得:,當(dāng)時,,,此時原式;當(dāng)時,,,此時原式;【點睛】易錯點睛:本題考查三角函數(shù)化簡求值,解本題時要注意的事項:角的終邊在直線上,但未確定在象限,要分類討論,考查學(xué)生的轉(zhuǎn)化能力與運算解能力,屬于中檔題.21、(1)定義域為,奇函數(shù);(2)當(dāng)時的取值范圍是;當(dāng)時的取值范圍是【解析】(1)根據(jù)題意,先求出函數(shù)的定義域,進而結(jié)合函數(shù)的解析式可得,即可得結(jié)論;(2)根據(jù)題意,即,分與兩種情況討論可得的取值范圍,綜合即可得答案詳解】解:(1)根據(jù)題意,,則有,解可得,則函數(shù)的定義域為,又由,則是奇函數(shù);(2)由得①當(dāng)時,,解得;②當(dāng)時,,解得;當(dāng)時的取值范圍是;當(dāng)時的取值范圍是【點睛】本題考查函數(shù)的單調(diào)性與奇偶性的應(yīng)用,注意判斷奇偶性要先求出函數(shù)的定義域,屬于中檔題22、(1)(2)或【解析】(1)根據(jù)圖象可得函數(shù)的周期,利用求出,根據(jù)五點畫圖法求出,根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版腳手架搭建工程勞務(wù)協(xié)議模板一
- 2025年華東師大版一年級語文下冊階段測試試卷
- 2025年蘇人新版選擇性必修3地理上冊階段測試試卷
- 2025年浙科版選修1生物上冊階段測試試卷
- 2025年新世紀(jì)版五年級英語下冊月考試卷
- 2025年滬教版九年級物理下冊階段測試試卷
- 2025年度藝術(shù)品寄售合作合同模板3篇
- 2025年牛津上海版二年級語文上冊月考試卷
- 二零二五年度糧食產(chǎn)業(yè)鏈金融服務(wù)合同范本2篇
- 學(xué)生創(chuàng)新能力的培養(yǎng)與綜合評價體系的構(gòu)建
- 浙江省金華市婺城區(qū)2024-2025學(xué)年九年級上學(xué)期期末數(shù)學(xué)試卷(含答案)
- 天津市河西區(qū)2024-2025學(xué)年高二上學(xué)期1月期末英語試題(含答案無聽力音頻及聽力原文)
- 2025屆高考語文復(fù)習(xí):信息類文本五大類型的主觀題 課件
- 中鐵開投、中鐵云投招聘筆試沖刺題2025
- 重慶市2023-2024學(xué)年七年級上學(xué)期期末考試數(shù)學(xué)試題(含答案)
- 安徽省合肥市蜀山區(qū)2023-2024學(xué)年五年級上學(xué)期期末質(zhì)量檢測科學(xué)試題
- 高數(shù)(大一上)期末試題及答案
- 員工工資條模板
- 14K118 空調(diào)通風(fēng)管道的加固
- 丙酮-水連續(xù)精餾塔的設(shè)計
- 菜鳥也上手:最最完整的Cool Edit Pro 圖文操作手冊
評論
0/150
提交評論