版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022中考數(shù)學(xué)模擬試卷
考生請注意:
1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。
2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的
位置上。
3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。
一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)
1.如圖,A,8是半徑為1的。。上兩點,且。點尸從點A出發(fā),在上以每秒一個單位長度的速度勻速
運動,回到點A運動結(jié)束,設(shè)運動時間為上(單位:s),弦5尸的長為y,那么下列圖象中可能表示y與x函數(shù)關(guān)系的
是()
A.①B.③C.②或④D.①或③
2.某市初中學(xué)業(yè)水平實驗操作考試,要求每名學(xué)生從物理,化學(xué)、生物三個學(xué)科中隨機抽取一科參加測試,小華和小
強都抽到物理學(xué)科的概率是()
3.“趕陀螺”是一項深受人們喜愛的運動.如圖所示是一個陀螺的立體結(jié)構(gòu)圖.已知底面圓的直徑AB=8cm,圓柱的
高BC=6cm,圓錐的高CD=3cm,則這個陀螺的表面積是(
A.68ncm2B.74"cm?C.84JTcm2
4.下列二次根式中,最簡二次根式是()
A-V9aB.C.dQ2
5.已知。。的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是()
A.30°B.60°C.30°或150°D.60。或120。
6.如圖,AB為。O的直徑,C為。O上的一動點(不與A、B重合),CD_LAB于D,NOCD的平分線交。O于P,
則當(dāng)C在。O上運動時,點P的位置()
A.隨點C的運動而變化
B.不變
C.在使PA=OA的劣弧上
D.無法確定
7.如果t>0,那么a+t與a的大小關(guān)系是()
A.a+t>aB.a+t<aC.a+t>aD.不能確定
8.已知二次函數(shù)y=oyi+bx+c+l的圖象如圖所示,頂點為(-1,0),下列結(jié)論:①a〃c>0;②〃-4ac=0;(3)a>l;
@ax'+bx+c=-1的根為xi=xi=-1;⑤若點8(-—,與)、C(-,以)為函數(shù)圖象上的兩點,則山>山.其中
正確的個數(shù)是()
A.1B.3C.4D.5
9.某美術(shù)社團為練習(xí)素描,他們第一次用120元買了若干本相同的畫冊,第二次用240元在同一家商店買與上一次相
同的畫冊,這次商家每本優(yōu)惠4元,結(jié)果比上次多買了20本.求第一次買了多少本畫冊?設(shè)第一次買了x本畫冊,列
方程正確的是()
120240,240120,
A.----------=4B.----------=4
x尤+20x+20x
120240)240120
C.----------=4
xx-20x-20x
10.已知實數(shù)a、b滿足a>b,貝U()
A.a>2bB.2a>bC.a—2>b—2D.2-a<l—b
二、填空題(共7小題,每小題3分,滿分21分)
11.在數(shù)學(xué)課上,老師提出如下問題:尺規(guī)作圖:確定圖1中所在圓的圓心.
已知:CD-
求作:C。所在圓的圓心。.
瞳瞳的作法如下:如圖2,
(1)在CO上任意取一點M,分別連接CM,DM;
(2)分別作弦CM,DM的垂直平分線,兩條垂直平分線交于點。.點。就是co所在圓的圓心.
老師說:“瞳瞳的作法正確.”
請你回答:瞳瞳的作圖依據(jù)是
12.如圖,已知點A(2,2)在雙曲線上,將線段。4沿x軸正方向平移,若平移后的線段0/'與雙曲線的交點。恰
為。的中點,則平移距離。0'長為一.
13.方程組〈.。一仆的解一定是方程與的公共解.
14.若a、b為實數(shù),且b="二?+'l:L+4,貝!ja+b=.
?+7
15.釣魚島周圍海域面積約為170000平方千米,170000用科學(xué)記數(shù)法表示為.
16.如圖,從直徑為4c,"的圓形紙片中,剪出一個圓心角為90。的扇形OAB,且點。、A、5在圓周上,把它圍成一
個圓錐,則圓錐的底面圓的半徑是cm.
x
17.函數(shù)y=三中,自變量x的取值范圍是
x-2
三、解答題(共7小題,滿分69分)
18.(10分)觀察下列算式:
①1x3-22="3"-4=4
②2x4-32="8"-9=-1
(3)3x5-42="15""16=-1
④___________________________
(1)請你按以上規(guī)律寫出第4個算式;
(2)把這個規(guī)律用含字母的式子表示出來;
(3)你認為(2)中所寫出的式子一定成立嗎?并說明理由.
19.(5分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=m(x>0)的圖象交于點P(n,2),與x軸交于點A(—4,
0),與y軸交于點C,PBJ_x軸于點B,點A與點B關(guān)于y軸對稱.
(1)求一次函數(shù),反比例函數(shù)的表達式;
(2)求證:點C為線段AP的中點;
(3)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形?如果存在,說明理由并求出點D的坐標;如果不存
在,說明理由.
20.(8分)如圖,在一筆直的海岸線1上有A、B兩個碼頭,A在B的正東方向,一艘小船從A碼頭沿它的北偏西60。
的方向行駛了20海里到達點P處,此時從B碼頭測得小船在它的北偏東45。的方向.求此時小船到B碼頭的距離(即
BP的長)和A、B兩個碼頭間的距離(結(jié)果都保留根號).
,39
21.(10分)已知,如圖1,直線y=-x+3與x軸、y軸分別交于A、C兩點,點B在x軸上,點B的橫坐標為一,
44
拋物線經(jīng)過A、B、C三點.點D是直線AC上方拋物線上任意一點.
(1)求拋物線的函數(shù)關(guān)系式;
(2)若P為線段AC上一點,且SAPCD=2SAPAD,求點P的坐標;
(3)如圖2,連接OD,過點A、C分別作AMJ_OD,CN±OD,垂足分別為M、N.當(dāng)AM+CN的值最大時,求點
22.(10分)某校對學(xué)生就“食品安全知識”進行了抽樣調(diào)查(每人選填一類),繪制了如圖所示的兩幅統(tǒng)計圖(不完整)。
請根據(jù)圖中信息,解答下列問題:
“食品安全知識”調(diào)1弋扇形統(tǒng)計圖
“食品安全知識"調(diào)查條形統(tǒng)計圖
A非常了解
B比較了解
C基本了解
D不太了解
(1)根據(jù)圖中數(shù)據(jù),求出扇形統(tǒng)計圖中〃,的值,并補全條形統(tǒng)計圖。
(2)該校共有學(xué)生900人,估計該校學(xué)生對“食品安全知識”非常了解的人數(shù).
23.(12分)一個不透明的袋子中裝有3個標號分別為1、2、3的完全相同的小球,隨機地摸出一個小球不放回,再
隨機地摸出一個小球.采用樹狀圖或列表法列出兩次摸出小球出現(xiàn)的所有可能結(jié)果;求摸出的兩個小球號碼之和等于
4的概率.
24.(14分)“六一”兒童節(jié)前夕,某縣教育局準備給留守兒童贈送一批學(xué)習(xí)用品,先對紅星小學(xué)的留守兒童人數(shù)進行
抽樣統(tǒng)計,發(fā)現(xiàn)各班留守兒童人數(shù)分別為6名,7名,8名,10名,12名這五種情形,并繪制出如下的統(tǒng)計圖①和圖
②.請根據(jù)相關(guān)信息,解答下列問題:
/fi種情況備守兒童申噩睡殘守兒童
人數(shù)班級數(shù)扇形編十圖班級數(shù)內(nèi)蝮形統(tǒng)計圖
小
(1)該校有個班級,補全條形統(tǒng)計圖;
(2)求該校各班留守兒童人數(shù)數(shù)據(jù)的平均數(shù),眾數(shù)與中位數(shù);
(3)若該鎮(zhèn)所有小學(xué)共有60個教學(xué)班,請根據(jù)樣本數(shù)據(jù),估計該鎮(zhèn)小學(xué)生中,共有多少名留守兒童.
參考答案
一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)
1、D
【解析】
分兩種情形討論當(dāng)點尸順時針旋轉(zhuǎn)時,圖象是③,當(dāng)點尸逆時針旋轉(zhuǎn)時,圖象是①,由此即可解決問題.
【詳解】
分兩種情況討論:①當(dāng)點尸順時針旋轉(zhuǎn)時,BP的長從血增加到2,再降到0,再增加到0,圖象③符合;
②當(dāng)點P逆時針旋轉(zhuǎn)時,BP的長從0降到0,再增加到2,再降到、歷,圖象①符合.
故答案為①或③.
故選D.
【點睛】
本題考查了動點問題函數(shù)圖象、圓的有關(guān)知識,解題的關(guān)鍵理解題意,學(xué)會用分類討論的思想思考問題,屬于中考常
考題型.
2、A
【解析】
作出樹狀圖即可解題.
【詳解】
解:如下圖所示
小華物生
/i\/i\/i\
小強物化生物化生物化生
一共有9中可能,符合題意的有1種,故小華和小強都抽到物理學(xué)科的概率是",
故選A.
【點睛】
本題考查了用樹狀圖求概率,屬于簡單題,會畫樹狀圖是解題關(guān)鍵.
3、C
【解析】
試題分析:?.?底面圓的直徑為8cm,高為3cm,.,.母線長為5cm,.,.其表面積=取4工5+42汗+8kx6=84?tcm2,故選C.
考點:圓錐的計算;幾何體的表面積.
4,C
【解析】
檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.
【詳解】
A.被開方數(shù)含能開得盡方的因數(shù)或因式,故A不符合題意,
B.被開方數(shù)含能開得盡方的因數(shù)或因式,故B不符合題意,
C.被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式,故C符合題意,
D.被開方數(shù)含分母,故D不符合題意.
故選C.
【點睛】
本題考查最簡二次根式的定義,最簡二次根式必須滿足兩個條件:被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因
數(shù)或因式.
5、D
【解析】
【分析】由圖可知,OA=10,OD=1.根據(jù)特殊角的三角函數(shù)值求出NAOB的度數(shù),再根據(jù)圓周定理求出NC的度數(shù),
再根據(jù)圓內(nèi)接四邊形的性質(zhì)求出NE的度數(shù)即可.
【詳解】由圖可知,OA=10,OD=L
在RtAOAD中,
VOA=10,OD=1,AD=7<M2-(?r>2=5>/3.
A。/—
.?.tanNl=-----=,3,Nl=60°,
OD
同理可得N2=60。,
,ZAOB=Z1+Z2=60°+60°=120°,
.*.NC=60°,
.,.ZE=180o-60o=120°,
即弦AB所對的圓周角的度數(shù)是60?;?20°,
故選D.
【點睛】本題考查了圓周角定理、圓內(nèi)接四邊形的對角互補、解直角三角形的應(yīng)用等,正確畫出圖形,熟練應(yīng)用相關(guān)
知識是解題的關(guān)鍵.
6、B
【解析】
因為CP是NOCD的平分線,所以NDCP=NOCP,所以NDCP=NOPC,則CD〃OP,所以弧AP等于弧BP,所以
PA=PB.從而可得出答案.
【詳解】
??,CP是NOCD的平分線,
.,.ZDCP=ZOCP,
XVOC=OP,
.,.ZOCP=ZOPC,
.*.ZDCP=ZOPC,
,CD〃OP,
XVCD±AB,
.*.OP±AB,
AAP=BP'
.?.PA=PB.
...點P是線段AB垂直平分線和圓的交點,
.?.當(dāng)C在。O上運動時,點P不動.
故選:B.
【點睛】
本題考查了圓心角、弦、弧之間的關(guān)系,以及平行線的判定和性質(zhì),在同圓或等圓中,等弧對等弦.
7、A
【解析】
試題分析:根據(jù)不等式的基本性質(zhì)即可得到結(jié)果.
Vt>0,
;.a+t>a,
故選A.
考點:本題考查的是不等式的基本性質(zhì)
點評:解答本題的關(guān)鍵是熟練掌握不等式的基本性質(zhì)1:不等式兩邊同時加或減去同一個整式,不等號方向不變.
8、D
【解析】
根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出答案.
【詳解】
h
解:①由拋物線的對稱軸可知:———<0,
2a
??cib>0,
由拋物線與y軸的交點可知:c+2>2,
...c>0,
abc>0,故①正確;
②拋物線與x軸只有一個交點,
AA=0,
b2-4ac=0,故②正確;
③令x=—1,
:.y=a-b+c+2=0,
v-A=.i,
2a
:.h=2a9
:?ci—2a+c+2=0,
,a=c+2,
Vc+2>2,
工。>2,故③正確;
④由圖象可知:令y=0,
即0=ar2+〃x+c+2的解為%==-1,
,or?+Z?x+c=-2的根為X=々=-1,故④正確;
@7-1
24
故⑤正確;
故選D.
【點睛】
考查二次函數(shù)的圖象與性質(zhì),解題的關(guān)鍵是熟練運用數(shù)形結(jié)合的思想.
9、A
【解析】
分析:由設(shè)第一次買了x本資料,則設(shè)第二次買了(x+20)本資料,由等量關(guān)系:第二次比第一次每本優(yōu)惠4元,即
可得到方程.
詳解:設(shè)他上月買了x本筆記本,則這次買了(x+20)本,
蛇卬由美3120240,
根據(jù)題意得:----------=4.
xx+20
故選A.
點睛:本題考查了分式方程的應(yīng)用,解答本題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找出合適的等量關(guān)系,列方程解答即
可.
10、C
【解析】
根據(jù)不等式的性質(zhì)進行判斷.
【詳解】
解:A、a>b,但a>2b不一定成立,例如:1>」,l=2x,故本選項錯誤;
22
B、a>b,但2a>b不一定成立,例如:—1>—2,—1x2=—2,故本選項錯誤;
C、a>b時,a-2>b-2成立,故本選項正確;
D、a>b時,-a<-b成立,貝!l2-a<l-b不一定成立,故本選項錯誤;
故選C.
【點睛】
考查了不等式的性質(zhì)?要認真弄清不等式的基本性質(zhì)與等式的基本性質(zhì)的異同,特別是在不等式兩邊同乘以(或除以)
同一個數(shù)時,不僅要考慮這個數(shù)不等于0,而且必須先確定這個數(shù)是正數(shù)還是負數(shù),如果是負數(shù),不等號的方向必須
改變.
二、填空題(共7小題,每小題3分,滿分21分)
11、①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓)
【解析】
(1)在上任意取一點“,分別連接CM,DM;
(2)分別作弦CM,DM的垂直平分線,兩條垂直平分線交于點。.點。就是co所在圓的圓心.
【詳解】
解:根據(jù)線段的垂直平分線的性質(zhì)定理可知:OC=OM=OD,
所以點。是CO所在圓的圓心。(理由①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離
等于定長的點的軌跡是圓):)
故答案為①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓)
【點睛】
本題考查作圖-復(fù)雜作圖、線段的垂直平分線的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考常
考題型.
12、1.
【解析】
直接利用平移的性質(zhì)以及反比例函數(shù)圖象上點的坐標性質(zhì)得出D點坐標進而得出答案.
【詳解】
?:點42,2)在雙曲線上,
"=4,
?平移后的線段0/,與雙曲線的交點D恰為。'”的中點,
???O點縱坐標為:1,
:.DE=1,O'E=1,
,,4
二。點橫坐標為:x=—=4,
:.OO'=1,
故答案為1.
【點睛】
本題考查了反比例函數(shù)圖象上的性質(zhì),正確得出D點坐標是解題關(guān)鍵.
13>5x-3y=83x+8y=9
【解析】
5x—3y=8
方程組c-c的解一定是方程5x-3y=8與3x+8y=9的公共解.
3x+8y=9
故答案為5x-3y=8;3x+8y=9.
14、5或1
【解析】
根據(jù)二次根式的性質(zhì)和分式的意義,被開方數(shù)大于或等于0,分母不等于0,可以求出a的值,8的值,根據(jù)有理數(shù)的
加法,可得答案.
【詳解】
由被開方數(shù)是非負數(shù),得
a2-l>0
解得a=L或a=-l,b=4,
當(dāng)a=l時,a+方=1+4=5,
當(dāng)a=-1時,a+b=-1+4=1,
故答案為5或1.
【點睛】
本題考查了函數(shù)表達式有意義的條件,當(dāng)函數(shù)表達式是整式時,自變量可取全體實數(shù);當(dāng)函數(shù)表達式是分式時,考慮
分式的分母不能為0;當(dāng)函數(shù)表達式是二次根式時,被開方數(shù)非負.
15、1.7xl05
【解析】
解:將170000用科學(xué)記數(shù)法表示為:1.7x1.故答案為1.7x1.
](3、---
2
【解析】
設(shè)圓錐的底面圓的半徑為r,由于乙4。3=90。得到A3為圓形紙片的直徑,貝U08=注=20皿,根據(jù)弧長公式
2
計算出扇形。48的弧A8的長,然后根據(jù)圓錐的側(cè)面展開圖為扇形,扇形的弧長等于圓錐底面圓的周長進行計算.
【詳解】
解:設(shè)圓錐的底面圓的半徑為r,
連結(jié)AB,如圖,
,??扇形。48的圓心角為90。,
/.乙408=90。,
???A5為圓形紙片的直徑,
.\AB=4c/n,
:.OB=^—AB=2V2cm,
2
扇形0A5的弧AB的長=:,萬.二=舊,
180
/-2nr=近n,
?-^2(、
..r-......^cm).
2
故答案為
2
B
【點睛】
本題考查了圓錐的計算:圓錐的側(cè)面展開圖為扇形,扇形的弧長等于圓錐底面圓的周長,扇形的半徑等于圓錐的母線
長.也考查了圓周角定理和弧長公式.
17、XH2
【解析】
根據(jù)分式有意義的條件是分母不為2;分析原函數(shù)式可得關(guān)系式x-#2,解得答案.
【詳解】
根據(jù)題意得x-#2,
解得:X#];
故答案為:xRL
【點睛】
本題主要考查自變量得取值范圍的知識點,當(dāng)函數(shù)表達式是分式時,考慮分式的分母不能為2.
三、解答題(共7小題,滿分69分)
18、(1)4x6-5:=24-25=T;
(2)答案不唯一.如二(匚+2)-(□+廳=-J;
⑶二(二+2)-(二+/);=二:+2二-(二;+2二+1)
=口:+2口-n3-2U-1
=.I.
【解析】
(1)根據(jù)①②③的算式中,變與不變的部分,找出規(guī)律,寫出新的算式;
(2)將(1)中,發(fā)現(xiàn)的規(guī)律,由特殊到一般,得出結(jié)論;
(3)一定成立.利用整式的混合運算方法加以證明.
19、(1)j=1x+l.(2)點C為線段A尸的中點.⑶存在點。,使四邊形為菱形,點O(8,1)即為所
求.
【解析】
試題分析:(D由點A與點B關(guān)于y軸對稱,可得AO=BO,再由A的坐標求得B點的坐標,從而求得點P的坐標,
將P坐標代入反比例解析式求出m的值,即可確定出反比例解析式,將A與P坐標代入一次函數(shù)解析式求出k與b
的值,確定出一次函數(shù)解析式;(2)由AO=BO,PB//CO,即可證得結(jié)論;(3)假設(shè)存在這樣的D點,使四邊形BCPD
為菱形,過點C作CD平行于x軸,交PB于點E,交反比例函數(shù)丫=-暫的圖象于點D,分別連結(jié)PD、BD,如圖所
示,即可得點D(8,1),BP±CD,易證PB與CD互相垂直平分,即可得四邊形BCPD為菱形,從而得點D的坐
標.
試題解析:
(1),??點A與點5關(guān)于y軸對稱,
:.AO=BOf
VA(-4,0),
工以4,0),
???P(4,2),
把P(4,2)代入y==得機=8,
...反比例函數(shù)的解析式:
把4(一4,0),P(4,2)代入y=Ax+b
得:{。、=丁:三解得:{二=2
所以一次函數(shù)的解析式:y=%+l.
(2)丁點A與點B關(guān)于y軸對稱,
:.OA=OB
???P3_Lx軸于點3,
,NPBA=90。,
VNCQ4=90。,
J.PB//CO,
二點C為線段AP的中點.
(3)存在點。,使四邊形8CPD為菱形
??,點C為線段A尸的中點,
:.BC上二二=二二,
.?.8C和PC是菱形的兩條邊
由y=%+l,可得點C(0,1)>
過點C作CO平行于x軸,交PB于點E,交反比例函數(shù)的圖象于點。,
分別連結(jié)尸。、BD,
:.PE=BE=1,
:.CE=DE=4,
.?.08與以互相垂直平分,
四邊形BCPD為菱形.
1點D(8,1)即為所求.
20、小船到8碼頭的距離是10血海里,A、8兩個碼頭間的距離是(10+1073)海里
【解析】
試題分析:過P作PMJ_AB于M,求出NPBM=45。,NPAM=30。,求出PM,即可求出BM、AM、BP.
試題解析:如圖:過P作PM_LAB于M,則NPMB=NPMA=90。,VZPBM=90°-45°=45°,ZPAM=90°-60°=30°,
AP=20,,PM=;AP=10,AM=V3PM=10>/3.AZBPM=ZPBM=45°,,PM=BM=10,AB=AM+MB=10+10^>
.\BP=^^7=1072.即小船到B碼頭的距離是10我海里,A、B兩個碼頭間的距離是(10+10G)海里.
sin45
考點:解直角三角形的應(yīng)用-方向角問題.
21、(1)y=--x2-^-x+3;(2)點P的坐標為(-2,1);(3)當(dāng)AM+CN的值最大時,點D的坐標為(吃豆亙
31238
-3+773、
2
【解析】
(1)利用一次函數(shù)圖象上點的坐標特征可求出點A、C的坐標,由點B所在的位置結(jié)合點B的橫坐標可得出點B的
坐標,根據(jù)點A、B、C的坐標,利用待定系數(shù)法即可求出拋物線的函數(shù)關(guān)系式;
(2)過點P作PELx軸,垂足為點E,貝!JAAPEs/\ACO,由APCD、△PAD有相同的高且SAPCD=2SAPAD,可得
出CP=2AP,利用相似三角形的性質(zhì)即可求出AE、PE的長度,進而可得出點P的坐標;
(3)連接AC交OD于點F,由點到直線垂線段最短可找出當(dāng)ACJLOD時AM+CN取最大值,過點D作DQ_Lx軸,
垂足為點Q,則4DQOS^AOC,根據(jù)相似三角形的性質(zhì)可設(shè)點D的坐標為(-3t,4t),利用二次函數(shù)圖象上點的
坐標特征可得出關(guān)于t的一元二次方程,解之取其負值即可得出t值,再將其代入點D的坐標即可得出結(jié)論.
【詳解】
3
(1)???直線y=-x+3與x軸、y軸分別交于A、C兩點,
4
...點A的坐標為(-4,0),點C的坐標為(0,3).
9
?點B在x軸上,點B的橫坐標為一,
4
9
...點B的坐標為(-,0),
4
設(shè)拋物線的函數(shù)關(guān)系式為y=ax?+bx+c(a#)),
9
將A(-4,0)、B(-,0)、C(0,3)代入y=ax?+bx+c,得:
4
1
a=—
16a-4/7+c=03
819
解得:,b」
16412
c=3c=3
17
...拋物線的函數(shù)關(guān)系式為y=--x2-—x+3;
(2)如圖1,過點P作PE_Lx軸,垂足為點E,
???△PCD、APAD有相同的高,且SAPCD=2SAPAD,
.\CP=2AP,
:PE_Lx軸,COJ_x軸,
.".△APE-^AACO,
.AEPE_AP
??布一而一花一針
141
.,.AE=-AO=-,PE=-CO=1,
333
Q
AOE=OA-AE=-,
3
Q
...點p的坐標為(-],1);
(3)如圖2,連接AC交OD于點F,
VAM1OD,CN±OD,
.*.AF>AM,CF2CN,
當(dāng)點M、N、F重合時,AM+CN取最大值,
過點D作DQ_Lx軸,垂足為點Q,則ADQOs^AOC,
.OQCO3
,,加—茄;
二設(shè)點D的坐標為(-3t,4t).
17
點D在拋物線y=--x2-—x+3上,
312
,7
:.4t=-3t?4—1+3
49
解得:ti=_3+/(不合題意,舍去),t2=-3+用
88
A點D的坐標為(A屈,-3+V73),
82
故當(dāng)AM+CN的值最大時,點D的坐標為(州3岳,-3*斥).
82
【點睛】
本題考查了待定系數(shù)法求二次函數(shù)解析式、一次(二次)函數(shù)圖象上點的坐標特征、三角形的面積以及相似三角形的
性質(zhì),解題的關(guān)鍵是:(1)根據(jù)點A、B、C的坐標,利用待定系數(shù)法求出拋物線的函數(shù)關(guān)系式;(2)利用相似三角形
的性質(zhì)找出AE、PE的長;(3)利用相似三角形的性質(zhì)設(shè)點D的坐標為(-3t,4t).
22、(1)加=35,補全條形統(tǒng)計圖見解析;(2)該校學(xué)生對“食品安全知識”非常了解的人數(shù)為135人。
【解析】
試題分析:
(1)由統(tǒng)計圖中的信息可知,B組學(xué)生有32人,占總數(shù)的40%,由此可得被抽查學(xué)生總?cè)藬?shù)為:32。40%=80(人),
結(jié)合C組學(xué)生有28人可得:m%=28v80x100%=35%,由此可得m=35;由80-32-28-8=12(人)可知A組由12人,
由此即可補全條形統(tǒng)計圖了;
(2)由(1)中計算可知,A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度餐飲業(yè)SaaS運營管理軟件銷售合同3篇
- 2024版物流倉儲中心租賃及運營管理合同
- 2025年度銷售合同違約責(zé)任補充協(xié)議
- 年度回轉(zhuǎn)窯式垃圾焚燒爐市場分析及競爭策略分析報告
- 二零二五版城市更新項目借款合同規(guī)范2篇
- 2024-2025學(xué)年高中歷史專題七近代以來科學(xué)技術(shù)的輝煌7.2追尋生命的起源同步課時作業(yè)含解析人民版必修3
- 二零二四年倉儲物流園建設(shè)項目融資合同
- 二零二五年度酒店客房安全監(jiān)控服務(wù)合同3篇
- 2025年度林業(yè)生態(tài)補償項目評估合同4篇
- 2025版茅臺酒經(jīng)銷商培訓(xùn)及銷售技能提升合同3篇
- GB/T 7588.2-2020電梯制造與安裝安全規(guī)范第2部分:電梯部件的設(shè)計原則、計算和檢驗
- GB/T 14600-2009電子工業(yè)用氣體氧化亞氮
- 小學(xué)道德與法治學(xué)科高級(一級)教師職稱考試試題(有答案)
- 申請使用物業(yè)專項維修資金征求業(yè)主意見表
- 河北省承德市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細
- 實用性閱讀與交流任務(wù)群設(shè)計思路與教學(xué)建議
- 應(yīng)急柜檢查表
- 通風(fēng)設(shè)施標準
- 酒店市場營銷教案
- 房屋買賣合同簡單范本 房屋買賣合同簡易范本
- 環(huán)保有限公司營銷策劃方案
評論
0/150
提交評論