




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
直線與圓的位置關系(1)2014年10日問題情境問題情境國慶長假高二學生小明一家去某島旅游,清晨一家一起觀看日出,感受了太陽從海平面冉冉升起的過程,并拍下最美的瞬間.
問題情境在坐游輪直線返港的途中,接到氣象臺的臺風預報:臺風中心位于輪船正西80km處,受影響的范圍是半徑長為50km的圓形區(qū)域,已知港口位于臺風中心正北60km處,即將學習直線與圓的位置關系的小明拿出紙筆建立如圖所示的坐標系,如果這艘輪船不改變航線,請協(xié)助小明回答他們是否受到臺風影響?學生活動1.看日出過程中太陽和海平線出現(xiàn)了哪些位置關系?你覺得最美瞬間是什么時候?2.思考如何來準確的刻畫直線與圓的位置關系?3.幫助小明計算他們是否受到臺風影響?(1)直線和圓有唯一個公共點,叫做直線和圓相切,這條直線叫圓的切線,這個公共點叫切點(2)直線和圓有兩個公共點,叫做直線和圓相交,這條直線叫圓的割線(3)直線和圓沒有公共點時,叫做直線和圓相離建構(gòu)數(shù)學建構(gòu)數(shù)學思考:求直線與直線公共點的方法聯(lián)立方程組,解二元一次方程組公共點坐標方程的公共解建構(gòu)數(shù)學點與圓的位置關系drdrdr圖形位置關系點在圓外點在圓上點在圓內(nèi)一般或標準方程>0=0<0點到圓心的距離d>rd=rd<rddd.O.O.Orrr相離相切相交1、直線與圓相離
=>
d>r2、直線與圓相切
=>d=r3、直線與圓相交
=>
d<r<<<想一想當直線與圓相離、相切、相交時,d與r有何關系?l23.A.B.C.D.E.F.NH.Q.你能根據(jù)d與r的大小關系確定直線與圓的位置關系嗎?0d>r1d=r切點切線2d<r.Oldr┐┐.oldr.Old┐r.ACB..相離
相切
相交
建構(gòu)數(shù)學交點割線建構(gòu)數(shù)學直線與圓的位置關系方法:建構(gòu)數(shù)學建構(gòu)數(shù)學應用數(shù)學在坐游輪直線返港的途中,接到氣象臺的臺風預報:臺風中心位于輪船正西80km處,受影響的范圍是半徑長為50km的圓形區(qū)域,已知港口位于臺風中心正北60km處,即將學習直線與圓的位置關系的小明拿出紙筆建立如圖所示的坐標系,如果這艘輪船不改變航線,請協(xié)助小明回答他們是否受到臺風影響?應用數(shù)學應用數(shù)學小結(jié):判定直線與圓的位置關系的方法有____種:(1)根據(jù)定義,由__________________的個數(shù)來判斷;(2)根據(jù)性質(zhì),由_____________________
______________的關系來判斷。單純判斷直線與圓的位置關系,我們常采用第二種方法判定。但要求出公共點采用解方程組的方法兩直線與圓的公共點圓心到直線的距離d與半徑r應用數(shù)學相交相切相離應用數(shù)學應用數(shù)學應用數(shù)學應用數(shù)學應用數(shù)學小結(jié):過平面內(nèi)一點可以做一個定圓的切線嗎?如果可以有幾條?若點在圓內(nèi),沒有切線若點在圓上,一條切線若點在圓外,兩條切線以形助數(shù)總結(jié)回顧(1)判斷直線與圓的位置關系有哪些方法?(2)求切線方程的方法?(3)數(shù)形結(jié)合思想的以形助數(shù),形的直觀可以判斷切線條數(shù),數(shù)的嚴謹可以求出具體切線.如果該臺風破壞性較小,游船仍以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 桶裝水合作合同
- 加油站場地租賃合同
- 股權轉(zhuǎn)讓合同擔保合同
- 建設工程合同款支付保證保險條款
- 材料運輸買賣合同
- 專業(yè)檔案管理與咨詢服務合同
- 聘任常年法律顧問合同
- 與供應商的合同評審流程指南
- 湖南人文科技學院《現(xiàn)代教育技術在中小學教學中的應用》2023-2024學年第二學期期末試卷
- 荊州學院《機能實驗學》2023-2024學年第二學期期末試卷
- 2025年中考語文模擬試卷(含答案解析)
- 2025版校園樂器銷售代理與服務協(xié)議3篇
- DB11-T 1004-2023 房屋建筑使用安全檢查評定技術規(guī)程
- 2024-2025年天津河西區(qū)七年級上學期期末道德與法治試題(含答案)
- 預制板粘貼碳纖維加固計算表格
- 2025年海南農(nóng)墾自然資源開發(fā)集團有限公司筆試題
- 2023CSCO兒童及青少年白血病診療指南
- 醫(yī)療垃圾轉(zhuǎn)運流程
- 礦棉板模板施工合同
- DB31∕T 1148-2019 水量計量差錯的退補水量核算方法
- 2025蛇年元旦晚會
評論
0/150
提交評論