2023屆江蘇省淮安市實(shí)驗(yàn)初級(jí)中學(xué)九年級(jí)數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第1頁(yè)
2023屆江蘇省淮安市實(shí)驗(yàn)初級(jí)中學(xué)九年級(jí)數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第2頁(yè)
2023屆江蘇省淮安市實(shí)驗(yàn)初級(jí)中學(xué)九年級(jí)數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第3頁(yè)
2023屆江蘇省淮安市實(shí)驗(yàn)初級(jí)中學(xué)九年級(jí)數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第4頁(yè)
2023屆江蘇省淮安市實(shí)驗(yàn)初級(jí)中學(xué)九年級(jí)數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷

注意事項(xiàng)

1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.

2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.

3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.

4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他

答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.

5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.

一、選擇題(每題4分,共48分)

1.點(diǎn)P|(-L弘),P2(3,%),P3(5,為)均在二次函數(shù)y=+2X+C的圖象上,則y,%,%的大小關(guān)

系是()

A.%>%>XB.%>%=%C.D.%=%>%

2.用配方法解方程/-4x+3=0,下列配方正確的是()

A.(x—2)2=1B.(x+2>=1C.(x—2)2=7D.(x-2)2=4

3.在4張相同的小紙條上分別寫(xiě)上數(shù)字-2、0、1、2,做成4支簽,放在一個(gè)盒子中,攪勻后從中任意抽出1支簽(不

放回),再?gòu)挠嘞碌?支簽中任意抽出1支簽,則2次抽出的簽上的數(shù)字的和為正數(shù)的概率為()

1112

A.—B.—C.—D.一

4323

4.如圖,螺母的一個(gè)面的外沿可以看作是正六邊形,這個(gè)正六邊形ABCDEF的半徑是2石cm,則這個(gè)正六邊形的

周長(zhǎng)是()

A.12B.6GC.36D.126

5.計(jì)算斤子的結(jié)果是

A.-3B.3C.-9D.9

g,那么sinB的值是(

6.在RtAABC中,ZC=90°,如果sinA=)

A.拽^B.272

c也D.3

34

7.下列事件中,屬于必然事件的是()

A.明天我市下雨

B.拋一枚硬幣,正面朝上

C.走出校門,看到的第一輛汽車的牌照的末位數(shù)字是偶數(shù)

D.一個(gè)口袋中裝有2個(gè)紅球和一個(gè)白球,從中摸出2個(gè)球,其中有紅球

8.如圖,。。的半徑為5,將長(zhǎng)為8的線段尸。的兩端放在圓周上同時(shí)滑動(dòng),如果點(diǎn)尸從點(diǎn)A出發(fā)按逆時(shí)針?lè)较蚧瑒?dòng)

一周回到點(diǎn)A,在這個(gè)過(guò)程中,線段尸。掃過(guò)區(qū)域的面積為()

A.9nB.167rC.257rD.647r

9.若三角形的兩邊長(zhǎng)分別是4和6,第三邊的長(zhǎng)是方程*2一5*+6=0的一個(gè)根,則這個(gè)三角形的周長(zhǎng)是()

A.13B.16C.12或13D.11或16

10.下列汽車標(biāo)志中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是

A.B.C。母

3

11.已知,在中,NC=9O°,AC=9,cosA=w,則8C邊的長(zhǎng)度為()

A.8B.12C.14D.15

12.一元二次方程3/一2x—1=0的根的情況為()

A.有兩個(gè)相等的實(shí)數(shù)根B.有兩個(gè)不相等的實(shí)數(shù)根

C.沒(méi)有實(shí)數(shù)根D.只有一個(gè)實(shí)數(shù)根

二、填空題(每題4分,共24分)

13.如圖,在平面直角坐標(biāo)系中,拋物線y=f—3x+2與K軸交于A、B兩點(diǎn),與>軸交于點(diǎn)C,點(diǎn)。是對(duì)稱軸右

側(cè)拋物線上一點(diǎn),且tan/DCB=3,則點(diǎn)。的坐標(biāo)為.

14.如圖,正六邊形ABCDEF中的邊長(zhǎng)為6,點(diǎn)P為對(duì)角線BE上一動(dòng)點(diǎn),則PC的最小值為

15.在平面直角坐標(biāo)系中,拋物線y=V的圖象如圖所示.已知A點(diǎn)坐標(biāo)為(U),過(guò)點(diǎn)A作M//》軸交拋物線于

點(diǎn)A,過(guò)點(diǎn)A作44//04交拋物線于點(diǎn)兒,過(guò)點(diǎn)兒作&&//》軸交拋物線于點(diǎn)4,過(guò)點(diǎn)&作44//。4交

拋物線于點(diǎn)A4……,依次進(jìn)行下去,則點(diǎn)42“9的坐標(biāo)為.

16.如圖,在矩形ABCD中,AB=2,AD=2拒,以點(diǎn)C為圓心,以BC的長(zhǎng)為半徑畫(huà)弧交AD于E,則圖中陰影部

分的面積為.

17.從-3,-2,-1,0,1,2這6個(gè)數(shù)中任意取出一個(gè)數(shù)記作A,則既能使函數(shù)y=&的圖象經(jīng)過(guò)第一、第三象限,

x

又能使關(guān)于x的一元二次方程x2-Ax+l=0有實(shí)數(shù)根的概率為.

18.在比例尺為1:500000的地圖上,量得A、8兩地的距離為3cm,貝lj4、3兩地的實(shí)際距離為km.

三、解答題(共78分)

19.(8分)已知:如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸交于點(diǎn)A(-2,0),與反比例函數(shù)在第一象限內(nèi)

的圖象交于點(diǎn)B(2,n),連接BO,若SOOB=4.

(1)求該反比例函數(shù)的解析式和直線AB的解析式;

(2)若直線AB與y軸的交點(diǎn)為C,求AOCB的面積.

(3)在第一象限內(nèi),求當(dāng)一次函數(shù)值大于反比例函數(shù)值時(shí)的反比例函數(shù)值取值范圍.

20.(8分)如圖,拋物線y=x?+bx+c與x軸交于點(diǎn)A和B(3,0),與y軸交于點(diǎn)C(0,3).

(1)求拋物線的解析式;

(2)若點(diǎn)M是拋物線上在x軸下方的動(dòng)點(diǎn),過(guò)M作乂1^〃丫軸交直線BC于點(diǎn)N,求線段MN的最大值;

(3)E是拋物線對(duì)稱軸上一點(diǎn),F(xiàn)是拋物線上一點(diǎn),是否存在以A,B,E,F為頂點(diǎn)的四邊形是平行四邊形?若存在,

請(qǐng)直接寫(xiě)出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

21.(8分)圖1,圖2分別是一滑雪運(yùn)動(dòng)員在滑雪過(guò)程中某一時(shí)刻的實(shí)物圖與示意圖,已知運(yùn)動(dòng)員的小腿ED與斜坡AB

垂直,大腿EF與斜坡AB平行,且G,瓦。三點(diǎn)共線,若雪仗EM長(zhǎng)為麗,EF=0.4m,NEMD=30。,NGEE=62°,

求此刻運(yùn)動(dòng)員頭部G到斜坡AB的高度〃(精確到(參考數(shù)據(jù):sin62°?0.88,cos62°?0.47,tan620?1.88)

圖1

22.(10分)關(guān)于x的一元二次方程(x—2)(%-3)=帆.

(1)求證:此方程必有兩個(gè)不相等的實(shí)數(shù)根;

(2)若方程有一根為1,求方程的另一根及〃?的值.

23.(10分)如圖,二次函數(shù)y=-2x2+x+m的圖象與x軸的一個(gè)交點(diǎn)為A(1,0),另一個(gè)交點(diǎn)為B,且與y軸交于

點(diǎn)C.

(1)求m的值;

(2)求點(diǎn)B的坐標(biāo);

(3)該二次函數(shù)圖象上是否有一點(diǎn)D(x,y)使SAABD=SAABC,求點(diǎn)D的坐標(biāo).

24.(10分)如圖,拋物線.丫=必2+。尤+c(a/O)與直線y=x+l相交于A(T,O),8(4,⑼兩點(diǎn),且拋物線經(jīng)過(guò)點(diǎn)

C(5,0)

(1)求拋物線的解析式.

(2)點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A點(diǎn)8重合),過(guò)點(diǎn)P作直線PO_Lx軸于點(diǎn)。,交直線A3于點(diǎn)E.當(dāng)

/石=2皮>時(shí),求P點(diǎn)坐標(biāo);

(3)如圖所示,設(shè)拋物線與》軸交于點(diǎn)F,在拋物線的第一象限內(nèi),是否存在一點(diǎn)。,使得四邊形OFQC的面積最

大?若存在,請(qǐng)求出點(diǎn)。的坐標(biāo);若不存在,說(shuō)明理由.

25.(12分)如圖,已知AABC中,AB=8,BC=10,AC=12,D是AC邊上一點(diǎn),KAB2=AD?AC,連接BD,點(diǎn)

E、F分別是BC、AC上兩點(diǎn)(點(diǎn)E不與B、C重合),ZAEF=ZC,AE與BD相交于點(diǎn)G.

(1)求BD的長(zhǎng);

(2)求證ABGEs2\CEF;

(3)連接FG,當(dāng)AGEF是等腰三角形時(shí),直接寫(xiě)出BE的所有可能的長(zhǎng)度

3EC

(備用圖)

26.在矩形ABCD中,AB=3,BC=4,E,F是對(duì)角線AC上的兩個(gè)動(dòng)點(diǎn),分別從A,C同時(shí)出發(fā)相向而行,速度均

為lcm/s,運(yùn)動(dòng)時(shí)間為t秒,Ogt01.

(1)AE=________,EF=__________

(2)若G,H分別是AB,DC中點(diǎn),求證:四邊形EGFH是平行四邊形.(E、E相遇時(shí)除外)

(3)在(2)條件下,當(dāng)t為何值時(shí),四邊形EGFH為矩形.

參考答案

一、選擇題(每題4分,共48分)

1、D

【解析】試題分析:..,y=-x2+2x+c,.,.對(duì)稱軸為x=LP2(3,為),P3(5,%)在對(duì)稱軸的右側(cè),y隨x的增

大而減小,..rvs,.?.%>%,根據(jù)二次函數(shù)圖象的對(duì)稱性可知,Pi(-Lm)與(3,%)關(guān)于對(duì)稱軸對(duì)稱,故

>]=%>%,故選D.

考點(diǎn):二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征.

2、A

【解析】用配方法解方程/-4x+3=0,

移項(xiàng)得:x2-4x=-3,

配方得:X2-4X+4=1,

即。一2)2=1.

故選A.

3、C

【分析】畫(huà)樹(shù)狀圖展示所有12種等可能的結(jié)果數(shù),再找出2次抽出的簽上的數(shù)字和為正數(shù)的結(jié)果數(shù),最后根據(jù)概率公

式計(jì)算即可.

【詳解】根據(jù)題意畫(huà)圖如下:

X\/t\/N

-212-202-201

共有12種等情況數(shù),其中2次抽出的簽上的數(shù)字的和為正數(shù)的有6種,

則2次抽出的簽上的數(shù)字的和為正數(shù)的概率為9=!

122

故選:C.

【點(diǎn)睛】

本題考查列表法與樹(shù)狀圖法、概率計(jì)算題,解題的關(guān)鍵是畫(huà)樹(shù)狀圖展示出所有12種等可能的結(jié)果數(shù)及準(zhǔn)確找出2次抽

出的簽上的數(shù)字和為正數(shù)的結(jié)果數(shù),

4、D

【分析】由正六邊形的性質(zhì)證出aAOB是等邊三角形,由等邊三角形的性質(zhì)得出AB=OA,即可得出答案

D

【詳解】設(shè)正六邊形的中心為O,連接AO,BO,如圖所示:

ED

:O是正六邊形ABCDEF的中心,

AAB=BC=CD=DE=EF=FA,ZAOB=60°,AO=BO=2百cm,

.?.△AOB是等邊三角形,

:.AB=OA=2cm,

...正六邊形ABCDEF的周長(zhǎng)=6AB=126cm.

故選D

【點(diǎn)睛】

此題主要考查了正多邊形和圓、等邊三角形的判定與性質(zhì);根據(jù)題意得出aAOB是等邊三角形是解題關(guān)鍵.

5、B

【分析】利用二次根式的性質(zhì)進(jìn)行化簡(jiǎn)即可.

【詳解】刁-31=3.

故選B.

6、A

【解析】一個(gè)角的正弦值等于它的余角的余弦值.

【詳解】?.,RfAABC中,NC=90。,sinA=-,

3

cosA="-sin2A-^1-(—)2-2f,

:.ZA+ZB=90°,

??AA2>/2

..sin?=cosA=------.

3

故選A.

【點(diǎn)睛】

本題主要考查銳角三角函數(shù)的定義,根據(jù)sinA得出cosA的值是解題的關(guān)鍵.

7、D

【分析】根據(jù)確定事件和隨機(jī)事件的概念對(duì)各個(gè)事件進(jìn)行判斷即可.

【詳解】解:明天我市下雨、拋一枚硬幣,正面朝上、走出校門,看到的第一輛汽車的牌照的末位數(shù)字是偶數(shù)都是隨

機(jī)事件,

一個(gè)口袋中裝有2個(gè)紅球和一個(gè)白球,從中摸出2個(gè)球,其中有紅球是必然事件,

故選:D.

【點(diǎn)睛】

本題考查的是確定事件和隨機(jī)事件,事先能肯定它一定會(huì)發(fā)生的事件稱為必然事件,事先能肯定它一定不會(huì)發(fā)生的事

件稱為不可能事件,必然事件和不可能事件都是確定的;在一定條件下,可能發(fā)生也可能不發(fā)生的事件,稱為隨機(jī)事

件.

8、B

【分析】如圖,線段尸。掃過(guò)的面積是圖中圓環(huán)面積.作OE_LP0于E,連接。。求出。E即可解決問(wèn)題.

【詳解】解:如圖,線段P。掃過(guò)的面積是圖中圓環(huán)面積,

作。E_LP。于E,連接0Q.

':OE±PQ,

:.EQ=^PQ=4,

,:OQ=5,

,0E=^OC2-QE2=V52-42=3,

,線段PQ掃過(guò)區(qū)域的面積=7t?52-7r?32=16rt,

故選:B.

【點(diǎn)睛】

本題主要考查了軌跡,解直角三角形,垂徑定理,解題的關(guān)鍵是理解題意,學(xué)會(huì)添加常用輔助線.

9、A

【分析】首先利用因式分解法求得一元二次方程x2-5x+6=0的兩個(gè)根,又由三角形的兩邊長(zhǎng)分別是4和6,利用三角形

的三邊關(guān)系,即可確定這個(gè)三角形的第三邊長(zhǎng),然后求得周長(zhǎng)即可.

【詳解】VX2-5X+6=0,

(x-3)(x-2)=0,

解得:xi=3,X2=2,

?.?三角形的兩邊長(zhǎng)分別是4和6,

當(dāng)x=3時(shí),3+4>6,能組成三角形;

當(dāng)x=2時(shí),2+4=6,不能組成三角形.

,這個(gè)三角形的第三邊長(zhǎng)是3,

...這個(gè)三角形的周長(zhǎng)為:4+6+3=13.

故選A.

【點(diǎn)睛】

此題考查了因式分解法解一元二次方程與三角形三邊關(guān)系的知識(shí).此題難度不大,解題的關(guān)鍵是注意準(zhǔn)確應(yīng)用因式分

解法解一元二次方程,注意分類討論思想的應(yīng)用.

10、D

【解析】試題分析:根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念,軸對(duì)稱圖形兩部分沿對(duì)稱軸折疊后可重合;中心對(duì)稱圖

形是圖形沿對(duì)稱中心旋轉(zhuǎn)180度后與原圖重合.因此,

A、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;

B、既不是中心對(duì)稱圖形,也不是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;

C、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;

D、是中心對(duì)稱圖形,也是軸對(duì)稱圖形,故本選項(xiàng)正確.

故選D.

11、B

【分析】如圖,根據(jù)余弦的定義可求出AB的長(zhǎng),根據(jù)勾股定理即可求出BC的長(zhǎng).

3

【詳解】如圖,VZC=90°,AC=9,cosA=-,

AC393

:.cosA=-----=一,即f1n=—,

AB5AB5

AAB=15,

BC=yjAB2-AC2=V152-92=12,

【點(diǎn)睛】

本題考查三角函數(shù)的定義,在直角三角形中,銳角的正弦是角的對(duì)邊與斜邊的比值;余弦是角的鄰邊與斜邊的比值;

正切是角的對(duì)邊與鄰邊的比值;熟練掌握三角函數(shù)的定義是解題關(guān)鍵.

12、B

【分析】直接利用判別式△判斷即可.

【詳解】???△=(—2)2—4<3/—1)=16>0

二一元二次方程有兩個(gè)不等的實(shí)根

故選:B.

【點(diǎn)睛】

本題考查一元二次方程根的情況,注意在求解判別式△時(shí),正負(fù)號(hào)不要弄錯(cuò)了.

二、填空題(每題4分,共24分)

715

、

132'T

【分析】根據(jù)已知條件tan/DCB=3,需要構(gòu)造直角三角形,過(guò)D做DHLCR于點(diǎn)H,用含字母的代數(shù)式表示出PH、

RH,即可求解.

【詳解】

解:過(guò)點(diǎn)D作DQLx軸于Q,交CB延長(zhǎng)線于R,作DHJ_CR于H,

過(guò)R做RFJLy軸于凡

???拋物線y=/-3無(wú)+2與x軸交于A、B兩點(diǎn),與>軸交于點(diǎn)C,

.*.A(1,O),B(2,0)C(0,2)

二直線BC的解析式為y=-x+2

設(shè)點(diǎn)D坐標(biāo)為(mg?-3m+2),R(m,-m+2),

:.DR=m2-3m+2-(-m+2)=m2-2m

VOA=OB=2

AZCAO=ACO=45°=ZQBR=ZRDH,

CR=Cm,

DH=RH

CH-CR-HR-m(m-2)=-m)

VtanZDCB=3

V2.

DH_"(加一2)

CH=~=3

m(4-m)

m=—7

2

經(jīng)檢驗(yàn)是方程的解.

2

_c7c15

m2-3m+2—3x—F2=—

24

24

715

故答案為:£>(-,—)

【點(diǎn)睛】

本題考查了函數(shù)性質(zhì)和勾股定理逆定理的應(yīng)用還有銳角三角函數(shù)值的應(yīng)用,本題比較復(fù)雜,先根據(jù)題意構(gòu)造直角三角

形.

14、3百.

【分析】如圖,過(guò)點(diǎn)C作CP_LBE于P,可得CG為PC的最小值,由ABCDEF是正六邊形,根據(jù)多邊形內(nèi)角和公式

可得NGBC=60。,進(jìn)而可得NBCG=30。,根據(jù)含30。角的直角三角形的性質(zhì)及勾股定理即可求出PC的長(zhǎng).

【詳解】如圖,過(guò)點(diǎn)C作CG_LBE于G,

V點(diǎn)P為對(duì)角線BE上一動(dòng)點(diǎn),

...點(diǎn)P與點(diǎn)G重合時(shí),PC最短,即CG為PC的最小值,

VABCDEF是正六邊形,

AZABC=:x(6-2)x180。=120°,

.,.ZGBC=60°,

.,.ZBCG=30°,

VBC=6,

1

.?.BG=-BC=3,

2

CG=7BC2-BG2=V62-32=3A/3?

B

故答案為:373

【點(diǎn)睛】

本題考查正六邊形的性質(zhì)、含30。角的直角三角形的性質(zhì)及勾股定理,根據(jù)垂線段最短得出點(diǎn)P的位置,并熟練掌握

多邊形內(nèi)角和公式是解題關(guān)鍵.

15、(-1010,1O1O2)

【解析】根據(jù)二次函數(shù)性質(zhì)可得出點(diǎn)A的坐標(biāo),求得直線A4為y=x+2,聯(lián)立方程求得人的坐標(biāo),即可求得人的

坐標(biāo),同理求得A)的坐標(biāo),即可求得&的坐標(biāo),根據(jù)坐標(biāo)的變化找出變化規(guī)律,即可找出點(diǎn)的坐標(biāo).

【詳解】解::A點(diǎn)坐標(biāo)為(1,1),

二直線。4為>=》,A(-U),

A4//OA,

二直線AA?為y=x+2,

y=x+2x=-lx=2

解2得,或<

y=xy=iy=4'

???4(2,4),

A(—2,4),

':4At//OA,

二直線A3A4為y=x+6,

y=x+6x=-2x=3

解“、得,或V

y=9‘

y=xy=4

二4(3,9),

???A(-3,9)

2

AO19(-1O1O,1O1O),

故答案為(-1010,10102)

【點(diǎn)睛】

本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、一次函數(shù)的圖象以及交點(diǎn)的坐標(biāo),根據(jù)坐標(biāo)的變化找出變化規(guī)律是解題的

關(guān)鍵.

16、乃+2

【分析】連接CE,根據(jù)矩形和圓的性質(zhì)、勾股定理可得OE=2,從而可得4CED是等腰直角三角形,可得

ABCE=ZBCD-ZECD=45°,即可根據(jù)陰影部分的面積等于扇形面積加三角形的面積求解即可.

【詳解】連接CE

,四邊形ABCD是矩形,AB=2,AD=2近,

:.AB=CD=2,BC=AD=2?ABCD=ZD=90°

???以點(diǎn)C為圓心,以BC的長(zhǎng)為半徑畫(huà)弧交AD于E

,CE=BC=2五

二DE=^CE1-CD'=?20_2?=2

...ACED是等腰直角三角形

.,.NEC。=45°

:.ZBCE=/BCD-/ECD=45°

陰影部分的面積=S扇形BCE+S^ECD

術(shù)4501

\'360°2

=71+2

故答案為:乃+2.

【點(diǎn)睛】

本題考查了陰影部分面積的問(wèn)題,掌握矩形和圓的性質(zhì)、勾股定理、等腰直角三角形的性質(zhì)、扇形的面積公式、三角

形面積公式是解題的關(guān)鍵.

1

17、

6

【分析】確定使函數(shù)的圖象經(jīng)過(guò)第一、三象限的〃的值,然后確定使方程有實(shí)數(shù)根的A值,找到同時(shí)滿足兩個(gè)條件的

?的值即可.

【詳解】解:這6個(gè)數(shù)中能使函數(shù)y=K的圖象經(jīng)過(guò)第一、第三象限的有I,2這2個(gè)數(shù),

x

v關(guān)于x的一元二次方程x2-kx+i=a有實(shí)數(shù)根,

.3-420,

解得Y-2或42,

能滿足這一條件的數(shù)是:-3、-2、2這3個(gè)數(shù),

...能同時(shí)滿足這兩個(gè)條件的只有2這個(gè)數(shù),

...此概率為4,

6

故答案為:y.

6

18、1

【分析】由在比例尺為1:50000的地圖上,量得A、B兩地的圖上距離AB=3cm,根據(jù)比例尺的定義,可求得兩地的

實(shí)際距離.

【詳解】解:?.?比例尺為1:500000,量得兩地的距離是3厘米,

A、B兩地的實(shí)際距離3x500000=100000cm=lkm,

故答案為1.

【點(diǎn)睛】

此題考查了比例尺的性質(zhì).注意掌握比例尺的定義,注意單位要統(tǒng)一.

三、解答題(共78分)

Q

19、(1)反比例函數(shù)的解析式為'=一,直線AB的解析式為y=x+2;(2)2;(3)0<y<4.

x

【分析】(1)先根據(jù)S0OB=4可求出點(diǎn)B的坐標(biāo),再利用待定系數(shù)法即可得:

(2)先根據(jù)直線AB的解析式求出點(diǎn)C的坐標(biāo),從而可得OC的長(zhǎng),再根據(jù)點(diǎn)B的坐標(biāo)可得OC邊上的高,然后根據(jù)

三角形的面積公式即可;

(3)結(jié)合點(diǎn)B的坐標(biāo),利用函數(shù)圖象法即可得.

【詳解】(D14—2,0),3(2,〃),且點(diǎn)B位于第一象限,

二。4=2,AAQB的0A邊上的高為時(shí)=〃,

5.=宗2〃=4,

解得fl=49

???3(2,4),

設(shè)反比例函數(shù)的解析式為y=-,

X

將點(diǎn)8(2,4)代入得:&=4,解得左=8,

2

O

則反比例函數(shù)的解析式為y=2,

x

設(shè)直線AB的解析式為y=ax+b,

—2a+b-0[a-1

將點(diǎn)A(-2,0),B(2,4)代入得:{,,解得,。,

2。+。=4[〃=2

則直線AB的解析式為y=x+2;

(2)對(duì)于y=x+2,

當(dāng)x=0時(shí),y=2,

即點(diǎn)C的坐標(biāo)為C(0,2),

則OC=2,

??,8(2,4),

:.AOCB的OC邊上的高為2,

則AOCB的面積為,X2x2=2;

2

(3)在第一象限內(nèi),一次函數(shù)值大于反比例函數(shù)值表示的是一次函數(shù)的圖象位于反比例函數(shù)的圖象的上方,

則由函數(shù)圖象得:此時(shí)反比例函數(shù)值取值范圍為0<y<4.

【點(diǎn)睛】

本題考查了利用待定系數(shù)法求一次函數(shù)和反比例函數(shù)的解析式、一次函數(shù)與反比例函數(shù)的綜合等知識(shí)點(diǎn),熟練掌握待

定系數(shù)法是解題關(guān)鍵.

9

20、(1)y=x2-4x+l;(2));⑴見(jiàn)解析.

4

【分析】(1)利用待定系數(shù)法進(jìn)行求解即可;

(2)設(shè)點(diǎn)M的坐標(biāo)為(m,m2-4m+l),求出直線BC的解析,根據(jù)MN〃y軸,得到點(diǎn)N的坐標(biāo)為(m,-m+1),

由拋物線的解析式求出對(duì)稱軸,繼而確定出用含m的式子表示出MN,繼而利用二次函數(shù)的性質(zhì)進(jìn)行求解

即可;

(1)分AB為邊或?yàn)閷?duì)角線進(jìn)行討論即可求得.

【詳解】(1)將點(diǎn)B(1,0)、C(0,1)代入拋物線y=x2+bx+c中,

0=9++c

故拋物線的解析式為y=x2-4x+l;

(2)設(shè)點(diǎn)M的坐標(biāo)為(m,m2-4m+l),設(shè)直線BC的解析式為y=kx+L

把點(diǎn)B(1,0)代入y=kx+l中,

得:0=lk+l,解得:k=-1,

二直線BC的解析式為y=-x+L

,.?MN〃y軸,

,點(diǎn)N的坐標(biāo)為(m,-m+1),

?拋物線的解析式為y=x2-4x+l=(x-2)2-1,

???拋物線的對(duì)稱軸為x=2,

.?.點(diǎn)(1,0)在拋物線的圖象上,

39

,線段MN=-m+1-(m2-4m+l)=-m2+lm=-(m-----)2+—,

24

39

.,.當(dāng)m=-時(shí),線段MN取最大值,最大值為一;

24

(1)存在.點(diǎn)F的坐標(biāo)為(2,-1)或(0,1)或(4,1).

當(dāng)以AB為對(duì)角線,如圖1,

??,四邊形AFBE為平行四邊形,EA=EB,

二四邊形AFBE為菱形,

.?.點(diǎn)F也在對(duì)稱軸上,即F點(diǎn)為拋物線的頂點(diǎn),

.?.F點(diǎn)坐標(biāo)為(2,-1);

當(dāng)以AB為邊時(shí),如圖2,

■:四邊形AFBE為平行四邊形,

,EF=AB=2,即FzE=2,FiE=2,

...Fi的橫坐標(biāo)為0,F2的橫坐標(biāo)為4,

對(duì)于y=x2-4x+l,

當(dāng)x=0時(shí),y=l;

當(dāng)x=4時(shí),y=16-16+1=1,

;.F點(diǎn)坐標(biāo)為(0,1)或(4,1),

【點(diǎn)睛】

本題考查了二次函數(shù)的綜合題,涉及了待定系數(shù)法,二次函數(shù)的性質(zhì),平行四邊形的性質(zhì),菱形的判定等,綜合性較

強(qiáng),有一定的難度,熟練掌握相關(guān)知識(shí),正確進(jìn)行分類討論是解題的關(guān)鍵.

21、1.3m

【分析】由三點(diǎn)共線,連接GE,根據(jù)EDLAB,EF〃AB,求出NGEF=NEDM=90。,利用銳角三角函數(shù)求

出GE,根據(jù)直角三角形30。角所對(duì)的直角邊等于斜邊的一半求出DE,即可得到答案.

【詳解】G,E,。三點(diǎn)共線,連接GE,

VED±AB,EF/7AB,

ZGEF=ZEDM=90°,

在RtZkGEF中,NGFE=62°,EF^OAm,

AGE=EF?tan62°?0.4x1.88?0.75m,

在RtZ\DEM中,NEMD=30。,EM=lm,

:.ED=0.5m,

.\h=GE+ED=0.75+0.5?1.3m,

答:此刻運(yùn)動(dòng)員頭部G到斜坡AB的高度h約為1.3m.

G

B

【點(diǎn)睛】

此題考查平行線的性質(zhì),銳角三角函數(shù)的實(shí)際應(yīng)用,根據(jù)題意構(gòu)建直角三角形是解題的關(guān)鍵.

22、(1)證明見(jiàn)解析;(2)另一根為4,加為±2.

【分析】(D判斷?是否大于0即可得出答案;

(2)將x=l代入方程求解即可得出答案.

【詳解】解:(1)???%2-5%+6-|同=0

:.Z?2-4ac=25—4(6—帆)=1+4|/??|

v|/w|>0

b2-4ac>0

故此方程必有兩個(gè)不相等的實(shí)數(shù)根;

(2)把x=1代入原方程?=2,.,.加=±2,

2

即(x—2)(x—3)=2,%—5x+4=0>.\xl—l,x2—4,

故方程的另一根為4,加為±2.

【點(diǎn)睛】

本題考查的是一元二次方程,難度適中,需要熟練掌握一元二次方程根與系數(shù)的關(guān)系.

23、(1)1;(2)B(--,0);(3)D的坐標(biāo)是(!,1)或(1+厲,-1)或J二如,-1)

2244

【分析】(D把點(diǎn)A的坐標(biāo)代入函數(shù)解析式,利用方程來(lái)求m的值;(2)令y=0,則通過(guò)解方程來(lái)求點(diǎn)B的橫坐標(biāo);

(3)利用三角形的面積公式進(jìn)行解答.

【詳解】解:(1)把A(1,0)代入y=-2x2+x+m,得

-2xl2+l+m=0,

解得m=l;

(2)由(1)知,拋物線的解析式為y=-2X2+X+L

令y=0,貝!j-2x2+x+l=0,

-l±712-4x(-2)xl_-1±3

故X=

2x(-2)-4

解得Xl=-g,X2=l.

2

故該拋物線與X軸的交點(diǎn)是(-J,0)和(1,0).

,??點(diǎn)為A(1,0),

,另一個(gè)交點(diǎn)為B是(-g,0);

(3)???拋物線解析式為y=-2x2+x+l,

AC(0,1),

.*.OC=1.

SAABD=SAABC,

二點(diǎn)D與點(diǎn)C的縱坐標(biāo)的絕對(duì)值相等,

...當(dāng)y=l時(shí),-2x2+x+l=l,即x(-2x+l)=0

解得*=0或x=4.

2

即(0,1)(與點(diǎn)C重合,舍去)和D(g,1)符合題意.

2

當(dāng)y=-l時(shí),-2x2+x+l=-l,即2x2-x-2=0

解得x=1^2叵.

4

即點(diǎn)叵,-1)和(匕姮,-1)符合題意.

44

綜上所述,滿足條件的點(diǎn)D的坐標(biāo)是(4,1)或(上叵,-1)或(上姮,-1).

244

本題考查了拋物線的圖象和性質(zhì),解答(3)題時(shí),注意滿足條件的點(diǎn)D還可以在x軸的下方是解題關(guān)鍵.

535

2

24、(1)y=-x+4x+5;(2)2點(diǎn)坐標(biāo)為(2,9)或(6,?7);(3)存在點(diǎn)Q(展])使得四邊形OFQC的面

積最大,見(jiàn)解析.

【分析】(1)先由點(diǎn)B在直線y=x+l上求出點(diǎn)B的坐標(biāo),再利用待定系數(shù)法求解可得;

(2)可設(shè)出P點(diǎn)坐標(biāo),則可表示出E、。的坐標(biāo),從而可表示出PE和EO的長(zhǎng),由條件可知到關(guān)于P點(diǎn)坐標(biāo)的方

程,則可求得。點(diǎn)坐標(biāo);

(3)作軸于點(diǎn)p,設(shè)Q(,”,-nv+4///+5)(/n>0),知PO=,〃,PQ=-nr+4m+5,CP=5-m,根據(jù)四邊形

OFQC的面積=SmpQF0+S“QC建立關(guān)于m的函數(shù),再利用二次函數(shù)的性質(zhì)求解可得.

【詳解】解:(1)???點(diǎn)8(4,加)在直線y=x+l上,

.,./?/=4+1=5?8(4,5),

a-b+c-0

把A、8、。三點(diǎn)坐標(biāo)代入拋物線解析式可得J16a+4A+c=0解得b=4,

25a+5b+c=0c=5

,拋物線解析式為y=-x2+4x+5;

(2)設(shè)P(x,-*2+4x+5),則E(x,x+1),Z)(x,O),

貝!+4x+5-(x+1)|=|-X2+3X+4\,DE^X+\\,

.PE=2ED,

—x^+3x+4|=2|x+l|,

當(dāng)-f+3x+4=2(x+l)時(shí),解得x=-l或x=2,但當(dāng)x=—l時(shí),P與A重合不合題意,舍去,

P(2,9);

當(dāng)-x?+3x+4=-2(x+l)時(shí),解得x=-l或x=6,但當(dāng)x=-l時(shí),P與A重合不合題意,舍去,

P(6-7);

綜上可知P點(diǎn)坐標(biāo)為(2,9)或(6,-7);

(3)存在這樣的點(diǎn)。,使得四邊形2c的面積最大.

如圖,過(guò)點(diǎn)。作軸于點(diǎn)P,

設(shè)Q(m,-in2+4"?+5)(?n>0),

2

則PO=m9PQ——m+4m+5,CP=5—m9

四邊形OFQC的面積=^^PQFO+^^PQC

=~x(一+4m+5+5)〃九+;x(5一m)x(一%,+4m+5)

52525

=——nr2H--m-\----

222

5/5,2225

=—(m—)H----,

228

5225535

當(dāng)m=5時(shí),四邊形OA2C的面積取得最大值,最大值為受,此時(shí)點(diǎn)0的坐標(biāo)為弓,J).

【點(diǎn)睛】

本題是二次函數(shù)的綜合問(wèn)題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質(zhì)及利用割補(bǔ)法列出四邊形

面積的函數(shù)關(guān)系式.

25、(1)y;(2)見(jiàn)解析;(3)4或-5+715?或-3+屈

【分析】(D證明AADBsaABC,可得處=42,由此即可解決問(wèn)題.

BCAB

(2)想辦法證明NBEA=NEFC,NDBC=NC即可解決問(wèn)題.

(3)分三種情形構(gòu)建方程組解決問(wèn)題即可.

【詳解】(1)VAB=8,AC=12,又;AB2=AD?AC

16

ADT

VAB2=AD?AC,

.ADAB

??=,

ABAC

又???NBAC是公共角

.,.△ADB^AABC,

.BDAD

16

BD

7(7J

8

20

BDT

(2)VAC=12,AD=—

3

,BD=CD,

...NDBC=NC,

VAADB^AABC

;.NABD=NC,

.,.ZABD=ZDBC,

VZBEF=ZC+ZEFC,

即ZBEA+ZAEF=ZC+ZEFC,

■:NAEF=NC,

.*.ZBEA=ZEFC,XVZDBC=ZC,

.,.△BEG^ACFE.

(3)如圖中,過(guò)點(diǎn)A作AH〃BC,交BD的延長(zhǎng)線于點(diǎn)H,設(shè)BE=x,CF=y,

,.,AH〃BC,

16

.ADPHAH_T_4

"DC-BC_20

T

20

BD=CD=—,AH=8,

3

16

AD=DH=—,

3

BH=12,

.AH/7BC,

.AHHG

*BE~BG*

.8_

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論